第四章约束问题的最优化方法解析

合集下载

[最优化]不等式约束的优化问题求解

[最优化]不等式约束的优化问题求解

[最优化]不等式约束的优化问题求解不等式约束的优化问题求解与前⽂讨论的只含等式约束的优化问题求解类似,含不等式约束的优化问题同样可以⽤拉格朗⽇乘⼦法进⾏求解对于⼀般形式的优化问题:其中,引⼊下⾯两个定义:定义1:对于⼀个不等式约束,如果在处,那么称该不等式约束是处的起作⽤约束;如果在处,那么称该约束是处的不起作⽤约束。

按照惯例,总是把等式约束当作起作⽤的约束定义2:设满⾜,设为起作⽤不等式约束的下标集:如果向量 是线性⽆关的,那么称是⼀个正则点下⾯介绍某个点是局部极⼩点所满⾜的⼀阶必要条件,即KKT 条件。

KKT 条件:设,设是问题的⼀个正则点和局部极⼩点,那么必然存在和,使得以下条件成⽴:那么在求解不等式约束的最优化问题的时候,可以搜索满⾜KKT 条件的点,并将这些点作为极⼩点的候选对象。

⼆阶充分必要条件除了⼀阶的KKT 条件之外,求解这类问题还有⼆阶的充分必要条件。

⼆阶必要条件:在上述的问题中若是极⼩点且。

假设是正则点,那么存在和使得1. 2. 对于所有,都有成⽴⼆阶充分条件:假定,是⼀个可⾏点,存在向量和使得1. 2. 对于所有,都有成⽴那么是优化问题的严格局部极⼩点f(x)subject toh(x)=0g(x)≤0minimize f(x)subject to h(x)=0g(x)≤0f:Rn →R,h:Rn →Rm,m≤n,g:Rn →Rp f :→R,h :→,m ≤n,g :→R n R n R m R n R pgj(x)≤0(x)≤0g j x ∗x ∗gj(x ∗)=0()=0g j x ∗x ∗x ∗x ∗x ∗gj(x ∗)<0()<0g j x ∗x ∗x ∗hi(x)(x)h i x ∗x ∗h(x ∗)=0,g(x ∗)≤0h()=0,g()≤0x ∗x ∗J(x ∗)J()x ∗J(x ∗)≜{j:gj(x ∗)=0}J()≜{j :()=0}x ∗g j x ∗∇hi(x ∗),∇gj(x ∗),1≤i≤m,j ∈J(x ∗)∇(),∇(),1≤i ≤m,j ∈J()h i x ∗g j x ∗x ∗x ∗x ∗f,h,g ∈C1f,h,g ∈C 1x ∗x ∗h(x)=0,g(x)≤0h(x)=0,g(x)≤0λ∗∈Rm ∈λ∗R m µ∗∈Rp ∈µ∗R p Df(x ∗)+λ∗TDh(x ∗)+µ∗TDg(x ∗)=0Tµ∗Tg(x ∗)=0h(x ∗)=0g(x ∗)≤0≥0µ∗Df()+Dh()+Dg()=x ∗λ∗T x ∗µ∗T x ∗0Tg()=0µ∗T x ∗h()=0x ∗g()≤0x ∗x ∗x ∗f,h,g ∈C2f,h,g ∈C 2x ∗x ∗λ∗∈Rm ∈λ∗R m µ∗∈Rp ∈µ∗R p µ∗≥0,Df(x ∗)+λ∗TDh(x ∗)+µ∗TDg(x ∗)=0T,µ∗Tg(x ∗)=0≥0,Df()+Dh()+Dg()=,g()=0µ∗x ∗λ∗T x ∗µ∗T x ∗0T µ∗T x ∗y ∈T(x ∗)y ∈T ()x ∗yTL(x ∗,λ∗,µ∗)y≥0L(,,)y ≥0y T x ∗λ∗µ∗f,h,g ∈C2f,h,g ∈C 2x ∗∈Rn ∈x ∗R n λ∗∈Rm ∈λ∗R m µ∗∈Rp ∈µ∗R p µ∗≥0,Df(x ∗)+λ∗TDh(x ∗)+µ∗TDg(x ∗)=0T,µ∗Tg(x ∗)=0≥0,Df()+Dh()+Dg()=,g()=0µ∗x ∗λ∗T x ∗µ∗T x ∗0T µ∗T x ∗y ∈T~(x ∗,µ∗),y≠0y ∈(,),y ≠0T˜x ∗µ∗yTL(x ∗,λ∗,µ∗)y>0L(,,)y >0y T x ∗λ∗µ∗x ∗x ∗h(x)=0,g(x)≤0h(x)=0,g(x)≤0。

约束最优化问题的最优性条件

约束最优化问题的最优性条件

ci ( x ) ≥ 0
i ∈ I = {l + 1, , m}
一阶必要条件
定理6: (Kuhn-Tucker一阶必要条件)
*
I * = i ci x * = 0, i ∈ I ; 设 x 为问题(3)的局部最优解, f ( x ), ci ( x ) (1 ≤ i ≤ m ) 在 x * 点可微, 对于i ∈ E ∪ I *
*
λ f (x ) ∑ λ ci (x ) = 0
m * 0 *
λ c (x ) = 0 i = 1,2, , m
* i i *
i =1
* i
*
λ ≥ 0 i = 0,1,2, , m
* i
例2: 验证是否满足Fritz-John条件:
min f ( x1 , x2 ) = x1 s.t
*
3 c1 ( x1 , x2 ) = x1 x2 ≥ 0
* 则存在一组不全为零的实数 λ1 , λ* , λ* 使得: 2 l
f x * ∑ λ*ci x * = 0 i
i =1
( )
l
( )
二阶充分条件
定理2: 对等式约束问题,若: (1) f ( x ) 与 ci ( x )(1 ≤ i ≤ l ) 是二阶连续可微函数; (3) s ∈ R n且 s ≠ 0 , 且 s T ci (x * ) = 0 , i = 1,2, l 均有 s T 2 L (x * , λ* )s > 0 xx 则 x* 是等式约束问题的严格局部极小点. (2) x * ∈ R n 与 λ* ∈ R l 使: L(x* , λ* ) = 0 ;
{ ( ) }
的ci (x * ) 线性无关, 则存在非零向量 * λ* = (λ1 , , λ* ) 使得: m

4一般约束最优化问题的最优性条件.

4一般约束最优化问题的最优性条件.
*
T
, c 2 x
1,1, 0
*
T
.
令 6
即: f x * 2c1 x * 2c2 x * . * 0, i 1,2,3,4,5. c x 令i 0,i 3, 4, 5,则 i i
* x 所以, 是K-T点.
Fritz John 最优性条件—一阶必要条件
一般约束最优化问题的最优性条件
Fritz John 最优性条件—一阶必要条件
一般约束最优化问题的最优性条件
Fritz John 最优性条件—一阶必要条件
缺点
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶必要条件
一般约束最优化问题的最优性条件
c 3 x x1 0
c4 x x 2 0 c5 x x 3 0
试验证最优点 x * 1, 1, 1T为K-T点.
一般约束最优化问题的最优性条件
解: I * 1, 2, f x * 6,2,4T ,
c1 x
2,2, 2
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶充分条件
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶充分条件
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶充分条件
一般约束最优化问题的最优性条件
Kuhn-Tucker 最优性条件—一阶充分条件
一般约束最优化问题的最优性条件
几何最优性条件—一阶必要条件 定义 I ( x ) {i | gi ( x ) 0, i 1,2,..., m}. 定理3.4.1

第四章约束问题的最优化方法

第四章约束问题的最优化方法

当limr(k) 0 k
则(x, r(k) ) f (x) , xk * x *
例: 用内点法求
min
f
(x)

x2 1

x2 2
s.t. g( x) 1 x1 0 的约束最优解。
解:
首先构造内点惩罚函数: (
x,
r)

x2 1

x2 2

rk
ln(x1
1)
用解析法求函数的极小值,运用极值条件:
二. 直接解法:
基本思想:合理选择初始点,确定搜索方向,以迭代公式 x(k+1)= x(k)+α(k)S(k)在可行域中寻优,经过若干次迭代,收敛至最优点。 适用范围:只能求解不等式约束优化问题的最优解。
基本要点:选取初始点、确定搜索方向及适当步长。
搜索原则:每次产生的迭代点必须满足可行性与适用性两个条件。 可行性:迭代点必须在约束条件所限制的可行域内,即满足
1
u1 gu (x)
② .(x, r(k) )
m
f (x) r(k)
1
u1 gu (x)
③ .(x, r (k) )
f (x)
m
r (k) u u 1
1 gu (x)
其中:gu (x) 0,u 1,2,...m
其中:gu (x) 0,u 1,2,...m
gu(x)0, u=1,2,…,p
适用性:当前迭代点的目标函数值较前一点是下降的,即满足 F(xk+1)<F(xk)
收敛条件:
• 边界点的收敛条件应该符合 K-T 条件;
• 内点的收敛条件为: xk1 xk 1

机械优化设计-第04章 多维有约束优化方法

机械优化设计-第04章 多维有约束优化方法

第四章:多维有约束优化方法4.1概述一、多维有约束问题的数学模型机械优化设计问题绝大多数是属于多维有约束非线性规划,其数学模型可表示为式中a i、b i分别为x i的下界和上界。

在求解约束优化问题时,虽然可以利用第三章的无约束优化方法,再加上约束的逻辑判断,使搜索点保持在可行域内逐步逼近约束最优解,但这样处理太复杂,缺乏严格的科学性。

因此,出现了一些直接求解约束优化问题的方法,其基本思路也是数值迭代法。

目前,约束优化方法虽然不如无约束优化方法那样多而完善,但对求解工程优化问题已有很多较好的方法。

二、多维有约束优化方法的分类(1)直接法直接法包括:网格法、分层降维枚举法、复合形法、随机试验法、随机方向法、可变容差法和可行方向法。

(2)间接法间接法包括:罚函数法、内点罚函数法、外点罚函数法、混合罚函数法、精确罚函数法、广义乘子法、广义简约梯度法和约束变尺度法。

直接法不需要利用目标函数和约束函数的梯度,就可直接利用迭代点和目标函数值的信息来构造搜索方向。

间接法要利用目标、约束函数的梯度,其中也包括利用差分来近似梯度的应用。

很多约束优化方法是先转变成无约束优化方法来求解。

可见,无约束优化方法也是也是约束优化方法的基础。

4.2复合形法一、方法概述基本思路:在可行域中选取K个设计点(n+1≤K≤2n)作为初始复合形的顶点。

比较各顶点目标函数值的大小,去掉目标函数值最大的顶点(称最坏点),以坏点以外其余各点的中心为映射中心,用坏点的映射点替换该点,构成新的复合形顶点。

反复迭代计算,使复合形不断向最优点移动和收缩,直至收缩到复合形的顶点与形心非常接近,且满足迭代精度要求为止。

初始复合形产生的全部K个顶点必须都在可行域内。

二、初始复合形的产生复合形法是一种在可行域内收索最优点大直接解法。

(1)确定可行点作为初始复合形的第一个顶点:式中:通过调整随机数,使第一个初始点控制在可行域范围内。

(2)产生其余(K-1)个随机点。

约束问题最优化方法

约束问题最优化方法
* * T * * * T * (1* , 2 ,, m ) 和 * ( 1 , 2 ,, m ) 使 Kuhn-Tucker 条 件 (9-6) 成 立 ,
且 对 满 足 下 述 (9-7) 、(9-8) 、(9-9) 三 条 件 的 任 意 非 零 向 量 z 有 (9-10) 成 立 , 则 x* 是 问 题 (9-1) 的 严 格 局 部 极 小 点 .
(1)
H ,定义集合
I ( x (1) ) {i g i ( x (1) ) 0,1 i l}
(1) x 为 点所有起作用约束的下标的集合.
可行下降方向的判定条件
g j ( x ) d 0 ( j I ( x ))
(1) T (1)
f ( x
(1)
) d 0
T
*
* j
必为零,在运用 K-T 条件求 K-T 点时,利用这一点可 以大大 地简化计算,另 外还要把约束条 件都加上.
2.求满足Kuhn-Tucker条件的点
例 9-1 求下列非线性规划问题的 Kuhn-Tucker 点.
min f ( x) 2x 2x1x2 x 10x1 10x2
线性无关.

* x* 是 (9-1) 的局部最优解,则比存在 * (1* , 2 ,, l* )T 和向量
* * T * (1* , 2 ,, m ) ,使下述条件成 立:
l m * * * * * f ( x ) j g j ( x ) i hi ( x ) 0 j 1 i 1 * * j g j ( x ) 0, j 1, 2, , l * j 0, i 1, 2, , l
2 1 2 2

最优化方法4-1第四章 约束最优化方法-KKT条件

最优化方法4-1第四章  约束最优化方法-KKT条件
(I) x*为问题的局部最优解且 I*={i| c i (x*)=0, 1≤i≤m };
(II) f(x)和 c i (x)(i∈I*)在 x*点可微;
(III)c i (x)(i∈I\ I*)在 x*点连续
则 S={p∈Rn | ▽f(x*)Tp<0}
与 G={ p∈Rn |▽c i(x* )Tp>0, i∈I*} 的交是空集,
(iii)▽ci(x*)(i=1,2,…,l)线性无关;
则存在一组不全为零的实数 1*… l*使得
l
▽f(x*)- i *▽c i(x*)=0 1
定义 n+l 元函数:
l
L(x, )=f(x)- Tc(x)=f(x)- ici(x) i1 为 lagrange 函数,

1


1 2
x1 x2 1 0
的 KT 点为 x* (0, 3)T,相应乘子为* (1 ,0)T。
6
例 2:验证(2,1)T 为下面约束优化问题的 K-T 点.
min
f ( x1 , x2 ) ( x1 3)2 ( x2 2)2
恰好给出等式约束问题的一阶必要条件
及 c i(x*)=0,i=1, …,l
点(X*, *)称为 lagrange 函数 L(x, )的驻点。
几何意义是明显的:考虑一个约束的情况:
-▽f(x*)
-▽f(x ) x
▽c(x )
c(x)
▽c(x*)
这里 x* 是局部最优解,
▽f(x*)与▽c(x*) 共线,
称 为 lagrange 乘子向量。
lagrange 函数的梯度为
▽L(x, )=(▽xL,▽ L)T

最优化方法第四章(1)概要

最优化方法第四章(1)概要

(4.7)
D {x si ( x) 0, i 1,2, , 对于约束问题(4.7),设 x D 。若 x 使得 某个不等式约束有 si ( x ) 0 ,则该不等式约束 si ( x ) 0 称为是关于容许点 x 的起作用约束;否则,若 si ( x ) 0 , 则该不等式约束称为是关于容许点 x 的不起作用约束。
*
*
G( x* ) S ( x* ) * * p C ( x ) , 证 根据引理4.3,若 p G( x ) ,则 * * C ( x ) S ( x ) , 从而 G( x* ) C( x* ) 。又根据定理4.5,有 故必有 G( x* ) S ( x* ) 。
j 1
l
Lagrange 函数(4.4)的梯度是
x L L L
其中
x L f ( x ) j h j ( x )
l
L h1 ( x ), h2 ( x ),
最优性必要条件
j 1
hl ( x )
T
L( x* , 1* , 2* ,
C 是凸集,则称为凸锥。
显然,由 的集合
n 维向量 v1, v2 ,
m i 1
, vm 的全部非负组合构成
C {x x i vi , i 0}
是一个以原点为顶点的凸锥。由于这样的凸锥的边界是 (超)平面或直线,所以也称为由 v1 , v2 , , vm 张成的 凸多面锥。 n 是 D 定义4.3 设 R 中的非空集,且 x D。对于非零 n 向量 p R ,若存在 0 ,当 t (0, ) 时,必有 x tp D ,则 p 称为点 x 的容许方向向量,其方向 称为点 x 的容许方向。由点 x 的全部容许方向向量构成的 集合称为点 x 的容许方向锥,记作 C ( x* )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

这种方法是1968年由美国学者A.V.Fiacco和G.P.Mcormick 提出的,把不等式约束引入数学模型中,为求多维有约束非线性规 划问题开创了一个新局面。
适用范围:求解等式约束优化问题和一般约束优化问题。
§4.2 内点惩罚函数法(障碍函数法)
一. 基本思想: 内点法将新目标函数 Φ( x , r ) 构筑在可行域 D 内,随着惩罚 因子 r(k) 的不断递减,生成一系列新目标函数 Φ (xk ,r(k)),在可 行域内逐步迭代,产生的极值点 xk*(r(k)) 序列从可行域内部趋向
2、等式约束优化问题(EP型)
x D Rn s.t. hv ( x ) 0, v 1,2,..., q min F ( x )
3、一般约束优化问题(GP型)
x D Rn s.t. g u ( x ) 0, u 1,2,..., p hv ( x ) 0, v 1,2,..., q min F ( x )
一. 约束优化问题解法分类: 约束优化方法按求解原理的不同可以分为直接法和间接法两类。
直接解法:随机方向搜索法、复合形法、可行方向法
间接解法:内点惩罚函数法、外点惩罚函数法、混合惩罚函数法 二. 直接解法:
基本思想:合理选择初始点,确定搜索方向,以迭代公式 x(k+1)= x(k)+α(k)S(k)在可行域中寻优,经过若干次迭代,收敛至最优点。 适用范围:只能求解不等式约束优化问题的最优解。
基本要点:选取初始点、确定搜索方向及适当步长。
搜索原则:每次产生的迭代点必须满足可行性与适用性两个条件。 可行性:迭代点必须在约束条件所限制的可行域内,即满足 gu(x)0, u=1,2,…,p 适用性:当前迭代点的目标函数值较前一点是下降的,即满足 F(xk+1)<F(xk)
收敛条件:
• 边界点的收敛条件应该符合 K-T 条件; • 内点的收敛条件为: x x 和 f x f x f x
§4.1
引言
无约束优化方法是优化方法中最基本最核心的部分。但是,在工 程实际中,优化问题大都是属于有约束的优化问题,即其设计变量的 取值要受到一定的限制,用于求解约束优化问题最优解的方法称为约 束优化方法。 根据约束条件类型的不同可以分为三种,其数学模型分别如下: 1、不等式约束优化问题(IP型)
x D Rn s.t. g u ( x ) 0, u 1,2,..., p min F ( x )
(k ) 1 u 1 m
lim r2 H[hv ( x( k ) )] 0
k
lim [( x ( k ) , r1 , r2 ) f ( x ( k ) )] 0
(k ) (k ) k
分类: 根据约束形式和定义的泛函及罚因子的递推方法等不同,罚函 数法可分为内点法、外点法和混合罚函数法三种。
1 u 1 g ( x ) u
m
其中:gu ( x) 0, u 1,2,...m
③ .( x, r ) f ( x) ru ( k )
(k ) u 1
m
1 g u ( x)
④ .( x, r ) f ( x) r
(k )
(k )
(k )
1 2 u 1 [ g u ( x)]
(k ) M
(k ) p
m
p
障碍项:当迭代点在可行域内时,在迭代过程中阻止迭代点越出 边界。 惩罚项:当迭代点在非可行域或不满足不等式约束条件时,在迭 代过程之中迫使迭代点逼近约束边界或等式约束曲面。 加权因子(即惩罚因子): r1 , r2 无约束优化问题的极小点序列 x (k)* ( r1 (k) , r2 (k) ) k= 0,1,2… 其收敛必须满足: lim r G[ gu ( x ( k ) )] 0 k
原目标函数的约束最优点 x* 。
内点法只能用来求解具有不等式约束的优化问题。
二.
惩罚函数的形式:
(k ) (k ) m
1 ① . ( x, r ) f ( x) r u 1 g ( x ) u
② . ( x, r ) f ( x) r
(k ) (k )
其中:gu ( x) 0, u 1,2,...m
m u 1
m
⑤ .( x, r ) f ( x) r ln[ gu ( x)]
(k )
其中:惩罚(加权)因子 降低系数 c:
r ( 0) r (1) ....r ( k )
0< c <1
r ( k 1) c r ( k )
xk * x *
当lim r ( k ) 0
k 1 k k 1
1
k
k
2
特点:① 在可行域内进行; ② 若可行域是凸集,目标函数是定义在凸集上的凸函数,
则收敛到全局最优点;否则,结果与初始点有关。
三.
间接解法:
目的:将有约束优化问题转化为无约束优化问题来解决。 前提:一不能破坏约束问题的约束条件,二使它归结到原约束问题的 同一最优解上去。 惩罚函数法: 通过构造罚函数把约束问题转化为一系列无约束最优化问题,进 而用无约束最优化方法去求解。惩罚函数法是一种使用很广泛、很有 效的间接解法。 基本思想:以原目标函数和加权的约束函数共同构成一个新的目标函 数 Φ( x, r1 ,r2 ),将约束优化问题转化为无约束优化问题。通 过不断调整加权因子,产生一系列Φ函数的极小点序列 x(k)* (r1(k),r2(k)) k= 0,1,2… ,逐渐收敛到原目标函数的约束最优解。
G[ gu ( x)] r2 H [hv ( x)] 新目标函数: ( x, r1 , r2 ) f ( x) r1 u 1 v 1
H hv ( x) 其中r Ggu ( x) 和 r 称为加权转化项,并根据它们在惩 v 1 u 1 罚函数中的作用,分别称为障碍项和惩罚项。
相关文档
最新文档