线性代数重要公式
线性代数公式必背完整归纳清晰版

线性代数公式必背完整归纳清晰版线性代数是数学的一个重要分支,研究向量空间及其上的线性映射的理论和方法。
在学习线性代数的过程中,掌握一些重要的公式是非常重要的。
下面是线性代数中一些常见且重要的公式,希望能够帮助到你。
1.向量的加法和数乘:(a1, a2, ..., an) + (b1, b2, ..., bn) = (a1 + b1, a2 +b2, ..., an + bn)k(a1, a2, ..., an) = (ka1, ka2, ..., kan)这是线性代数的基本操作,向量的加法是对应元素分别相加,向量的数乘是将向量中的每个元素与常数相乘。
2.内积:向量a = (a1, a2, ..., an) 和向量b = (b1, b2, ..., bn) 的内积定义为:a ·b = a1b1 + a2b2 + ... + anbn内积有许多重要的性质:a·b=b·a-->内积的交换律(ka) · b = a · (kb) --> 内积的数乘关系a·(b+c)=a·b+a·c-->内积的分配律内积可以用来计算向量的夹角和向量的长度,是线性代数中的一个重要概念。
3.范数:向量a的范数定义为:a, = sqrt(a1^2 + a2^2 + ... + an^2向量的范数满足以下性质:a,>=0,且当且仅当a=0时取等ka, = ,k,,a,对于任意的实数a+b,<=,a,+,b,三角不等范数是一个度量向量长度的函数,也是线性代数中常用的概念。
4.矩阵的乘法:对于矩阵A(m×n)和矩阵B(n×p),它们的乘积C=A×B是一个m×p的矩阵,其中C的第i行第j列的元素可以表示为:C(i,j)=a(i,1)*b(1,j)+a(i,2)*b(2,j)+...+a(i,n)*b(n,j)矩阵乘法是线性代数中的核心概念,它在很多应用中都有重要的作用。
《线性代数》公式大全

《线性代数》公式大全1.向量1.1向量的加法和减法v1=(x1,y1,z1)v2=(x2,y2,z2)v1+v2=(x1+x2,y1+y2,z1+z2)v1-v2=(x1-x2,y1-y2,z1-z2)1.2向量的数量乘法v=(x,y,z),k是一个实数kv = (kx, ky, kz)1.3向量的点积v1·v2=x1x2+y1y2+z1z21.4向量的模长v,=√(x^2+y^2+z^2)2.矩阵2.1矩阵的加法和减法A = (aij),B = (bij)是两个m x n矩阵A +B = (aij + bij)A -B = (aij - bij)2.2矩阵的数量乘法A = (aij)是一个m x n矩阵,k是一个实数kA = (kaij)2.3矩阵的乘法A = (aij)是一个m x n矩阵,B = (bij)是一个n x p矩阵AB = (cij)是一个m x p矩阵,其中cij = a1j*b1i + a2j*b2i+ ... + anj*bni2.4矩阵的转置A = (aij)是一个m x n矩阵A的转置为A^T = (aij)^T = (aji)2.5矩阵的逆A为可逆矩阵,A^-1为其逆矩阵,满足AA^-1=A^-1A=I,其中I为单位矩阵3.行列式3.1二阶行列式D=,abc d, = ad - b3.2三阶行列式D=,abcdeg h i, = aeI + bfG + cdH - ceG - afH - bd3.3n阶行列式D=,a11a12 (1)a21a22...a2...........an1 an2 ... ann, = (-1)^(i+j)*Mij,其中Mij为aij的代数余子4.线性方程组4.1齐次线性方程组Ax=0,其中A为一个mxn矩阵4.2非齐次线性方程组Ax=b,其中A为一个mxn矩阵,x为一个n维列向量,b为一个m维列向量4.3线性方程组的解法4.3.1矩阵消元法通过矩阵的初等行变换将线性方程组转化为行阶梯形或最简形4.3.2克拉默法则Ax = b的解可以表示为x = (Dx1/D, Dx2/D, ..., Dxn/D),其中D 为系数矩阵A的行列式,Di为将第i列的系数替换为b后的行列式4.3.3矩阵求逆法若A为可逆矩阵,则Ax=b的解可以表示为x=A^(-1)b以上是线性代数的一些重要公式,通过理解和掌握这些公式,可以帮助我们解决线性代数相关的问题和应用。
考研数学线性代数常用公式

考研数学线性代数常用公式数学考研考前必背常考公式集锦。
希望对考生在暑期的复习中有所帮助。
本文内容为线性代数的常考公式汇总。
1、行列式的展开定理行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之和,即A= a i1 A i1+ a i2 A i2+...+ a in A in( i =1, 2,..., n)= a1j A1j+ a 2j A2j+...+ a nj A nj( j =1, 2,..., n)推论:行列式的一行(或列)所有元素与另一行(或列)对应元素的代数余子式的乘积之和为零,即n∑a ij A kj= a i1 A k1+ a i2 A k2+...+ a in A kn=0,(i≠k )j=1n∑a ji A jk= a1i A1k+ a2i A2k+...+ a ni A nk=0(i≠k )j=12、设 A =(a ij)m⨯n,B =(b ij)n⨯k(注意 A 的列数和 B 的行数相等),定义矩阵nC =(c ij)m⨯k,其中c ij=a i1b1j+a i2b2j+...+a in b nj=∑a ik b kj,称为矩阵 A 与矩阵 B 的k =1的乘积,记作 C = AB .如果矩阵A为方阵,则定义An=A⋅A...A为矩阵 A 的 n 次幂.n个A不成立的运算法则AB≠BAAB=O≠>A =O或B=O3、设 A 为n阶方阵,A*为它的伴随矩阵则有 AA *= A * A = A E .设 A 为n阶方阵,那么当 AB = E 或 BA = E 时,有 B -1 = A4、对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种:第一种:交换单位矩阵的第 i 行和第 j 行得到的初等矩阵记作E ij,该矩阵也⎛ 0 0 1 ⎫ 可以看做交换单位矩阵的第 i 列和第 j 列得到的.如 E 1,3 0 1 0 ⎪= ⎪ .1 0 0 ⎪⎝ ⎭第二种:将一个非零数 k 乘到单位矩阵的第 i 行得到的初等矩阵记作 E i ( k ) ;该矩 阵 也 可 以 看 做 将 单 位 矩 阵 第 i 列 乘 以 非 零 数 k 得 到 的 . 如⎛ 1 0 0 ⎫E 2 (-5) 0 -5 0 ⎪ = ⎪ .0 0 1 ⎪⎝ ⎭第三种:将单位矩阵的第 i 行的 k 倍加到第 j 行上得到的初等矩阵记作 E ij ( k ) ;该矩阵也可以看做将单位矩阵的第 j 列的 k 倍加到第 i 列上得到的.如⎛ 1 0 0 ⎫ E 3,2 (-2) 0 1 -2 ⎪= ⎪ .0 0 1 ⎪⎝ ⎭注:1)初等矩阵都只能是单位矩阵一次初等变换之后得到的.2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵 E ij ( k ) 看做列变换是将单位矩阵第 j 列的k 倍加到第 i 列,这一点考生比较容易犯错.5、矩阵 A 最高阶非零子式的阶数称之为矩阵 A 的秩,记为 r ( A ) .1) r ( A ) = r ( A T ) = r ( k A ), k ≠ 0 ;2) A ≠ O ⇔ r (A ) ≥ 1;3) r ( A ) = 1 ⇔ A ≠ O 且 A 各行元素成比例;4)设 A 为 n 阶矩阵,则 r ( A ) = n ⇔ A ≠ 0 . 6、线性表出设 α1 , α 2 ,...,αm 是 m 个 n 维 向 量 , k 1 , k 2 ,...k m 是 m 个 常 数 , 则 称k 1α1 + k 2α 2 + ... + k m αm 为向量组α1 , α 2 ,...,αm 的一个线性组合.设 α1,α2 ,...,αm 是 m 个 n 维向量, β 是一个 n 维向量,如果 β 为向量组α1 , α2 ,...,αm的一个线性组合,则称向量β可以由向量组α1 , α2 ,...,αm线性表出.线性相关设α1 , α2 ,...,αm是m个n维向量,如果存在不全为零的实数k1 , k2 ,..., k m,使得k1α1+ k 2α2+...+ k mαm=0,则称向量组α1,α2,...,αm线性相关.如果向量组α1 , α2 ,...,αm不是线性相关的,则称该向量组线性无关.与线性表出与线性相关性有关的基本定理定理1:向量组α1 , α2 ,...αm线性相关当且仅当α1 , α2 ,...αm中至少有一个是其余m-1 个向量的线性组合.定理2:若向量组α1 , α2 ,...αm线性相关,则向量组α1 , α2 ,..., αm ,αm+1也线性相关.注:本定理也可以概括为“部分相关⇒整体相关”或等价地“整体无关⇒部分无关”.定理3:若向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm的延伸组⎛α⎫ ⎛α⎫⎛α⎫也线性无关.1⎪ , 2⎪,..., m⎪⎝β1⎭ ⎝β2 ⎭⎝βm ⎭定理4:已知向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm , β线性相关当且仅当β可以由向量组α1,α2 ,...αm线性表出.定理 5:阶梯型向量组线性无关.定理6:若向量组α1 , α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且α1 , α2 ,...,αs线性无关,则有s≤t.注:本定理在理论上有很重要的意义,是讨论秩和极大线性无关组的基础.定理内容也可以等价的描述为:若向量组α1 ,α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且 s > t ,则α1,α2,...,αs线性相关.对于这种描述方式,我们可以把定理内容简单地记为:“多数被少数线性表出,则必相关.”定理7:n +1个n维向量必然线性相关.7、线性方程组解的存在性设 A =(α1,α2,...,αn),其中α1,α2,...,αn为 A 的列向量,则线性方程组 Ax = b 有解⇔向量 b 能由向量组α1,α2,...,αn线性表出;⇔r (α1,α2,...,αn)= r (α1,α2,...,αn,b );⇔r ( A )= r ( A, b)线性方程组解的唯一性当线性方程组 Ax = b 有解时, Ax = b 的解不唯一(有无穷多解)⇔线性方程组的导出组 Ax =0有非零解;⇔向量组α1 , α2 ,...,αn线性相关;⇔r (α1,α2,...,αn)< n ;⇔r ( A )< n .注:1)注意该定理成立的前提条件是线性方程组有解;也就是说,仅告知r (A )< n 是不能得到 Ax = b 有无穷多解的,也有可能无解.2)定理 2是按照 Ax = b 有无穷多解的等价条件来总结的,请考生据此自行写出 Ax = b 有唯一解的条件.8、特征值和特征向量:设 A 为 n 阶矩阵,λ是一个数,若存在一个 n 维的非零列向量α使得关系式 Aα = λα成立.则称λ是矩阵 A 的特征值,α是属于特征值λ的特征向量.称为矩阵 A 的特征多项式.设 E 为 n 阶单位矩阵,则行列式λE - A注:1)要注意:特征向量必须是非零向量;2)等式 Aα = λα也可以写成(A - λE)α =0,因此α是齐次线性方程组( A - λE ) x =0的解,由于α ≠0,可知( A - λE ) x =0是有非零解的,故A - λE =0;反之,若 A - λE =0,那么齐次线性方程组( A - λE ) x =0有非零解,可知存在α ≠ 0 使得(A-λE)α = 0,也即Aα = λα.由上述讨论过程可知:λ是矩阵 A 的特征值的充要条件是 A - λE =0(或λE- A =0),而特征值λ的特征向量都是齐次线性方程组( A - λE ) x =0的非零 解.3)由于λE - A 是 n 次多项式,可知 A - λE =0有 n 个根(包括虚根),也即 n 阶矩阵有 n 个特征值;任一特征值都有无穷多特征向量9、矩阵的相似对角化定理1: n 阶矩阵 A 可相似对角化的充要条件是矩阵 A 存在 n 个线性无关的特征向量.同时,在等式 A = P ΛP-1中,对角矩阵Λ的元素为 A 的 n 个特征值,可逆矩阵 P 的列向量为矩阵 A 的 n 个线性无关的特征向量,并且 P 中特征向量的排列顺序与Λ中特征值的排列顺序一致.推论:设矩阵 A 有 n 个互不相同的特征值,则矩阵 A 可相似对角化.定理2: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,λ线性无关的特征向量个数都等于λ的重数.推论: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,n - r (λE - A)=λ的重数.10、设 A 为实对称矩阵( A T= A ),则关于 A 的特征值与特征向量,我们有如下的结论:定理1: A 的所有特征值均为实数,且 A 的的所有特征向量均为实数.定理2: A 属于不同特征值的特征向量必正交.定理3:A 一定有 n 个线性无关的特征向量,即 A 可以对角化.且存在正交矩阵 Q ,使得 Q -1 AQ = Q T AQ = diag (λ1,λ2,...,λn),其中λ1,λ2,...,λn为矩阵 A 的特征值.我们称实对称矩阵可以正交相似于对角矩阵.n n11、如果二次型∑∑a i j x i x j中,只含有平方项,所有混合项 x i x j(i ≠ j)的系i=1j =1数全为零,也即形如 d1 x12+ d 2 x22+...+ d n x n2,则称该二次型为标准形。
线性代数全部必背公式

线性代数全公式基本运算①A B B A +=+②()()C B A C B A ++=++③()cB cA B A c +=+ ()dA cA A d c +=+ ④()()A cd dA c =⑤00=⇔=c cA 或0=A 。
()A A TT=()T T TB A B A ±=±()()T TA c cA =。
()T T TA B AB =()()()212112-==-n n C n n n τ n n A a A a A a D 2222222121+++=转置值不变A A T = 逆值变AA11=- A c cA n =γβαγβαγββα,,,,,,2121+=+()321,,ααα=A ,3阶矩阵 ()321,,βββ=B B A B A +≠+()332211,,βαβαβα+++=+B A332211,,βαβαβα+++=+B A B A BA B A =*=*0()()1,=c j i E有关乘法的基本运算nj in j i j i ij b a b a b a C +++= 2211 线性性质 ()B A B A B A A 2121+=+, ()2121AB AB B B A +=+ ()()()cB A AB c B cA == 结合律 ()()BC A C AB = ()T T TA B AB =B A AB =l k l k A A A += ()kl lkA A =()k k kB A AB =不一定成立!A AE =,A EA =()kA kE A =,()kA A kE =E BA E AB =⇔=与数的乘法的不同之处()k k kB A AB =不一定成立!无交换律 因式分解障碍是交换性一个矩阵A 的每个多项式可以因式分解,例如 ()()E A E A E A A +-=--3322 无消去律(矩阵和矩阵相乘) 当0=AB 时0=⇒/A 或0=B 由0≠A 和00=⇒/=B AB由0≠A 时C B AC AB =⇒/=(无左消去律)特别的 设A 可逆,则A 有消去律。
线性代数重要公式

线性代数重要公式在线性代数中,有许多重要的公式和定理,它们在解决线性方程组、矩阵运算、向量空间等问题中起到了关键作用。
接下来我们将介绍一些线性代数中的重要公式。
1.矩阵乘法的结合律:对于任意矩阵A、B和C,满足大小相容时,有(A·B)·C=A·(B·C)。
2.矩阵乘法的分配律:对于任意矩阵A、B和C,满足大小相容时,有A·(B+C)=A·B+A·C。
3.矩阵的转置:对于任意矩阵A,有(A^T)^T=A,其中A^T表示A的转置矩阵。
4.矩阵的转置与乘法:若A和B是满足乘法规则的矩阵,那么有(A·B)^T=B^T·A^T。
5.矩阵的逆:对于n阶方阵A,若存在逆矩阵A^-1,使得A·A^-1=A^-1·A=I,那么称A是可逆矩阵。
6.矩阵的伴随矩阵:对于n阶方阵A,将其每个元素的代数余子式组成的矩阵A*称为A的伴随矩阵。
7.克拉默法则:对于n个线性方程和n个未知数的线性方程组,如果行列式的值不为0,则该方程组存在唯一解,可以通过克拉默法则求解。
8.行列式的性质:-互换行列式的两行(列),行列式的值变号;-将行列式的行(列)乘以一个非零常数k,行列式的值变为原来的k 倍;-将行列式的行(列)加上另一行(列)的k倍,行列式的值不变。
9.矩阵的行列式和转置:对于矩阵A,有,A^T,=,A。
10.矩阵的秩:对于任意矩阵A,定义A的秩为矩阵A的行或列向量组的最大线性无关组中所含向量的个数。
11.矩阵的特征值和特征向量:对于n阶矩阵A,如果存在非零向量x,使得Ax=λx,其中λ是常数,那么称λ为矩阵A的特征值,x为对应的特征向量。
12.特征多项式和特征方程:对于n阶矩阵A,定义特征多项式为f(λ)=,λI-A,其中I为n阶单位矩阵。
将特征多项式f(λ)=0得到的方程称为特征方程。
13.矩阵的相似:对于n阶矩阵A和B,如果存在可逆矩阵P,使得P^-1AP=B,则称A 和B是相似的。
线性代数公式大全

线性代数公式大全1、行列式n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ;代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;行列式的重要公式:①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1. A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;对于n 阶矩阵A :**AA A A A E == 无条件恒成立;矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组 1.一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:r m nE OF O O ⨯⎛⎫= ⎪⎝⎭;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化:伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1. m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) ()()T r A A r A =;(101P 例15)n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解; 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用; ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E =()r A m ⇔=、Q 的列向量线性无关;(87P )②、对矩阵m n A ⨯,存在n m P ⨯,n PA E =()r A n ⇔=、P 的行向量线性无关;12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 施密特正交化:12(,,,)r a a a11b a =;121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); A 为对称阵,则A 为二次型矩阵; n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。
《线性代数》公式大全

《线性代数》公式大全线性代数是数学中的一个分支,研究向量、矩阵和线性方程组等相关概念和性质。
它是现代数学和应用科学的基础,广泛应用于物理学、工程学、计算机科学等领域。
本文将介绍线性代数中的基本概念和相关公式。
1.向量的定义和运算:向量是有方向和大小的量,可以用有序数对或者列矩阵来表示。
设有向量a=(a1, a2, ..., an),b=(b1, b2, ..., bn),则向量的运算包括:- 向量的加法:a + b = (a1 + b1, a2 + b2, ..., an + bn)- 向量的减法:a - b = (a1 - b1, a2 - b2, ..., an - bn)- 数乘:k * a = (k * a1, k * a2, ..., k * an)2.向量的模和单位向量:向量的模表示向量的长度,记作,a,计算公式为:,a, =sqrt(a1² + a2² + ... + an²)。
单位向量表示模为1的向量,计算公式为:u=a/,a。
3.内积和外积:内积也叫点积或数量积,计算公式为:a·b = a1 * b1 + a2 * b2+ ... + an * bn。
外积也叫向量积或叉积,计算公式为:a×b=(a2*b3-a3*b2,a3*b1-a1*b3,a1*b2-a2*b1)。
4.矩阵的定义和运算:矩阵是按照行列排列的矩形阵列,可以用方括号表示。
设有矩阵A和B,则矩阵的运算包括:-矩阵的加法:A+B=[a11+b11,a12+b12,...,a1m+b1m;a21+b21,a22+b22,...,a2m+b2m;...] -矩阵的减法:A-B=[a11-b11,a12-b12,...,a1m-b1m;a21-b21,a22-b22,...,a2m-b2m;...]-数乘:k*A=[k*a11,k*a12,...,k*a1m;k*a21,k*a22,...,k*a2m;...] -矩阵的乘法:A*B=[c11,c12,...,c1n;c21,c22,...,c2n;...]其中,cij = a(i1) * b(1j) + a(i2) * b(2j) + ... + a(im) *b(mj),a(ij)为矩阵A的第i行第j列元素。
线性代数公式总结大全

线性代数公式总结大全在线性代数中,有许多重要的公式被广泛应用于向量、矩阵和线性方程组的求解。
下面将对这些公式进行一个全面的总结,并说明它们的应用。
1. 向量的加法和减法- 向量加法:给定两个向量A和B,其加法可以表示为A + B = C,其中C的每个分量等于A和B对应分量的和。
- 向量减法:给定两个向量A和B,其减法可以表示为A - B = C,其中C的每个分量等于A和B对应分量的差。
2. 向量的数量积和向量积- 数量积:给定两个向量A和B,其数量积可以表示为A · B = |A| |B| cosθ,其中|A|和|B|分别表示向量A和B的模长,θ表示两个向量的夹角。
- 向量积:给定两个向量A和B,其向量积可以表示为A × B = |A| |B| sinθ * n,其中|A|和|B|分别表示向量A和B的模长,θ表示两个向量的夹角,n是垂直于A和B所在平面的单位向量。
3. 矩阵的基本运算- 矩阵加法:给定两个矩阵A和B,其加法可以表示为A + B = C,其中C的每个元素等于A和B对应元素的和。
- 矩阵减法:给定两个矩阵A和B,其减法可以表示为A - B = C,其中C的每个元素等于A和B对应元素的差。
- 矩阵数乘:给定一个矩阵A和一个标量k,其数乘可以表示为kA = B,其中B的每个元素等于A对应元素乘以k。
4. 矩阵的乘法- 矩阵乘法:给定两个矩阵A和B,其乘法可以表示为AB = C,其中矩阵C的元素等于A的行向量与B的列向量的数量积。
- 矩阵转置:给定一个矩阵A,其转置可以表示为A^T,其中A^T的第i行第j列元素等于A的第j行第i列元素。
- 矩阵的逆:给定一个可逆矩阵A,其逆可以表示为A^−1,其中AA^−1 = I,I是单位矩阵。
5. 线性方程组的解法- 列主元消去法:通过消去矩阵A的部分元素,将其转化为上三角矩阵,然后通过回代法求解线性方程组的解。
- 伴随矩阵法:利用矩阵的伴随矩阵和行列式的性质求解线性方程组的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
90,所得行列式为
主对角线翻转后(转置),所得行列式为
主副角线翻转后,所得行列式为
n A B
s A ⎪⎪⎪⎭
,则:2
s
A A ;12
1s A A --⎪⎪⎪⎪⎭11A O B --⎛⎫⎪⎭
;(主对角分块)
③、1
11O A O B B O A O ---⎛⎫
⎛⎫
= ⎪ ⎪⎝⎭⎝⎭
;(副对角分块) ④、1
1111A C A A CB O B O
B -----⎛⎫
-⎛⎫= ⎪ ⎪⎝⎭⎝⎭
;(拉普拉斯) ⑤、
11111A O A O C B B CA
B -----⎛⎫⎛⎫
= ⎪ ⎪-⎝⎭⎝⎭
;(拉普拉斯)
3、矩阵的初等变换与线性方程组
1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一
确定的:r
m n
E O
F O O
⨯⎛⎫
= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B
= ⇔ ;
2. 行最简形矩阵:
①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;
③、每行首个非0元素所在列的其他元素必须为0;
3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)
①、 若(,)(,)r
A E E X ,则A 可逆,且1
X A -=;
②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1
A B -,即:
1(,)(,)
c
A B E A B - ~ ;
③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)
r
A b E x ,
则A 可逆,且1
x A b -=;
4. 初等矩阵和对角矩阵的概念:
①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、
12
n ⎛⎫
⎪
⎪Λ= ⎪ ⎪⎝
⎭
λλλ,左乘矩阵A ,i
λ乘A 的各行元素;右乘,i
λ乘A 的
各列元素;
B,则
、Q可逆,则A r B
(),())
1)(1)123-+n m m Ⅲ、组合的性质:C
③、利用特征值和相似对角化:伴随矩阵: 1211222221122n n n n m m nm n n
a x a x x a x a x
b +++++=;12111212222212n n m m mn m m a a x b a a x b Ax a a a x b ⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪
=⇔=⎪⎪ ⎪⎪⎪ ⎪⎭⎝⎭⎝⎭
个未知数)
③、()121
2
n n x x
a
a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭
(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪
= ⎪ ⎪⎝⎭
);
④、11
2
2
n n a x a x
a x β
++
+=(线性表出)
⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)
4、向量组的线性相关性
1. m 个n 维列向量所组成的向量组A :1
2
,,
,m
ααα构成n m ⨯矩阵1
2
(,,
,)
m A =ααα;
m
个n 维行向量所组成的向量组B :12,,,T
T T
m
β
ββ构成m n ⨯矩阵
12T T T m B βββ⎛⎫ ⎪ ⎪
= ⎪ ⎪ ⎪⎝⎭
;
含有有限个向量的有序向量组与矩阵一一对应;
2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)
②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n
A ⨯与l n
B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101
P 例14) 4. ()()T
r A A r A =;(101
P 例15)
5. n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;
②、,αβ线性相关
⇔,αβ
坐标成比例或共线(平行);
③、,,αβγ线性相关 ⇔,,αβγ共面;
6. 线性相关与无关的两套定理:
若1
2
,,,s
ααα线性相关,则1
2
1
,,,,s
s αααα+必线性相关;
若1
2
,,
,s
ααα线性无关,则1
2
1
,,
,s ααα-必线性无关;(向量的个数加加减
减,二者为对偶)
若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B : 若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)
简言之:无关组延长后仍无关,反之,不确定;
7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74
P 定理7);
向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86
P 定理3) 向量组A 能由向量组B 线性表示 AX B ⇔=有解;
()(,)r A r A B ⇔=(85
P 定理2)
向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85
P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵1
2
,,,l
P P P ,使12
l
A P P P =;
①、矩阵行等价:~r
A B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~c
A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n
B ⨯:
①、若A 与B 行等价,则A 与B 的行秩相等;
②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;
③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n
A B C ⨯⨯⨯=,则:
①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T
A 为系数矩阵;(转置)
11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;
①、0ABx = 只有零解0Bx ⇒ =只有零解;
②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;
12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110
P 题19结论)
1212(,,,)(,,,)r s
b b b a a a K =(B AK =)
其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)
(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)
,s
α线性相关存在一组不全为,s k ,使得s s
k α+=12,)0
s s x x
x α⎛ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;2,
,)s s
α<,系数矩阵的秩小于未知数的个数;m n ⨯的矩阵A 秩为:()r S n =;*
为Ax ,n r
ξ-为,n r ξ-线性无关;(33结论)、相似矩阵和二次型正交矩阵⇔(定义),性质:、A 的位向1
)i n ;为正交矩阵,则正交阵,则注意:求解正交阵,千万不要忘记施密特正交化和单位化;,)r
a
1
b
21121
2211][,]
[,]
][,]
[,]
r r r r r r b a b a b b b b b b b -------
;
对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;B 等价 ⇔A 经过初等变换得到
B,(合同、相似的约束条件不同,为二次型矩阵;。