数字基带信号处理实验

合集下载

数字基带信号实验

数字基带信号实验

数字基带信号实验一、实验目的:学会利用MATLAB软件对数字基带信号的仿真。

通过实验提高学生实际动手能力和编程能力,为日后从事通信工作奠定良好的基础。

二、实验内容:利用MATLAB软件编写数字基带信号程序,进一步加强对数字基带信号的理解。

(1)单极性不归零数字基带信号(2)双极性不归零数字基带信号(3)单极性归零数字基带信号(4)双极性归零数字基带信号三、程序(1) 单极性不归零数字基带信号程序function y=zhou(x)t0=200;t=0:1/t0:length(x);for i=1:length(x)if(x(i)==1)for j=1:t0y((i-1)*t0+j)=1;endelsefor j=1:t0y((i-1)*t0+j)=0;endendendy=[y,x(i)]; M=max(y);m=min(y);subplot(1,1,1)plot(t,y);grid on;axis([0,i,m-0.1,M+0.1]);title('1 0 0 1 1 0 0 0 0 1 0 1');(2) 双极性不归零数字基带信号function y=zhou(x)t0=200;t=0:1/t0:length(x);for i=1:length(x)if(x(i)==1)for j=1:t0y((i-1)*t0+j)=1;endelsefor j=1:t0y((i-1)*t0+j)=-1;endendendy=[y,x(i)]; M=max(y);m=min(y);subplot(1,1,1)plot(t,y);grid on;axis([0,i,m-0.1,M+0.1]);title('1 0 0 1 1 0 0 0 0 1 0 1');(3)单极性归零数字基带信号function y=zhou(x)t0=200;t=0:1/t0:length(x);for i=1:length(x)if(x(i)==1)for j=1:t0/2y((2*i-2)*t0/2+j)=1;y((2*i-1)*t0/2+j)=0;endelsefor j=1:t0y((i-1)*t0+j)=0;endendendy=[y,x(i)]; M=max(y);m=min(y);subplot(1,1,1)plot(t,y);grid on;axis([0,i,m-0.1,M+0.1]);title('1 0 0 1 1 0 0 0 0 1 0 1')(4)双极性归零数字基带信号function y=zhou(x)t0=200;t=0:1/t0:length(x);for i=1:length(x)if(x(i)==1)for j=1:t0/2y((2*i-2)*t0/2+j)=1;y((2*i-1)*t0/2+j)=0;endelsefor j=1:t0/2y((2*i-2)*t0/2+j)=-1;y((2*i-1)*t0/2+j)=0;endendendy=[y,x(i)]; M=max(y);m=min(y);subplot(1,1,1)plot(t,y);grid on;axis([0,i,m-0.1,M+0.1]);title('1 0 0 1 1 0 0 0 0 1 0 1');四、实验结果以及分析:(1)结果图1单极性不归零图2双极性不归零图3单极性归零图4双极性归零(2)分析由于此次实验是本次的第一次实验,实验内容比较简单,代码编写不是太复杂,只需要理解老师所给的单极性不归零码编程的含义结合理论课所讲的原理,可以很快的在单极性不归零码的基础上加以修改编写出其他三个代码,但此次实验中也遇到一些问题在于循环结束之后要不要给y再加上一个值(y=[y,x(i)];),此问题只要出自于t的长度比y的长度多1,因此给y再赋上一个值是肯定的,不加怎结果中会少一个值。

实验一数字基带信号的产生及波形变换实验

实验一数字基带信号的产生及波形变换实验

实验一数字基带信号的产生及波形变换实验一、实验目的(1)了解多种时钟信号的产生方法;(2)了解帧同步信号的产生过程;(3)了解几种常见的数字基带信号;(4)掌握AMI码的编码规则。

二、实验原理通信的根本任务是远距离传递消息,因而如何准确地传输数字信息是数字通信的一个重要组成部分。

在数字传输系统中,其传输对象通常是二元数字信息,它可能来自计算机、电传打字机或其它数字设备的各种数字代码,也可能来自数字电话终端的脉冲编码信号。

对基带传输系统的要求就是选择一组有限的离散波形来表示数字信息。

其中未调制的电脉冲信号所占据的频带通常从直流和低频开始,因而称为数字基带信号。

数字基带信号实际上是消息代码的电波形,不同形式的数字基带信号具有不同的频谱结构。

在某些有线信道中,特别是传输距离不太远的情况下,数字基带信号可以直接传送,但必须合理地设计数字基带信号以使数字信息变换为适合于给定信道传输特性的频谱结构。

通常把数字信息的电脉冲表示过程称为码型变换,在有线信道中传输的数字基带信号又称为线路传输码型。

对于数字基带信号的码型选择通常考虑的原则是:(1)对于传输频带低端受限的信道,其线路传输码型的频谱中应不含直流分量;(2)码型变换过程应对任何信源具有透明性,即与信源的统计特性无关;(3)便于从基带信号中提取位定时信息;(4)便于实时监测传输系统信号传输质量,即应能检测出基带信号码流中错误的信号状态;(5)对于某些基带传输码型,信道中传输的单个误码会扰乱一段译码过程,从而导致译码信息中出现多个错误,这种现象称为误码扩散。

希望这种情况越少越好;(6)当采用分组形式的传递码型时,在接收端不但要从基带信号中提取位定时信息,而且要恢复出分组同步信息,以便将接收到的信号正确地划分成固定长度的码组;(7)尽量减少基带信号频谱中的高频分量;(8)编译码设备应尽量简单。

数字基带信号在通信系统中占有比较重要的位置,本实验是整个通信实验系统的数字发送端,其原理框图如图 1-1 所示。

通信原理硬件实验报告(最新-哈工程)

通信原理硬件实验报告(最新-哈工程)

实验报告哈尔滨工程大学教务处制实验一、数字基带信号实验一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点2、掌握AMI、HDB2的编码规则3、了解HDB3(AMI)编译码集成电路CD22103.二、实验仪器双踪示波器、通信原理VI实验箱一台、M6信源模块三、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。

2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB3、AMI译码输出波形.四、基本原理1、单极性码、双极性码、归零码、不归零码对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即数字信号由矩形脉冲组成。

a)单极性不归零码,无电压表示”0",恒定正电压表示"1”,每个码元时间的中间点是采样时间,判决门限为半幅电平。

b)双极性不归零码,”1"码和"0”码都有电流,”1”为正电流,"0"为负电流,正和负的幅度相等,判决门限为零电平。

c)单极性归零码,当发”1"码时,发出正电流,但持续时间短于一个码元的时间宽度,即发出一个窄脉冲;当发"0"码时,仍然不发送电流。

d)双极性归零码,其中”1"码发正的窄脉冲,”0"码发负的窄脉冲,两个码元的时间间隔可以大于每一个窄脉冲的宽度,取样时间是对准脉冲的中心。

归零码和不归零码、单极性码和双极性码的特点:不归零码在传输中难以确定一位的结束和另一位的开始,需要用某种方法使发送器和接收器之间进行定时或同步;归零码的脉冲较窄,根据脉冲宽度与传输频带宽度成反比的关系,因而归零码在信道上占用的频带较宽。

单极性码会积累直流分量,这样就不能使变压器在数据通信设备和所处环境之间提供良好绝缘的交流耦合,直流分量还会损坏连接点的表面电镀层;双极性码的直流分量大大减少,这对数据传输是很有利的2、AMI、HDB3码特点(1)AMI码我们用“0"和“1”代表传号和空号。

实验8 数字基带信号的码型变换

实验8   数字基带信号的码型变换


图8-9 码型变换结构组成框图

译码模块:完成码型变换实验。其结构组成框图如下图8-10
四、实验任务

1.当输入8位码为全“0”、全“1”、伪随机码、任意码时,分折各种 变换结果。 2.观测各种码型变换波形,验证你的分析结果。
五、测量点说明

TP301:原始数字基带信号;TP302:编码时钟;TP303:正极性 码型变换; TP304:负极性码型变换;TP305:码型变换输出;TP306:选择 0010-1000时无波形。
六、实验报告要求
1.根据实验结果,画出各种码型变换的测量点波形图。 2.写出各种码型变换的工作过程。
E
1
0
1
0
0
1
1
0
0
E
图 8-6 CMI码




密勒码 密勒码又称延迟调制码,它是曼彻斯特码的一种变形,编码规则: “1”码用码元间隔中心点出现跃变来表示,即用“10”或“01”表示。 “0”码有两种情况:单个“0”码时,在码元间隔内不出现电平跃变, 且相邻码元的边界处也不跃变;连“0”时,在两个“0”码边界处出现 电平跃变,即“00”与“11”交替。 例如: 消息代码:1 1 0 1 0 0 1 0… 密勒码: 10 10 00 01 11 00 01 11… 或: 01 01 11 10 00 11 10 00…

PST码能够提供的定时分量,且无直流成分,编码过程也简单,在接 收识别时需要提供“分组”信息,即需要建立帧同步,在接收识别时, 因为在“分组”编码时不可能出现00、++和—的情况,如果接收识 别时,出现上述的情况,说明帧没有同步,需要重新建立帧同步。

数字调制与解调实验报告

数字调制与解调实验报告

数字调制与解调实验报告
实验目的:
1.掌握数字信号调制与解调的基本理论和方法。

2.熟悉激励、显示、调制、解调等仪器和设备操作方法。

3.理解不同调制方式的优缺点及适用场合。

实验器材:
数字信号发生器、混频器、低通滤波器、示波器、数字信号处理器、计算机、电缆等。

实验原理:
数字调制与解调是将数字信号变为模拟信号或将模拟信号转换为数字信号的过程。

调制的目的是将讯息信号改为适合传输的信号;而解调则是将传输信号还原为原讯息信号。

实验步骤:
1.基带信号的调制实验
将固定频率的基带信号通过数字信号发生器产生一个频率为f1的固定载波信号,并通过混频器进行调制,产生频率为f1+f2和f1-f2的调制信号。

通过低通滤波器滤除掉高频成分,以得到目标信号。

在示波器上观察波形和频谱,并用数字信号处理器检测和还原基带信号。

2.幅度调制实验
实验数据:
输入基带信号:
载波信号:
调制信号:
实验结论:
数字调制与解调是将数字信号变为模拟信号或将模拟信号转换为数字信号的过程。

通过本次实验,我们实现并了解了不同调制方式的基本原理及其优缺点。

在幅度调制和频率调制实验中,我们掌握了两种数字调制方式的原理和实现方法,通过数字信号发生器制作载波和基带信号,完成幅度调制和频率调制实验。

通过示波器观察得到了不同调制方式的调制信号波形和频谱,并用数字信号处理器检测和还原出原基带信号。

总之,数字调制解调技术在数据传输、通信等方面应用广泛,其优点是抗干扰、可靠性高、传输速度快,具有重要的意义。

数字基带信号实验及数字调制与解调实验

数字基带信号实验及数字调制与解调实验

硬件实验一一、实验名称数字基带信号实验及数字调制与解调实验二、实验目的(1)了解单极性码,双极性码,归零码,不归零码等基带信号波形特点。

(2)掌握AMI,HDB3的编码规则。

(3)掌握从HDB3码信号中提取位同步信号的方法。

(4)掌握集中插入帧同步码时分复用信号的帧结构特点。

(5)了解HDB3(AMI)编译码集成电路CD22103。

(6)掌握绝对码,相对码概念及他们之间的变换关系。

(7)掌握用键控法产生2ASK,2FSK,2PSK,2DPSK信号的方法。

(8)掌握相对码波形与2PSK信号波形之间的关系,绝对码波形与2DPSK信号波形之间的关系。

(9)了解2ASK,2FSK,2PSK,2DPSK信号的频谱与数字基带信号频谱之间的关系。

(10)掌握2DPSK相干解调原理。

(11)掌握2FSK过零检测解调原理。

三、实验仪器1. 双踪示波器一台2. 通信原理Ⅵ型实验箱一台3. M6信号源模块、M4数字调制模块四、实验容与实验步骤(一)数字基带信号实验1.熟悉信源模块,AMI&HDB3编译模块(有可编程逻辑器件模块实现)和HDB3编译码模块的工作原理。

2.接通数字信号源模块的电源。

用示波器观察熟悉信源模块上的各种信号波形。

(1)示波器的两个通信探头分别接NRZ-OUT和BS-OUT,对照发光二级管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用K1产生代码*1110010(*为任意代码,1110010为7位帧同步码),K2,K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。

3.关闭数字信号源模块的电源,按照下表连线,打开数字信号源模块和AMI(HDB3)编译码模块电源。

用示波器观察AMI(HDB3)编译单元的各种波形。

(1)示波器的两个探头CH1和CH2分别接NRZ-OUT和(AMI)HDB3,将信源模块K1,K2,K3的每一位都置1,观察并记录全1码对应的AMI码和HDB3码;再将K1,K2,K3置为全0,观察全0码对应的AMI和HDB3码。

数字基带传输系统实验报告

数字基带传输系统实验报告

数字基带传输系统实验报告数字基带传输系统实验报告引言:数字基带传输系统是现代通信领域中的重要组成部分,它在各个领域中起到了至关重要的作用。

本实验旨在通过搭建一个基带传输系统的模型,来研究数字信号的传输特性和误码率等参数。

通过实验,我们可以更好地理解数字基带传输系统的原理和应用。

一、实验目的本实验的主要目的是搭建一个数字基带传输系统的模型,并通过实验研究以下几个方面:1. 了解数字基带传输系统的基本原理和结构;2. 研究数字信号的传输特性,如传输速率、带宽等;3. 分析误码率与信噪比之间的关系;4. 探究不同调制方式对传输性能的影响。

二、实验原理数字基带传输系统由发送端、信道和接收端组成。

发送端将模拟信号转换为数字信号,并通过信道传输到接收端,接收端将数字信号转换为模拟信号。

在传输过程中,信号会受到噪声的干扰,从而引起误码率的增加。

三、实验步骤1. 搭建数字基带传输系统的模型,包括发送端、信道和接收端;2. 设计不同的调制方式,如ASK、FSK和PSK,并设置不同的传输速率和带宽;3. 测试不同调制方式下的误码率,并记录实验数据;4. 分析误码率与信噪比之间的关系,探究不同调制方式对传输性能的影响。

四、实验结果与分析通过实验,我们得到了一系列的数据,并进行了分析。

我们发现,随着信噪比的增加,误码率逐渐减小,传输性能逐渐提高。

同时,不同调制方式对传输性能也有一定的影响。

例如,ASK调制方式在低信噪比下误码率较高,而PSK调制方式在高信噪比下误码率较低。

五、实验总结通过本次实验,我们对数字基带传输系统有了更深入的了解。

我们了解了数字基带传输系统的基本原理和结构,研究了数字信号的传输特性和误码率与信噪比之间的关系。

同时,我们也探究了不同调制方式对传输性能的影响。

通过实验,我们对数字基带传输系统的应用和优化提供了一定的参考。

六、实验存在的问题与改进方向在本次实验中,我们发现了一些问题,如实验数据的采集和分析方法可以进一步改进,实验中的噪声模型也可以更加精确。

通信原理实验一

通信原理实验一

中南大学信息科学与工程学院通信原理实验报告学生学院信息科学与工程学院专业班级学号学生姓名指导教师时间实验一数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握AMI、HDB3码的编码规则。

3、掌握从HDB3码信号中提取位同步信号的方法。

4、掌握集中插入帧同步码时分复用信号的帧结构特点。

5、了解HDB3(AMI)编译码集成电路CD22103。

二、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI 码及整流后的HDB3 码。

2、用示波器观察从HDB3 码中和从AMI 码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB3、AMI 译码输出波形。

三、实验步骤本实验使用数字信源单元和HDB3编译码单元。

1、熟悉数字信源单元和HDB3编译码单元的工作原理。

接好电源线,打开电源开关。

2、用示波器观察数字信源单元上的各种信号波形。

用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,通过开关K1,K2,K3将数字信源置于01110010 11110000 11110000,理论上的波形应该是如下图1-11:图 1-1 示波器上的理想波形实际在示波器上看到此时示波器中的波形如下图 1-12,对比图1-11可以看到,发光状态是正确的。

图 1-2 代码01110010 11110000 11110000时的位同步信号和NRZ码(2)用开关K1产生代码01110010(1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ 码特点。

图 1-3 代码01110010 00000000 00000000时的位同步信号和NRZ码说明:集中插入法是将标志码组开始位置的群同步码插入一个码组的前边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图7-2 时钟信号系统电路原理框图

2、系统电路分析 (1) 2048KHz时钟信号产生电路 电路如图7-4所示。
2 1
SN74LS04 U214:A R202 1K C206 0.01UF R201 1K U214:B
3 4
VCC
J201 2.048MHZ
10 11 12 13
T1024KHZ
SN7408
U209:D
11 5
SN74LS04 U212:C
6
K208 TP225
R1 1 RINT 1 3 2 1
SN7474
SN7408
SN74LS04
K209
图7-10
接收定时信号产生电路
从图中可知,同发送定时信号类同,产生定时信
号的方法也相同,故波形略。需要指出的是, U213:A、B(74LS04)、U203:B(74LS74) 的作用是对接收到的数字基带信号进行整形 输出。 U213:D、E(74LS04)、U210:A (74LS08)、U208:D、E(74LS08)的作 用是用接收使能信号(由软件产生)对接收 时钟1024KHz的选通进行输出。

1、时钟信号系统电路组成
晶 振
2048KHZ
时 钟 分 频 及 定 时 变 换 电 路
8KHZ收 发 分 帧 同 步 信号 256KHZADPCM收 发 时 钟 CLK 1024KHZ突 收 突 发 时 钟 信号
发 送 第 1路 压 缩 定 时 信 号 发 送 定 时 信 号 产生 电 路 发 送 第 2路 压 缩 定 时 信 号 接 收 第 1路 突 收 定 时 信 号 接 收 定 时 信 号 产生 电 路 接 收 第 2路 突 收 定 时 信 号 音 频 信 号 产 生 电路 软 件 使 能 信 号 产生 电 路 输 出 幅 度 、 频 率 均 可 调 的 单 音 频 正 弦 波信 号 发 送 压 缩 使 能 信号 接 收 突 收 使 能 信号
U201-12 U201-11 U201-15 16 1 TP209 U201-15
TP213
U203-5 U203-6
图7-7分频电路及定时变换电路波形图

(3)发送定时信号产生电路
TP216 TP217
U210:C
9 8 10 T F10 24
U206:D
SE NDE N 9 8 T INT 5
U203:B
10 11 12 13 PRE CL K D CL R Q Q 9 8 RADPCMD
SN74LS04
SN74LS04 U209:A
1
SN7474 U212:D
3 2 9 8 RINT 0 R0 1
TP208
1 2 3
VCC 4 3 2 1
U205:A
PRE CL K D CL R 13 Q Q 5 6 12
TP210 (TTL电 平 ) f=2048KHz t f=1024KHz t f=1024KHz t
0
U 2 1 1 :B (Q )
0
U 2 1 1 :B (Q )
0
图7-5 突收、突发工作时钟信号

(2)时钟分频及定时变换电路
TP209
K204
6 5 4 3 2 7 10 9 1
U201 U206:F
U208:F
12
SN74LS04
SN74LS04
SN74LS04 U213:C
RE CE N 5 6 RINT 5
U208:C
6 9
U218:D C204 470P SN74LS04
SN7408 SN74LS04
8
SN74LS04 U213:A
RADPCM 1 2
SN74LS04
VCC
U213:B
3 4
图7-9 发送定时信号波形图

(4)接收定时信号产生电路
K205 TP215
1 2 3
U213:E
R1 02 4KHZ 11 10 9
U213:D SN74LS04
8 R1 02 4 1
U208:E
11 1 0 R1 02 4W R 9
U318:D
8 R1 02 4CL K
U210:A
3 13 2
数 据 缓
ADPCM
CPU
数 据 处 存 单 元 理 单 元
控 制 单 元
发 送 电 路
图7-1数字信号通信实验系统框图
(二)系统时钟信号与信号产生电路

在实验电路或其它电路中,时钟信号是非 常重要的,产生出来的时钟的好坏,将直接 影响着整体电路质量,时钟的不稳、抖动或 产生互相干扰,时钟信号的时序关系不严密, 出现误差等等,对通信电路产生不同程度的 影响。因此,对时钟信号或者是其它定时信 号,必须要有严格的要求,如相位关系,脉 冲占空比定时脉宽。
4
TP219 TP220
TP213
SN74LS04
SN74LS04
CON-8KHZ
8K
TP221
R8K
图7-6 时钟分频及定时变换电路


发送1024KHz方波信号进入倒相器U206:A(74LS04)的输 入端(第1引脚)后,再经过U206:F(74LS04)输出到第一 级分频电路U201(74LS161)中,逐级分频,得到256KHz 的时钟信号,在测试点TP211处可测出波形。将U201 (74LS161)的第15引脚输出的64KHz窄脉冲信号送至第二 级分频电路U202(74LS161)的第7与10引脚,作选通信号。 由于只有在64KHz的窄脉冲期间,分频电路才能有输出。因 此U202的输出经过逐次分频后,通过U203:A(74LS74)与 U204:A(74LS161)U212(74LS04),在U203:A的Q端 输出8KHz作为发送分帧同步信号,端输出反相8KHz作为接 收分帧同步信号。 U208:A(74LS08)的输出8KHz信号作为软定时信号的计数 信号,输送至CPU U215(89C51)的定时器T0、T1。 U210:B(74LS04)是8KHz窄脉冲对256KHz方波进行选 通输出。U206:B、C、E(74LS04)作延时用,对256KHz 方波信号进行延时,克服逻辑竞争现象。
SN7408 U310:C
6 T FE N
SN7404
SN74LS04
U212:A U209:C
VCC 9 1 8 2
TP222
T 0 19 T INT 0 3 2 1
U211:A
4 3 2 1 PRE CL K D CL R Q Q 5 6 1
U207:A
2 3
U207:B
4
10
SN74LS04 SN7408 U209:B
12
SN74161 U212:E
U206:E
11 10 3
10
11
U206:B
4 5
U206:C
6Hale Waihona Puke 256U210:B
4 6 5
SN74LS04
TP218
N256
SN74LS04
C201 470P SN74LS04
C202 SN74LS04 470P
TP214
1
SN7408 U208:A
2 3
U208:B
ADPCM
时 钟 输 入
数 据 缓
CPU
软 定 时 信 号
数 据 处 理 单 元 存 单 元
控 制 单 元
256KHZ
时 钟
分 帧
8K HZ
ADPCM
CODEC
DT
语 音 输 入
平 衡 不 平 衡
发 送
PCM
发 送
ADPCM
语 音 输 出
平 衡 不 平 衡
接 收
PCM
接 收
ADPCM
DT GND SCP RX SCP TX SCP CLK SCP EN DR DR GND
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 TP209 U201-14 U201-13
TP211
1024KHz 512KHZ 256KHZ 128KHZ 64KHZ 64KHZ窄 脉 冲 16 1 16 1 16 1 16 1 16 1 1024KHZ 64KHZ窄 脉 冲 1 15 16 1 15 16 8KHZ窄 脉 冲
8KHZ
4 3 2 1
PRE CL K D CL R
Q Q
P8KHZ 5
6
SN7474
VCC
6 5 4 3 2 7 10 9 1
D C B A CL K E NP E NT L OAD CL R
QD QC QB QA RCO
11 12 13 14 15
VCC
SN74161
13
SN74LS04 U212:F
一、实验目的 1、熟悉该系统的时钟信号与各种定时信号的产 生方法。 2、理解自适应差值脉冲编码调制(ADPCM) 的工作原理。 3、了解大规模集成电路MC145540的电路组成 及工作原理。 4、了解单片机在通信中的应用。 二、实验预习要求 1、复习脉冲编码调制(PCM)实验的内容。 2、预习有关MCS-51单片计算机的原理及应用。 3、预习本实验内容,熟悉实验原理和步骤。
D C B A CL K E NP E NT L OAD CL R QD QC QB QA RCO 11 12 13 14 15
TP211
64KHZ 256KHZ 64KHZ
1 2 3
T1024KHZ
U206:A
1 2 13
128KHZ
12
1024
SN74LS04
SN74LS04
相关文档
最新文档