约束优化算法:拉格朗日乘子法

合集下载

增广拉格朗日方法发展史

增广拉格朗日方法发展史

增广拉格朗日方法发展史增广拉格朗日方法(Augmented Lagrangian Method)是数学最优化中一种计算非线性约束最优化问题的方法,它采用了拉格朗日乘子法(Lagrangian Multiplier Method)和罚函数(Penalty Function)相结合的思想。

拉格朗日乘子法的思想最早由法国数学家拉格朗日(Joseph-Louis Lagrange)于18世纪50年代提出。

他研究了约束条件下的极值问题,并通过引入拉格朗日乘子将带有约束条件的优化问题转化为不带约束条件的优化问题。

这一方法为后来的非线性规划问题的研究提供了理论基础。

20世纪60年代,数学家Powell将拉格朗日乘子法与罚函数相结合,提出了增广拉格朗日方法。

增广拉格朗日方法通过在优化问题的目标函数中添加与约束条件相关的罚函数,将约束条件加入到目标函数中,从而将带约束条件的优化问题转化为目标函数带约束的优化问题,从而使得问题的求解更加方便。

随着计算机技术的发展,增广拉格朗日方法得到了进一步的推广和发展。

数学家和工程师们不断地提出了新的增广拉格朗日方法和改进算法,以解决更加复杂的优化问题。

如1981年,Nocedal等人提出了序列二次规划方法(Sequential Quadratic Programming);1996年,Hestenes等人提出了全局收敛性的增广拉格朗日方法等。

总之,增广拉格朗日方法的发展经历了拉格朗日乘子法的提出、增广拉格朗日方法的提出以及后续的改进和应用。

它的出现和发展对求解非线性约束最优化问题起到了重要的推动作用,使得更多的问题可以得到有效的求解。

增广拉格朗日方法在理论研究和应用领域都取得了重要的成果,为解决实际问题提供了有力的工具和方法。

拉格朗日乘子法详解

拉格朗日乘子法详解

拉格朗⽇乘⼦法详解拉格朗⽇乘⼦法写这篇⽂章的动机主要是最近正在学习机器学习的课程,学到逻辑回归的时候发现使⽤了拉格朗⽇乘⼦法,⽹上也很多⽂章讲拉格朗⽇乘⼦法的,因此这篇⽂章只是记录学习的过程,希望能较为全⾯地展⽰拉格朗⽇乘⼦法的各个⽅⾯。

如果⽂章有错误请⼤家指出。

也希望接下来能在学习过程中记录下机器学习中的⼀些知识点。

基本思想拉格朗⽇乘⼦法想要解决的问题事实上是⽐较常出现的,也就是对于⼀个式⼦来说,⼤多数情况下我们是不可能⽆限制求其理想情况下的最优值的(这⾥的最优值可能是最⼤值也可能是最⼩值),总是存在⼀些约束⽣成了⼀部分可⾏解域,从机器学习上来说,我们的可⾏解域就被限制住了。

但是很显然我们如果将这个视为约束条件下的最优化,直接求解起来事实上是有⼀定困难的,我们更希望求解的是⽆约束的优化问题。

作为⼀种优化算法,拉格朗⽇乘⼦法主要⽤于解决约束优化问题,它的基本思想就是通过引⼊拉格朗⽇乘⼦来将含有n个变量和k个约束条件的约束优化问题转化为含有(n+k)个变量的⽆约束优化问题。

在转化过程中,拉格朗⽇乘⼦法通过引⼊k个拉格朗⽇乘⼦,将n个变量和k个约束条件的约束优化问题转化为含有(n+k)个变量的⽆约束优化问题。

举个例⼦来说,会有如下转化:min x,y,z f(x,y,z)s.t.g(x,y,z)=0求解上述最优化等价于求如下⽆约束优化:min x,y,z,λf(x,y,z)+λg(x,y,z)接下来对于约束条件只有等式以及约束条件中出现不等式约束的情况分别讨论。

等式约束等式约束是拉格朗⽇乘⼦法中最简单的⼀种形式,为了⽅便画图辅助理解,假设我们有如下优化式⼦:max x,y f(x,y)s.t.g(x,y)=c我们最后会将其转化为⽆约束优化:max x,y,λf(x,y)+λ(g(x,y)−c)这⾥的λ是没有约束的,这是和不等式约束⼀个很⼤的区别,因此在这⾥进⾏解释为什么这样能够求出最优值点。

这是在⼀个⼆维平⾯上的优化式⼦,因此可以做出如下图辅助理解:需要注意的是上图中蓝⾊的虚线表⽰待优化原函数的等⾼线图,也就是说在⼀条蓝⾊虚线上的点f(x,y)都是相等的,⽽绿⾊的实线其实也可以理解为g(x,y)的等⾼线图,只不过由于约束,可⾏解只能落在这⼀条绿⾊的实线上。

python 拉格朗日乘子法

python 拉格朗日乘子法

python 拉格朗日乘子法
Python拉格朗日乘子法是一种优化算法,用于求解约束条件下的最值问题。

它通过引入拉格朗日乘子,将约束条件转化为目标函数的一部分,从而使得约束条件与目标函数可以放在一起进行优化。

在Python 中,可以使用 scipy.optimize 中的 minimize 函数和LinearConstraint 类来实现拉格朗日乘子法。

具体步骤如下:
1. 定义目标函数和约束条件函数
首先,需要定义目标函数和约束条件函数。

目标函数是需要最小化或最大化的函数,而约束条件是目标函数的限制条件。

2. 引入拉格朗日乘子
将约束条件转化为目标函数的一部分,引入拉格朗日乘子。

拉格朗日乘子是一个数值参数,用于乘以约束条件的函数值,并将其加到目标函数中。

3. 构建带约束条件的优化问题
使用 minimize 函数和 LinearConstraint 类来构建带约束条件的优化问题。

需要将目标函数和约束条件函数作为参数传递给minimize 函数,并使用 LinearConstraint 类来定义约束条件。

4. 解决优化问题并输出结果
调用 minimize 函数来解决优化问题,并输出结果。

优化结果包括最小化或最大化的目标函数值,以及满足约束条件的最优解。

需要注意的是,在使用拉格朗日乘子法求解约束条件下的最值问
题时,还需要注意约束条件的可行性、目标函数的可导性等问题。

最优化理论与算法习题答案

最优化理论与算法习题答案

最优化理论与算法习题答案最优化理论与算法习题答案最优化理论与算法是应用数学中的一个重要分支,它研究如何在给定的约束条件下,找到一个使目标函数取得最优值的解。

在实际应用中,最优化问题广泛存在于各个领域,如经济学、管理学、物理学等。

本文将回答一些与最优化理论与算法相关的习题,帮助读者更好地理解和应用这一领域的知识。

1. 什么是最优化问题?最优化问题是指在给定的约束条件下,寻找一个使目标函数取得最优值的解。

其中,目标函数是需要最大化或最小化的函数,约束条件是对解的限制条件。

最优化问题可以分为无约束最优化和有约束最优化两种情况。

2. 什么是凸优化问题?凸优化问题是指目标函数和约束条件均为凸函数的最优化问题。

凸函数具有良好的性质,例如局部最小值即为全局最小值,因此凸优化问题的求解相对容易。

常见的凸优化问题有线性规划、二次规划等。

3. 什么是拉格朗日乘子法?拉格朗日乘子法是一种求解有约束最优化问题的方法。

它通过引入拉格朗日乘子,将有约束最优化问题转化为无约束最优化问题。

具体地,对于一个有约束最优化问题,我们可以构造拉格朗日函数,然后通过求解无约束最优化问题来获得原问题的解。

4. 什么是线性规划?线性规划是一种特殊的最优化问题,其中目标函数和约束条件均为线性函数。

线性规划在实际应用中非常广泛,例如在生产计划、资源分配等方面都有重要的应用。

线性规划可以使用单纯形法等算法进行求解。

5. 什么是整数规划?整数规划是一种最优化问题,其中变量需要取整数值。

与线性规划相比,整数规划的求解更加困难,因为整数约束条件使得问题的解空间变得离散。

常见的整数规划问题有旅行商问题、装箱问题等。

6. 什么是非线性规划?非线性规划是一种最优化问题,其中目标函数或约束条件为非线性函数。

非线性规划的求解相对复杂,通常需要使用迭代算法进行求解,例如牛顿法、拟牛顿法等。

非线性规划在实际应用中非常广泛,例如在经济学、工程学等领域都有重要的应用。

7. 什么是梯度下降法?梯度下降法是一种常用的优化算法,用于求解无约束最优化问题。

约束最优化方法

约束最优化方法

约束最优化方法
约束最优化方法是指通过给定约束条件,寻找目标函数的最优解。

以下是一些常用的约束最优化方法:
1. 拉格朗日乘子法:将约束最优化问题转化为无约束最优化问题,通过求解无约束最优化问题得到原问题的最优解。

2. 罚函数法:将约束条件转化为罚函数项,通过不断增加罚函数的权重,使目标函数逐渐逼近最优解。

3. 梯度下降法:通过迭代计算目标函数的梯度,沿着梯度的负方向搜索目标函数的最优解。

4. 牛顿法:通过迭代计算目标函数的Hessian矩阵,使用Hessian矩阵的逆矩阵乘以梯度向量来逼近最优解。

5. 遗传算法:模拟自然界的遗传机制,通过种群迭代的方式搜索最优解。

6. 模拟退火算法:模拟物理退火过程,通过随机搜索的方式搜索最优解。

7. 蚁群算法:模拟蚂蚁觅食行为,通过模拟蚂蚁的信息素传递过程来搜索最优解。

8. 粒子群算法:模拟鸟群、鱼群等群集行为,通过模拟粒子间的相互作用来搜索最优解。

这些方法各有优缺点,应根据具体问题选择合适的方法进行求解。

拉格朗日乘子算法

拉格朗日乘子算法

拉格朗日乘子算法摘要:1.拉格朗日乘子算法的定义2.拉格朗日乘子算法的应用3.拉格朗日乘子算法的例子4.拉格朗日乘子算法的优点与局限性正文:拉格朗日乘子算法是一种数学优化算法,主要用于解决带有约束条件的优化问题。

该算法以法国数学家约瑟夫·拉格朗日(Joseph-Louis Lagrange)的名字命名,其基本思想是将约束条件转化为目标函数的偏导数,通过求解偏导数为零的点来找到最优解。

下面我们将详细介绍拉格朗日乘子算法的定义、应用、例子以及优点与局限性。

首先,我们来看拉格朗日乘子算法的定义。

拉格朗日乘子算法是一种用于求解带约束条件的优化问题的方法。

假设我们有一个优化问题:```最大化:f(x)约束条件:g_i(x) <= 0, i = 1,2,...,m```其中,f(x) 是目标函数,g_i(x) 是第i 个约束条件,m 是约束条件的数量。

拉格朗日乘子算法通过引入拉格朗日乘子(lagrangian multiplier)来将约束条件转化为目标函数的偏导数。

我们构造一个拉格朗日函数L(x, λ):```L(x, λ) = f(x) + ∑λ_i*g_i(x)```其中,λ_i 是第i 个拉格朗日乘子。

要求解最优解,我们需要求解L(x, λ) 对x 和λ的偏导数为零的点。

接下来,我们来看拉格朗日乘子算法的应用。

拉格朗日乘子算法广泛应用于各种优化问题,如线性规划、整数规划、非线性规划等。

特别是在带约束条件的优化问题中,拉格朗日乘子算法是一种非常有效的方法。

现在,我们来看一个拉格朗日乘子算法的例子。

假设我们有一个优化问题:```最大化:x^2约束条件:x <= 2```我们可以通过拉格朗日乘子算法来求解这个问题。

首先,我们构造拉格朗日函数:```L(x, λ) = x^2 + λ*(2 - x)```然后,我们求解L(x, λ) 对x 和λ的偏导数为零的点:```L/x = 2x - λ = 0L/λ = 2 - x = 0```解得x = 2,λ = 2。

高数之拉格朗日乘法---解决约束优化问题

高数之拉格朗日乘法---解决约束优化问题

⾼数之拉格朗⽇乘法---解决约束优化问题
作为⼀种优化算法,拉格朗⽇乘⼦法主要⽤于解决约束优化问题,它的基本思想就是通过引⼊拉格朗⽇乘⼦来将含有n个变量和k个约束条件的约束优化问题转化为含有(n+k)个变量的⽆约束优化问题。

拉格朗⽇乘⼦背后的数学意义是其为约束⽅程梯度线性组合中每个向量的系数。

如何将⼀个含有n个变量和k个约束条件的约束优化问题转化为含有(n+k)个变量的⽆约束优化问题?拉格朗⽇乘数法从数学意义⼊⼿,通过引⼊拉格朗⽇乘⼦建⽴极值条件,对n个变量分别求偏导对应了n个⽅程,然后加上k个约束条件(对应k个拉格朗⽇乘⼦)⼀起构成包含了(n+k)变量的(n+k)个⽅程的⽅程组问题,这样就能根据求⽅程组的⽅法对其进⾏求解。

解决的问题模型为约束优化问题:
min/max a function f(x,y,z), where x,y,z are not independent and g(x,y,z)=0.
即:min/max f(x,y,z)
s.t. g(x,y,z)=0
example:
将原有的约束优化问题转化为了⼀种对偶的⽆约束的优化问题。

增广拉格朗日乘子法及其在约束优化问题的应用

增广拉格朗日乘子法及其在约束优化问题的应用

毕业论文题目增广拉格朗日乘数法及在其在约束优化问题的应用学院数学科学学院专业信息与计算科学班级计算1001班学生高亚茹学号 20100921032 指导教师邢顺来二〇一四年五月二十五日摘要增广拉格朗日乘子法作为求解约束优化问题的一种重要方法,近年来研究增广拉格朗日乘子法的应用显得更加重要。

本文首要介绍了增广拉格朗日乘子法的产生,通过解释增广拉格朗日乘子法是罚函数法和拉格朗日乘子法的有机结合,引出了现在对增广拉格朗日法的发展状况,概述了增广拉格朗日乘子法基本理论。

然后具体说明了增广拉格朗日法在科学领域上的实际应用,如在供水系统和图像复原的应用,也证明了增广拉格朗日乘子法的实际应用性。

关键词:增广拉格朗日乘子法;罚函数法;供水系统;图像复原ABSTRACTAugmented lagrange multiplier methods as an important method for solving constrained optimization problems, recent studies in applications of augmented lagrange multiplier methods is even more important. This paper describes the generation of primary augmented lagrange multiplier method. By interpreting the augmented lagrangian multiplier methods is the combination of penalty function methods and Lagrange multiplier methods, It is given to a recent development of augmented lagrangian methods. Then is shown the basic theories of augmented lagrangian multiplier methods. Finally it is specified the augmented lagrangian method on the practical applications of scientific fields, such as water supply ystems and image restorations, also proved augmented lagrangian multiplier methods of practical application.Key words:Augmented Lagrange Multiplier Methods;Penalty Function Methods Water Supply Systems ;Image Restorations目录摘要.................................................................................... .I ABSTRACT. (II)1前言 (1)1.1增广拉格朗日函数法的产生与应用 (1)1.2研究增广拉格朗日函数法应用的意义 (1)2增广拉格朗日乘子法 (3)2.1约束非线性规划 (3)2.2罚函数外点法 (4)2.3拉格朗日乘子法....................................... (6)2.4增广拉格朗日乘子法.............................. (7)2.4增广拉格朗日乘子法的计算........................... ................................. 10 3 增广拉格朗日乘子法的应用................................................. ...... (12)3.1供水系统调度的增广拉格朗日函数优化方法.......................... . (12)3.2图像复原的增广拉格朗日函数优化方法 (14)结论........................................................................................... .. (17)参考文献 (18)致谢 (19)1前言1.1 增广拉格朗日函数法的产生与应用在求解有约束条件的优化题目时,有一个重要方法,便是用适合的方法把约束优化问题,转变成无约束优化问题来进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉格朗日乘子法约束优化问题的标准形式为:min (),..()0,1,2,...,()0,1,2,...,ni j f x x R s t g x i m h x j l∈≤===,,:n i j f g h R R →其中约束优化算法的基本思想是:通过引入效用函数的方法将约束优化问题转换为无约束问题,再利用优化迭代过程不断地更新效用函数,以使得算法收敛。

1. 罚函数法罚函数法(内点法)的主思想是:在可行域的边界上筑起一道很高的“围墙”,当迭代点靠近边界时,目标函数陡然增大,以示惩罚,阻止迭代点穿越边界,这样就可以将最优解“挡”在可行域之内了。

它只适用于不等式约束:min (),..0,1,2,...,ni f x x R s tg i m ∈≤=它的可行域为: {|()0,1,2,...,}n i D x R g x i m =∈≤=对上述约束问题,其其可行域的内点可行集0D ≠∅的情况下,引入效用函数:min (,)()()B x r f x rB x =+、 其中11()()mi i B x g x ==-∑或1()|ln(())|m i i B x g x ==-∑ 算法的具体步骤如下:给定控制误差0ε>,惩罚因子的缩小系数01c <<。

步骤1:令1k =,选定初始点(0)0x D ∈,给定10r >(一般取10)。

步骤2:以()k x 为初始点,求解无约束min (,)()()k B x r f x r B x =+ 其中11()()mi i B x g x ==-∑或1()|ln(())|m i i B x g x ==-∑,得最优解()()k k x x r = 步骤3:若()()k k r B xε<,则()k x 为其近似最优解,停;否则,令,1k k r cr k k ==+,转步骤2.2. 拉格朗日乘子法(1)PH 算法:(约数为等式的情况引入)效用函数为()()min (,,)()()()()k k T T k k M x u f x u h x h x h x σσ=++判断函数为()()k k h x φ=当()()k k x φφε=<时迭代停止。

步骤1:选定初始点(0)x ,初始拉格朗日乘子向量(1)u ,初始罚因子1σ及其放大系数1c >,控制误差0ε>与常数(0,1)θ∈,令1k =。

步骤2:以(1)k x +为初始点,求解无约束问题:()()min (,,)()()()()k k T T k k M x u f x u h x h x h x σσ=++得到无约束问题最优解()k x步骤3:当()()k h xε<时,()k x 为所求的最优解,停;否则转步骤4. 步骤4:当()()()()/k k h xh x θ<时,转步骤5;否则令k 1k c σσ+=,转步骤5. 步骤5:令(1)()()(),1k k k k u u h x k k σ+=+=+,转步骤1。

(2) PHR 算法(一般约束形式的松弛变量法和指数形式法)松弛变量法: (){}12222111(,,)()max 0,()2()()2i i i l lj j jj j M u v f x u g x u v h x h x ρρρρρ===++-⎡⎤⎣⎦++∑∑∑乘子的修正公式为:(1)()()(1)()()(),1,...,max 0,(),1,...,k k k j j j k k k i i i v v h x j luu g x i m ρρ++=+=⎡⎤=+=⎣⎦判断函数为: 1/22()2()()11()max (),k l m k k i k j i j i u h x g x φρ==⎧⎫⎛⎫⎪⎪=+-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭∑∑ 当()()k k x φφε=<时迭代停止。

3.乘子法MATLAB程序及其作用Al main函数3.1 _3.1.1程序(1):乘子法效用函数程序函数功能:将约束优化问题,根据效用函数方法,将其转变成无约束问题。

function f=AL_obj(x)%拉格朗日增广函数%N_equ 等式约束个数%N_inequ 不等式约束个数global r_al pena N_equ N_inequ;%全局变量h_equ=0;h_inequ=0;[h,g]=constrains(x);%等式约束部分for i=1:N_equh_equ=h_equ+h(i)*r_al(i)+(pena/2)*h(i).^2;end%不等式约束部分for i=1:N_inequh_inequ=h_inequ+(0.5/pena)*(max(0,(r_al(i)+pena*g(i))).^2-r_al(i).^2); end%拉格朗日增广函数值f=obj(x)+h_equ+h_inequ;3.1.2程序(2):判断函数函数功能:判断是否符合约束条件%% the compare function is the stop conditionfunction f=compare(x)global r_al pena N_equ N_inequ;h_equ=0;h_inequ=0;[h,g]=constrains(x);%等式部分for i=1:N_equh_equ=h_equ+h(i).^2;end%不等式部分for i=1:N_inequh_inequ=h_inequ+(max(-g(i),r_al(i+N_equ)/pena)).^2;endf=sqrt(h_equ+h_inequ);3.1.3程序(3)AL算法主程序函数功能:对无约束的效用函数利用拟牛顿算法求解其最优解,更新乘子。

function [X,FVAL]=AL_main(x_al,r_al,N_equ,N_inequ)%本程序为拉格朗日乘子算法示例算法%函数输入:% x_al:初始迭代点% r_al:初始拉格朗日乘子% N-equ:等式约束个数% N_inequ:不等式约束个数%函数输出% X:最优函数点% FVAL:最优函数值%============================程序开始================================ global r_al pena N_equ N_inequ; %参数(全局变量)pena=10; %惩罚系数c_scale=2; %乘法系数乘数cta=0.5; %下降标准系数e_al=0.005; %误差控制范围max_itera=25;out_itera=1; %迭代次数%===========================算法迭代开始============================= while out_itera<max_iterax_al0=x_al;r_al0=r_al;%判断函数compareFlag=compare(x_al0);%无约束的拟牛顿法BFGS[X,FVAL]=fminunc(@AL_obj,x_al0);x_al=X; %得到新迭代点%判断停止条件if compare(x_al)<e_aldisp('we get the opt point');breakend%c判断函数下降度if compare(x_al)<cta*compareFlagpena=pena; %可以根据需要修改惩罚系数变量elsepena=min(1000,c_scale*pena); %%乘法系数最大1000disp('pena=2*pena');end%% 更新拉格朗日乘子[h,g]=constrains(x_al);for i=1:N_equ%%等式约束部分r_al(i)=r_al(i)+pena*h(i);endfor i=1:N_inequ%%不等式约束部分r_al(i+N_equ)=max(0,(r_al(i+N_equ)+pena*g(i)));endout_itera=out_itera+1;end%+++++++++++++++++++++++++++迭代结束+++++++++++++++++++++++++++++++++ disp('!!!!!!!!!!!!!!!!!!!the iteration over!!!!!!!!!!!!!!!!!!!!!!!!!!'); disp('the value of the obj function');obj(x_al)disp('the value of constrains');compare(x_al)disp('the opt point');X=x_al;FVAL=obj(X);3.1.4 乘子法_AL main 函数使用方法(1) 定义目标函数及约束条件122331123222123min ()..1030f x x x x x x x s tx x x x x x =---++-=++-≤目标函数m 文件 function f=obj(x)f=-x(1)*x(2)-x(2)*x(3)-x(3)*x(1);约束函数m 文件222[,]()(1)(2)(3)1;(1)(2)(3)3;function h g constrains x h x x x g x x x ==++-=++-(2) _AL main 函数调用x_al=[1,1,1]; %初始迭代点r_al=[1,1]; %初始拉格朗日乘子N_equ=1; %等式约束个数 一个N_inequ=1; %不等式约束个数 一个[X,FVAL]=AL_main(x_al,r_al,N_equ,N_inequ)计算结果:we get the opt point!!!!!!!!!!!!!!!!!!!the iteration over!!!!!!!!!!!!!!!!!!!!!!!!!! the value of the obj function。

相关文档
最新文档