电大高等数学基础考试答案完整版

合集下载

电大高等数学基础考试答案完整版

电大高等数学基础考试答案完整版
tanx+C.
若,贝寸—9sin3x.
5-23.0.0下列积分计算正确的是(B).
ABCD
三、计算题

(1)利用极限的四则运算法则,主要是因式分解,消去零因子。
(2)利用连续函数性质:有定义,则极限 类型1:利用重要极限|,,|计算
1-1求.解:
1-2
1-3求解:=
类型2:因式分解并利用重要极限,化简计算。
1-1
解:
1-2
解:
1-3设,求.
解:
类型2:加减法与复合函数混合运算的求导,先加减求导,后复合求导
2-1,求解
2-2,求
解:
2-3,求,
解:
类型3:
乘积与复合函数混合运算的求导,先乘积求导,后复合求导
,求。
解:
其他:,求。
解:
0807.设,
求解:
0801.设,
求解:
0707.设,
求解:
0701.设,
核准通过,归档资 料。
未经允许,请勿外
传!
高等数学基础归类复习
、单项选择题
1-1下列各函数对中,(C)中的两个函数相等.
1-2.设函数的定义域为,则函数的图形关于(C)对称.
A.坐标原点轴轴
设函数的定义域为,则函数的图形关于(D)对称.
轴轴D.坐标原点
.函数的图形关于(A)对称.
(A)坐标原点(B)轴(C)轴(D)
1.函数的定义域是(3,+8).
函数的定义域是(2,3)U(3,4
函数的定义域是(—5,2)
若函数,则1.
2若函数,在处连续,则e.
.函数在处连续,则2函数的间断点是x=0.
函数的间断点是x=3^函数的间断点是x=2

电大高等数学基础考试答案完整版(整理)

电大高等数学基础考试答案完整版(整理)

核准通过,归档资料。

未经允许,请勿外传!高等数学基础归类复习一、单项选择题1-1下列各函数对中,( C )中的两个函数相等.A. 错误!未找到引用源。

,错误!未找到引用源。

B. 错误!未找到引用源。

,错误!未找到引用源。

C.错误!未找到引用源。

,错误!未找到引用源。

D. 错误!未找到引用源。

,错误!未找到引用源。

1-⒉设函数错误!未找到引用源。

的定义域为错误!未找到引用源。

,则函数错误!未找到引用源。

的图形关于(C )对称.A. 坐标原点B. 错误!未找到引用源。

轴C. 错误!未找到引用源。

轴D. 错误!未找到引用源。

设函数错误!未找到引用源。

的定义域为错误!未找到引用源。

,则函数错误!未找到引用源。

的图形关于(D )对称.A. 错误!未找到引用源。

B. 错误!未找到引用源。

轴C. 错误!未找到引用源。

轴D. 坐标原点.函数错误!未找到引用源。

的图形关于(A )对称.(A) 坐标原点(B) 错误!未找到引用源。

轴(C) 错误!未找到引用源。

轴(D) 错误!未找到引用源。

1-⒊下列函数中为奇函数是(B ).A. 错误!未找到引用源。

B. 错误!未找到引用源。

C. 错误!未找到引用源。

D. 错误!未找到引用源。

下列函数中为奇函数是(A ).A. 错误!未找到引用源。

B. 错误!未找到引用源。

C. 错误!未找到引用源。

D. 错误!未找到引用源。

下列函数中为偶函数的是( D ).A 错误!未找到引用源。

B 错误!未找到引用源。

C 错误!未找到引用源。

D 错误!未找到引用源。

2-1 下列极限存计算不正确的是( D ).A. 错误!未找到引用源。

B. 错误!未找到引用源。

C. 错误!未找到引用源。

D. 错误!未找到引用源。

2-2当错误!未找到引用源。

时,变量( C )是无穷小量.A. 错误!未找到引用源。

B. 错误!未找到引用源。

C. 错误!未找到引用源。

D. 错误!未找到引用源。

当错误!未找到引用源。

时,变量( C )是无穷小量.A 错误!未找到引用源。

电大试题数学及答案

电大试题数学及答案

电大试题数学及答案一、单项选择题(每题2分,共20分)1. 函数y=f(x)=x^2的导数是()A. 2xB. x^2C. 2x^2D. x答案:A2. 极限lim(x→0) (x^2 + 3x)/(x^2 + 2x + 1)的值是()A. 0B. 1C. 3D. 2答案:B3. 函数y=e^x的不定积分是()A. e^x + CB. e^xC. 1/e^x + CD. ln(e^x) + C答案:A4. 函数y=x^3的二阶导数是()A. 3x^2B. 6xC. 6D. 3x答案:B5. 函数y=sin(x)的不定积分是()A. cos(x) + CB. sin(x) + CC. -cos(x) + CD. -sin(x) + C答案:C6. 函数y=ln(x)的导数是()A. 1/xB. xC. ln(x)D. x^2答案:A7. 函数y=x^2 - 4x + 4的最小值是()A. 0B. 4C. -4D. 1答案:A8. 函数y=x^3 - 3x^2 + 2的拐点是()A. x=1B. x=2C. x=-1D. x=0答案:B9. 函数y=e^x的二阶导数是()A. e^xB. e^(2x)C. 2e^xD. e^(3x)答案:A10. 函数y=x^2 + 2x + 1的顶点坐标是()A. (-1, 0)B. (1, 2)C. (-1, 2)D. (1, 0)答案:C二、填空题(每题2分,共20分)11. 函数y=x^3的一阶导数是______。

答案:3x^212. 函数y=cos(x)的不定积分是______。

答案:sin(x) + C13. 函数y=ln(x)的二阶导数是______。

答案:-1/x^214. 函数y=x^4 - 4x^3 + 6x^2 - 4x + 1的极值点是______。

答案:x=115. 函数y=e^(-x)的导数是______。

答案:-e^(-x)16. 函数y=x^2 - 6x + 9的最小值是______。

最新电大高等数学基础形成性考核手册答案(含题目)整理版

最新电大高等数学基础形成性考核手册答案(含题目)整理版

高等数学基础形考作业1答案:第1章 函数 第2章 极限与连续(一)单项选择题⒈下列各函数对中,(C )中的两个函数相等. A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称. A. 坐标原点 B. x 轴 C. y 轴 D. x y = ⒊下列函数中为奇函数是(B ).A. )1ln(2x y +=B. x x y cos =C. 2x x a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2xy = D. ⎩⎨⎧≥<-=0,10,1x x y⒌下列极限存计算不正确的是(D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim=∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时,变量(C )是无穷小量.A. xx sin B. x 1C. xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。

A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是()+∞,3.⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .⒊=+∞→xx x)211(lim 21e . ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是0=x .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为时的无穷小量0x x →。

国家开放大学《高数基础形考》1-4答案

国家开放大学《高数基础形考》1-4答案

2020年国家开放大学《高等数学》基础形考1-4答案《高等数学基础》作业一第1章 函数第2章 极限与连续(一) 单项选择题⒈下列各函数对中,(C )中的两个函数相等. A. 2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C. 3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y = ⒊下列函数中为奇函数是(B ).A. )1ln(2x y +=B. x x y cos =C. 2x x a a y -+= D. )1ln(x y +=⒋下列函数中为基本初等函数是(C ). A. 1+=x y B. x y -= C. 2x y = D. ⎩⎨⎧≥<-=0,10,1x x y ⒌下列极限存计算不正确的是(D ).A. 12lim22=+∞→x x x B. 0)1ln(lim 0=+→x xC. 0sin lim=∞→x x x D. 01sin lim =∞→xx x ⒍当0→x 时,变量(C )是无穷小量. A.xxsin B. x 1C. xx 1sin D. 2)ln(+x ⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。

A. )()(lim 00x f x f xx =→ B. )(x f 在点0x 的某个邻域内有定义C. )()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题 ⒈函数)1ln(39)(2x x x x f ++--=的定义域是 {}|3x x >.⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .⒊=+∞→xx x)211(lim 1122211lim(1)lim(1)22x x x x e x x ⨯→∞→∞+=+= ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e . ⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 0x =.⒍若A x f xx =→)(lim 0,则当0x x →时,A x f -)(称为 x →x 0时的无穷小量.(二) 计算题⒈设函数 ⎩⎨⎧≤>=0,0,e )(x x x x f x 求:)1(,)0(,)2(f f f -.解:()22f -=-,()00f =,()11f e e == ⒉求函数21lgx y x-=的定义域.解:21lg x y x -=有意义,要求21x x x -⎧>⎪⎪⎨⎪≠⎪⎩解得1020x x x ⎧⎪⎪><⎨⎪≠⎪⎩或则定义域为1|02x x x ⎧⎫<>⎨⎬⎩⎭或⒊在半径为R 的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数.解:C设梯形ABCD 即为题中要求的梯形,设高为h ,即OE=h ,下底CD =2R直角三角形AOE 中,利用勾股定理得AE ==则上底=2AE =故((222hS R R h R =+=+ ⒋求xxx 2sin 3sin lim0→.解:000sin3sin33sin3333lim lim lim sin 2sin 2sin 22222x x x x xxx x x x x x xx x→→→⨯==⨯⨯=133122⨯= ⒌求)1sin(1lim 21+--→x x x .解:21111(1)(1)111lim lim lim 2sin(1)sin(1)sin(1)11xx x x x x x x x x x →-→-→---+---====-++++ ⒍求xxx 3tan lim0→.解:000tan3sin31sin311limlim lim 3133cos33cos31x x x x x x x x x x x →→→==⨯⨯=⨯⨯=⒎求xx x sin11lim 20-+→. 解:20001lim sin x x x x→→→-== ()00lim 0sin 1111)x xx x→===+⨯⒏求xx x x )31(lim +-∞→. 解:1143331111(1)[(1)]1lim()lim()lim lim 33311(1)[(1)]3x x x x x x x x x x x e x x x e x e x x x----→∞→∞→∞→∞--+--=====++++ ⒐求4586lim 224+-+-→x x x x x . 解:()()()()2244442682422lim lim lim 54411413x x x x x x x x x x x x x →→→---+--====-+---- ⒑设函数⎪⎩⎪⎨⎧-<+≤≤->-=1,111,1,)2()(2x x x x x x x f讨论)(x f 的连续性,并写出其连续区间. 解:分别对分段点1,1x x =-=处讨论连续性 (1)()()()1111lim lim 1lim lim 1110x x x x f x x f x x →-+→-+→--→--==-=+=-+=所以()()11lim lim x x f x f x →-+→--≠,即()f x 在1x =-处不连续 (2)()()()()()221111lim lim 2121lim lim 111x x x x f x x f x x f →+→+→-→-=-=-====所以()()()11lim lim 1x x f x f x f →+→-==即()f x 在1x =处连续 由(1)(2)得()f x 在除点1x =-外均连续 故()f x 的连续区间为()(),11,-∞--+∞《高等数学基础》作业二第3章 导数与微分(一)单项选择题 ⒈设0)0(=f 且极限x x f x )(lim→存在,则=→xx f x )(lim 0( C ). A. )0(f B. )0(f ' C. )(x f ' D. 0 ⒉设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim 000( D ).A. )(20x f '-B. )(0x f 'C. )(20x f 'D. )(0x f '- ⒊设x x f e )(=,则=∆-∆+→∆xf x f x )1()1(lim( A ). A. e B. e 2 C.e 21 D. e 41 ⒋设)99()2)(1()(---=x x x x x f ,则=')0(f ( D ). A. 99 B. 99- C. !99 D. !99- ⒌下列结论中正确的是( C ).A. 若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.D. 若)(x f 在点0x 有极限,则在点0x 连续. (二)填空题⒈设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(2x x x x x f ,则=')0(f 0 . ⒉设x x x f e 5e )e (2+=,则=x x f d )(ln d xx x 5ln 2+. ⒊曲线1)(+=x x f 在)2,1(处的切线斜率是 21=k ⒋曲线x x f sin )(=在)1,4π(处的切线方程是 )41(2222π-==x y ⒌设x x y 2=,则 ='y )ln 1(22x x x + ⒍设x x y ln =,则 =''y x1(三)计算题⒈求下列函数的导数y ': ⑴x x x y e )3(+=解:x xe x e x y 212323)3(++='⑵x x x y ln cot 2+= 解:x x x x y ln 2csc 2++-='⑶xx y ln 2=解:xxx x y 2ln ln 2+=' ⑷32cos xx y x+= 解:4)2(cos 3)2ln 2sin (x x x x y x x +-+-='⑸xx x y sin ln 2-=解:xxx x x x x y 22sin cos )(ln )21(sin ---='⑹x x x y ln sin 4-= 解:x x xxx y ln cos sin 43--=' ⑺xx x y 3sin 2+=解:xx x x x x x y 2233ln 3)(sin )2(cos 3+-+='⑻x x y x ln tan e +=解:xx e x e y x x1cos tan 2++='⒉求下列函数的导数y ': ⑴21ex y -=解:2112xx ey x -='-⑵3cos ln x y =解:32233tan 33cos sin x x x xx y -=-=' ⑶x x x y =解:87x y = 8187-='x y⑷3x x y +=解:)211()(31213221--++='x x x y⑸x y e cos 2=解:)2sin(xxe e y -=' ⑹2e cos x y=解:22sin 2xx e xe y -='⑺nx x y n cos sin =解:)sin(sin cos cos sin 1nx x n nx x x n y n n -='- ⑻2sin 5x y =解:2sin 25cos 5ln 2x x x y ='⑼xy 2sin e=解:xxey 2sin 2sin ='⑽22ex x x y +=解:222)ln 2(x x xex x x x y ++='⑾xxx y e e e+=解:x e x x e e e x e xe xy x x++=')ln ( ⒊在下列方程中,y y x =()是由方程确定的函数,求:⑴y x y 2e cos =解:y e x y x y y '=-'22sin cosyex xy y 22cos sin -=' ⑵x y y ln cos =解:xy x y y y 1.cos ln .sin +'=')ln sin 1(cos x y x yy +='⑶yx y x 2sin 2=解:222sin 2.cos 2y y x yx y y y x '-=+' y yyxy x y x y sin 22)cos 2(222-=+'2020年国家开放大学《高等数学答案》22cos 2sin 22x y xy yy xy y +-='⑷y x y ln += 解:1+'='yy y 1-='y y y ⑸2e ln y x y =+ 解:y y y e xy '='+21)2(1y e y x y -='⑹y y x sin e 12=+解:x x e y y y e y y .sin .cos 2+'='ye y ye y x x cos 2sin -=' ⑺3e e y x y -= 解:y y e y e x y '-='2323y ee y y x+='⑻y x y 25+=解:2ln 25ln 5y x y y '+='2ln 215ln 5y x y -='⒋求下列函数的微分y d : ⑴x x y csc cot += 解:dx xxx dy )sin cos cos 1(22--= ⑵xxy sin ln =解:dx xx x x x dy 2sin cos ln sin 1-= ⑶xxy +-=11arcsin 解:dx x x x dx x x x xx dy 2222)1(11)1()1()1()11(11++-=+--+-+--=⑷311xxy +-= 解:两边对数得:[])1ln()1ln(31ln x x y +--=)1111(31xx y y +---=' )1111(11313xx x x y ++-+--=' ⑸x y e sin 2=解:dx e e dx e e e dy x x x x x )2sin(sin 23== ⑹3e tan x y =xdx e x dx x e dy x x 2222sec 33sec 33==⒌求下列函数的二阶导数: ⑴x x y ln = 解:x y ln 1=='xy 1='' ⑵x x y sin = 解:x x x y sin cos +='x x x y cos 2sin +-=''⑶x y arctan =解:211x y +=' 22)1(2x xy +-='' ⑷23x y = 解:3ln 322x x y =' 2233ln 23ln 3422x x x y ⋅+=''(四)证明题设)(x f 是可导的奇函数,试证)(x f '是偶函数. 证:因为f(x)是奇函数 所以)()(x f x f -=- 两边导数得:)()()()1)((x f x f x f x f =-'⇒'-=--' 所以)(x f '是偶函数。

电大高等数学基础考试答案完整版

电大高等数学基础考试答案完整版

电大高等数学基础考试答案完整版高等数学基础复一、单项选择题1.下列各函数中,(C)中的两个函数相等。

A。

f(x) = x^2.g(x) = xB。

f(x) = x^2.g(x) = x^2C。

f(x) = ln(x^3)。

g(x) = 3ln(x)D。

f(x) = x+1.g(x) = (x-1)/(x-1)2.设函数f(x)的定义域为(-∞,+∞),则函数f(x)+f(-x)的图形关于(C)对称。

A。

坐标原点B。

x轴C。

y轴D。

y=x3.下列函数中为奇函数是(B)。

A。

y=ln(1+x^2)B。

y=xcosxC。

y=ax+a^-xD。

y=ln(1+x)4.下列函数中为偶函数的是(D)。

A。

y=(1+x)sinxB。

y=x^2C。

y=xcosxD。

y=ln(1+x^2)^(2-1)5.下列极限计算不正确的是(D)。

A。

lim(x^2/(x^2+2))=1B。

lim(ln(1+x))=xC。

lim(sin(x)/x)=1D。

lim(xsin(x))=1 (应为无穷大)6.当x→0时,变量(C)是无穷小量。

A。

sinx/xB。

1/xC。

xsin(1/x)D。

ln(x+2)7.下列变量中,是无穷小量的为(B)。

A。

sin(1/x) (x→0)B。

ln(x+1) (x→0)C。

e^x (x→∞)D。

(x-2)/(x^2-4) (x→2)二、XXX答题1.求函数f(x)=x^3-3x的单调区间和极值。

答:f'(x)=3x^2-3,令f'(x)=0,得x=±1,f''(x)=6x,f''(1)>0,故x=1是极小值点,f(1)=-2;f''(-1)0,故f(x)在(-1,1)单调递增;当x>1时,f'(x)>0,故f(x)在(1,+∞)单调递增。

2.求函数f(x)=x^3-3x的图像的拐点和凹凸性。

答:f''(x)=6x,令f''(x)=0,得x=0,f'''(x)=6,故x=0是拐点;当x0时,f''(x)>0,故f(x)在(0,+∞)上是上凸的。

电大高等数学基础期末考试复习试题及答案完整版

电大高等数学基础期末考试复习试题及答案完整版

电大高等数学基础期末考试复习试题及答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】高等数学(1)学习辅导(一)第一章 函数⒈理解函数的概念;掌握函数)(x f y =中符号f ( )的含义;了解函数的两要素;会求函数的定义域及函数值;会判断两个函数是否相等。

两个函数相等的充分必要条件是定义域相等且对应关系相同。

⒉了解函数的主要性质,即单调性、奇偶性、有界性和周期性。

若对任意x ,有)()(x f x f =-,则)(x f 称为偶函数,偶函数的图形关于y 轴对称。

若对任意x ,有)()(x f x f -=-,则)(x f 称为奇函数,奇函数的图形关于原点对称。

掌握奇偶函数的判别方法。

掌握单调函数、有界函数及周期函数的图形特点。

⒊熟练掌握基本初等函数的解析表达式、定义域、主要性质和图形。

基本初等函数是指以下几种类型: ① 常数函数:c y = ② 幂函数:)(为实数ααx y = ③ 指数函数:)1,0(≠>=a a a y x ④ 对数函数:)1,0(log ≠>=a a x y a ⑤ 三角函数:x x x x cot ,tan ,cos ,sin ⑥ 反三角函数:x x x arctan ,arccos ,arcsin⒋了解复合函数、初等函数的概念,会把一个复合函数分解成较简单的函数。

如函数可以分解u y e =,2v u =,w v arctan =,x w +=1。

分解后的函数前三个都是基本初等函数,而第四个函数是常数函数和幂函数的和。

⒌会列简单的应用问题的函数关系式。

例题选解一、填空题⒈设)0(1)1(2>++=x x x x f ,则f x ()= 。

解:设x t 1=,则t x 1=,得故xx x f 211)(++=。

⒉函数x x x f -+-=5)2ln(1)(的定义域是 。

解:对函数的第一项,要求02>-x 且0)2ln(≠-x ,即2>x 且3≠x ;对函数的第二项,要求05≥-x ,即5≤x 。

中央广播电视大学 ∶高等数学数学基础及答案

中央广播电视大学 ∶高等数学数学基础及答案

高等数学基础复习指导注意:1 本次考试题型分为单选(20=4分*5)填空(20=4分*5)计算题(44=11分*4)应用题(16=16分*1)2 复习指导分为3个部分,第一部分配有详细解答,掌握解题方法,第二部分历年试题汇编,熟悉考试题型;第三部分中央电大今年的模拟真题,应该重点掌握。

3 复印的蓝皮书大家要掌握第5页的样卷和29页的综合练习。

第一部分(详细解答)一.填空题1.函数y =的定义域为 12x x >≠且 。

()40410121ln 1011x x x x x x x x +≥⎧≥-⎧⎪⎪->⇒⇒>≠>⎨⎨⎪⎪-≠-≠⎩⎩解:且 2.函数y =的定义域是12x -<< 。

2101122240x x x x x +>>-⎧⎧⇒⇒-<<⎨⎨-<<->⎩⎩解: 3.函数y =的定义域是 23x x ≥-≠且 。

202303x x x x +≥≥-⎧⎧⇒⎨⎨-≠≠⎩⎩解: 4.设2(2)2f x x +=-,则)(x f 246x x -+ 。

解:设2x t +=,则2xt =-且原式2(2)2f x x +=-即()2()22f t t =--=242t t -+亦即()f x =242x x -+4.若函数4(1),0(),x x x f x k x ⎧⎪-≠=⎨⎪=⎩在0x =处连续,则k = 4e - 。

()()()()()()()414404lim lim 1lim ,lim 1(0)x xx x x f x x x e f k k e -⨯--→→→→-=-=-==∴==x 0函数f x 在x=0连0 续x 则f f5.曲线x y e -=在0x =处的切线方程为 1y x -=- 。

曲线()y f x =在点()00,x y 处的切线方程为()000x y y y x x '-=-解:()001x x x y e -=='=-=-,00001x y e ===时,1(0)1y x y x -=--⇒-=-,6. 函数ln(3)1x y x +=+的连续区间为 ()()3,1,1,---+∞ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电大高等数学基础考试答案完整版RUSER redacted on the night of December 17,2020高等数学基础归类复习一、单项选择题1-1下列各函数对中,( C )中的两个函数相等.A. 2)()(x x f =,x x g =)(B. 2)(x x f =,x x g =)(C.3ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,11)(2--=x x x g1-⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D. x y =设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f --的图形关于(D )对称.A. x y =B. x 轴C. y 轴D. 坐标原点.函数2e e xx y -=-的图形关于( A )对称.(A) 坐标原点 (B) x 轴 (C) y 轴 (D) x y =1-⒊下列函数中为奇函数是( B ).A. )1ln(2x y += B. x x y cos = C. 2xx a a y -+= D. )1ln(x y +=下列函数中为奇函数是(A ).A. x x y -=3B. x x e e y -+=C. )1ln(+=x yD. x x y sin =下列函数中为偶函数的是( D ).A x x y sin )1(+=B x x y 2=C x x y cos =D )1ln(2x y +=2-1 下列极限存计算不正确的是( D ).A. 12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C. 0sin lim=∞→x x x D. 01sin lim =∞→xx x2-2当0→x 时,变量( C )是无穷小量.A.x x sin B. x 1 C. xx 1sin D. 2)ln(+x 当0→x 时,变量( C )是无穷小量.Ax 1 B x x sin C 1e -x D 2xx.当0→x 时,变量(D )是无穷小量.Ax 1B xx sin C x 2 D )1ln(+x 下列变量中,是无穷小量的为( B )A ()1sin 0x x →B ()()ln 10x x +→C ()1x e x →∞ D.()2224x x x -→-3-1设)(x f 在点x=1处可导,则=--→hf h f h )1()21(lim( D ).A. )1(f 'B. )1(f '-C. )1(2f 'D. )1(2f '-设)(x f 在0x 可导,则=--→hx f h x f h )()2(lim000( D ).A )(0x f 'B )(20x f 'C )(0x f '-D )(20x f '-设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim000( D ).A. )(20x f '-B. )(0x f 'C. )(20x f 'D. )(0x f '-设x x f e )(=,则=∆-∆+→∆x f x f x )1()1(lim( A ) A e B. e 2 C. e 21 D. e 413-2. 下列等式不成立的是(D ).A.x x de dx e = B )(cos sin x d xdx =- C.x d dx x =21D.)1(ln x d xdx =下列等式中正确的是(B ).A.xdx x d arctan )11(2=+ B. 2)1(x dxx d -=C.dx d x x 2)2ln 2(=D.xdx x d cot )(tan =4-1函数14)(2-+=x x x f 的单调增加区间是( D ).A. )2,(-∞B. )1,1(-C. ),2(∞+D. ),2(∞+-函数542-+=x x y 在区间)6,6(-内满足(A ).A. 先单调下降再单调上升B. 单调下降C. 先单调上升再单调下降D. 单调上升.函数62--=x x y 在区间(-5,5)内满足( A )A 先单调下降再单调上升B 单调下降C 先单调上升再单调下降D 单调上升. 函数622+-=x x y 在区间)5,2(内满足(D ).A. 先单调下降再单调上升B. 单调下降C. 先单调上升再单调下降D.单调上升5-1若)(x f 的一个原函数是x 1,则=')(x f (D ). A. x ln B. 21x- C. x 1D. 32x.若)(x F 是 )(x f 的一个原函数,则下列等式成立的是( A )。

A )()()(a F x F dx x f xa-=⎰ B )()()(a f b f dx x F ba -=⎰C )()(x F x f ='D )()()(a F b F dx x f ba-='⎰5-2若x x f cos )(=,则='⎰x x f d )(( B ).A. c x +sinB. c x +cosC. c x +-sinD. c x +-cos下列等式成立的是(D ).A. )(d )(x f x x f ='⎰B. )()(d x f x f =⎰C. )(d )(d x f x x f =⎰D.)(d )(d dx f x x f x=⎰ =⎰x x f x x d )(d d 32( B ). A. )(3x f B. )(32x f x C. )(31x f D. )(313x f =⎰x x xf x d )(d d 2( D ) A )(2x xf B x x f d )(21 C )(21x f D x x xf d )(2 ⒌-3若⎰+=c x F x x f )(d )(,则⎰=x x f xd )(1( B ).A. c x F +)(B. c x F +)(2C. c x F +)2(D.c x F x+)(1补充: ⎰=--x e f e x x d )( c e F x +--)(, 无穷积分收敛的是 dx x ⎰+∞121函数x x x f -+=1010)(的图形关于 y 轴 对称。

二、填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是 (3,+∞) .函数x x xy -+-=4)2ln(的定义域是 (2,3) ∪ (3,4 ]函数xx x f --+=21)5ln()(的定义域是 (-5,2)若函数⎩⎨⎧>≤+=0,20,1)(2x x x x f x ,则=)0(f 1 .2若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=k e ..函数⎪⎩⎪⎨⎧=≠=002sin )(x kx xx x f 在0=x 处连续,则=k 2函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是 x=0 .函数3322---=x x x y 的间断点是 x=3 。

函数xe y -=11的间断点是 x=03-⒈曲线1)(+=x x f 在)2,1(处的切线斜率是 1/2 .曲线2)(+=x x f 在)2,2(处的切线斜率是 1/4 .曲线1)(+=x e x f 在(0,2)处的切线斜率是 1 ..曲线1)(3+=x x f 在)2,1(处的切线斜率是 3 .3-2 曲线x x f sin )(=在)1,2π(处的切线方程是 y = 1 .切线斜率是 0曲线y = sinx 在点 (0,0)处的切线方程为 y = x 切线斜率是 14.函数)1ln(2x y +=的单调减少区间是 (-∞,0 ) .函数2e )(x xf =的单调增加区间是 (0,+∞) ..函数1)1(2++=x y 的单调减少区间是 (-∞,-1 ) ..函数1)(2+=x x f 的单调增加区间是 (0,+∞) .函数2x e y -=的单调减少区间是 (0,+∞) .5-1=⎰-x x d e d 2 dx e x 2- . .=⎰x x dxd d sin 22sin x . ='⎰x x d )(tantan x +C .若⎰+=c x x x f 3sin d )(,则=')(x f -9 sin 3x .5-2 ⎰-=+335d )21(sin x x 3 . =+⎰-11231dx x x 0 . =+⎰edx x dx d 1)1ln( 0 下列积分计算正确的是( B ).A 0d )(11=+⎰--x e e x x B 0d )(11=-⎰--x e e x x C 0d 112=⎰-x x D 0d ||11=⎰-x x三、计算题(一)、计算极限(1小题,11分)(1)利用极限的四则运算法则,主要是因式分解,消去零因子。

(2)利用连续函数性质:)(0x f 有定义,则极限)()(lim 00x f x f x x =→类型1: 利用重要极限计算1-1求x xx 5sin 6sin lim 0→. 解: 565sin 6sin lim 5sin 6sin lim 00=⋅=→→xx x xx x x x1-2 求 0tan lim3x x x → 解: =→x x x 3tan lim 031131tan lim 310=⨯=→x x x1-3 求x x x 3tan lim0→ 解:x x x 3tan lim 0→=3313.33tan lim 0=⨯=→xxx类型2:因式分解并利用重要极限化简计算。

2-1求)1sin(1lim 21+--→x x x . 解: )1sin(1lim 21+--→x x x =2)11(1)1.()1sin()1(lim1-=--⨯=-++-→x x x x 2-2()21sin 1lim1x x x →-- 解: 211111)1(1.)1()1sin(lim 1)1sin(lim 121=+⨯=+--=--→→x x x x x x x2-3)3sin(34lim 23-+-→x x x x 解: 2)1(lim )3sin()1)(3(lim )3sin(34lim3323=-=---=-+-→→→x x x x x x x x x x 类型3:因式分解并消去零因子,再计算极限3-1 4586lim 224+-+-→x x x x x 解: 4586lim 224+-+-→x x x x x ==----→)1)(4()2)(4(lim 4x x x x x 3212lim 4=--→x x x3-2 2236lim 12x x x x x →-+--- ()()()()2233332625lim limlim 123447x x x x x x x x x x x x x →-→-→-+-+--===--+-- 3-3 423lim 222-+-→x x x x 解 4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x 其他: 0sin 21lim sin 11lim 2020==-+→→x xx x x x , 221sin lim 11sin lim 00==-+→→xx x x x =--++∞→5456lim 22x x x x x 1lim 22=∞→x x x , =--+∞→54362lim 22x x x x x 3232lim 22=∞→x x x(0807考题)计算x x x 4sin 8tan lim 0→. 解: x xx 4sin 8tan lim 0→=248.4sin 8tan lim 0==→xx x xx(0801考题. )计算x x x 2sin lim0→. 解 =→x x x 2sin lim021sin lim 210=→x x x (0707考题.))1sin(32lim 21+---→x x x x =4)31(1)1sin()3).(1(lim1-=--⨯=+-+-→x x x x (二) 求函数的导数和微分(1小题,11分)(1)利用导数的四则运算法则 v u v u '±'='±)( v u v u uv '+'=')((2)利用导数基本公式和复合函数求导公式类型11-1 x x x y e )3(+=解:y '=()332233x x x e x e '⎛⎫⎛⎫'+++ ⎪ ⎪⎝⎭⎝⎭1322332x x x e x e ⎛⎫=++ ⎪⎝⎭1322332x x x e ⎛⎫=++ ⎪⎝⎭ 1-2 x x x y ln cot 2+=解:x x x x x x x x x x x x y ++-='+'+-='+'='ln 2csc )(ln ln )(csc )ln ()(cot 22222 1-3 设x x e y x ln tan -=,求y '.解: xx e x e x x e x e x x e y x x x x x 1sec tan 1)(tan tan )()(ln )tan (2-+=-'+'='-'='类型22-1 x x y ln sin 2+=,求y ' 解:xx x x x y 1cos 2)(ln )(sin 22+='+'=' 2-2 2sin e cos x y x -=,求解:2222cos 2e sin e ).(cos ).(sin )(sin )(cos x x x x e e x e y x x x x x --='-'-='-'='2-3 x e x y 55ln -+=,求, 解:x x x xe x y 5455e 5ln 5).()(ln ---='+'='类型3:x e y x cos 2=,求y ' 。

相关文档
最新文档