分式乘除(法则)
分式的乘除法

)
A. 1
B. 36
C. 37
D. 无意义
a2
3a
④ 现有A,B两个圆,A圆的半径为 2b (a>6),B的半径为 b ,则A圆的面积是B圆面积
的( )倍
a
a2
36
A.
6
B. 36
C. 6a
D. a 2
⑤ 若(m+n)个人完成一项工程需要m天(假定每个人的工作效率相同),则n个人完成这项工
程需要(
)
3
题型一:分式的乘除法
计算:
(1)
-1 2a a2 • a2 2a
a2
a2 1
(2)
4 a2 a 2 4 4a a2 2a 4
题型二 化简求值问题
先化简,再求值:
x2 1 x 1•1 x x2 2x 1 x 1 1 x 其中x= 1 ;
2
分式的乘法法则:两个分式相 乘, 把分子相乘的积作为积的分 子, 把分母相乘的积作为积的分 母;
b d bd a c ac
分式的除法法则:两个分式相 除, 把除式的分子和分母颠倒位 置后,再与被除式相乘
b d b c bc a c a d ad
例题:
计算: (1) (2)
)天.
⑥ 已知 x-3y=0, 求
x2
2x y 2xy
y2
•
(x
y)
的值。
⑦ 计算|:
(1)
4a 4b 5ab
•
15 a2
a2b b2
(2)
x2 y
x
3
y 4 x
(3)
x2
16.2.1_分式的乘除 (2)乘方

例: 已知x y 4 xy, 2 x 3 xy 2 y 求 的值。 x 2 xy y
例: 已 知x y 4 x 6 y 13 0,
2 2
y 3 1 4 x 2 求( 3 ) ( ) ( 2 ) 的 值。 x xy y
已知
l
r
答:纸箱空间的利用率约
b 为79%.
练习. 老师布置一道作业:计算
x x x 1 1 x的值 2 3 x 2 x 1 ( x 1) 1 x
2
其中x=2007,但小明在计算时,把2007错抄成 x=207,可是计算结果还是正确的,请你分析这 是什么原因?
例: 已知a 3a 1 0, 求:
2
1 (1) a a
1 ( 2)a 2 a
2
1 ( 3) a 4 a
4
1 a a 1 例: 已知a 5, 求 的值。 2 a a
4 2
1 1 例: 已 知 5, x y 2 x 3 xy 2 y 求 的 值。 x 2 xy y
x 2 例: 已 知 , y 7 x 3 xy 2 y 求 2 的 值。 2 2 x 3 xy 7 y
5
2 x 2 18 3 x 2x 6 (4) ( x 3) 2 2 4 4x x x x 6 x2
2x y 2 (1)( ) 3z 2ab3 2 6a 4 3c 3 ( 2) 2 ) 3 ( 2 ) ( c d b b 2 x 1 2 x 6x 9 2 1 ( 3)( ) ( ) 2 2 3 x 9 x x 2x 1
4 2
3a y 2 4mn 3 ( 4) ( ) ( ) 3 2 2mn 3m n
分式的乘除(基础)知识讲解

分式的乘除(基础)责编:杜少波【学习目标】1.学会用类比的方法总结出分式的乘法、除法法则.2.会分式的乘法、除法运算.3.掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.【要点梳理】【高清课堂402545 分式的乘除运算 知识要点】要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d adb d bc bc ÷=⋅=,其中a b cd 、、、是整式,0bcd ≠. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成n n a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a b a b a b b b b ---⎛⎫=≠ ⎪⎝⎭. 【典型例题】类型一、分式的乘法1、计算:(1)422449158a b x x a b g ;(2)222441214a a a a a a -+--+-g . 【思路点拨】(1)中分子、分母都是单项式,直接用分式乘法法则计算,结果要通过约分化简;(2)中分子、分母都是多项式,要先把可分解因式的分子、分母分解因式,然后用乘法法则化简计算.【答案与解析】解:(1)422449158a b x x a b g 422449315810a b x b x a b x==g g . (2)222441214a a a a a a -+--+-g 22(2)1(1)(2)(2)a a a a a --=-+-g 22(2)(1)(1)(2)(2)a a a a a --=-+-g g 222(1)(2)2a a a a a a --==-++-. 【总结升华】分式的乘法运算的实质就是运用分式的基本性质把分式约分化简的过程,熟练之后也可先约分后运用乘法法则计算.举一反三:【变式】计算.(1)26283m x x m g ;(2)22122x x x x+-+g 【答案】解:(1)原式22621283242m x mx x x m mx ===g g ; (2)原式22112(2)2x x x x x x+==-+-g ; 类型二、分式的除法【高清课堂402545 分式的乘除运算 例1(4)】2、 计算:(1)222324a b a b c cd-÷;(2)2222242222x y x y x xy y x xy -+÷+++. 【思路点拨】(1)先运用法则将分式的除法转化为乘法,然后约分化简;(2)先运用分式的除法法则将分式的除法转化为乘法,同时将分子、分母分解因式,然后约分化简.【答案与解析】解:(1)222324a b a b c cd -÷22222244236a b cd a b cd c a b c a b ==--g g 23d c=-.(2) 2222242222x y x y x xy y x xy-+÷+++ 2(2)(2)2()()2x y x y x x y x y x y+-+=++g 22(2)24x x y x xy x y x y --==++. 【总结升华】分式的除法和实数的除法一样,均是转化为乘法来完成的.举一反三:【变式】(2015•宝鸡校级模拟)化简:.【答案】解:原式=• =.类型三、分式的乘方3、(2014秋•华龙区校级月考)下列计算正确的是( )A. B.C. D.【思路点拨】把四个选项先利用分式的乘方法则,将分子分母分别乘方,然后利用积与幂的乘法法则,积的乘方的运算法则,积的乘方等于积中每一个因式分别乘方并把结果相乘,幂的乘方法则是底数不变,指数相乘,即可计算出结果,得到计算正确的选项.【答案】C .【解析】解:A 、,本选项错误; B 、,本选项错误;C 、,本选项正确;D 、,本选项错误.所以计算结果正确的是C .【总结升华】此题考查了分式的乘方法则,考查了积的乘方及幂的乘方法则,完全平方公式的运用,是一道基础题.类型四、分式的乘除法、乘方的混合运算4、 计算:(1)(2016春•淅川县期中)(﹣2ab ﹣2c ﹣1)2÷×()3;(2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭g . 【思路点拨】先算乘方,再算乘、除.【答案与解析】解:(1)(﹣2ab ﹣2c ﹣1)2÷×()3=﹣•• =﹣. (2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭g 2222232()1()[()]()a b ab b a a b b a -=+-g g 22222332()()1()()a b a b a b b a a b a b +-=+-g g211()a a b a ab==++. 【总结升华】(1)题中有除法和乘方运算,应先算乘方,要特别注意符号的处理.(2)本题是乘除混合运算,首先把除法运算转化为乘法运算,再用乘法运算法则计算.举一反三:【变式】计算:(1)332212b b a a ab ⎛⎫⎛⎫⎛⎫-÷-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)2222()m n n m m n m n mn m --+⎛⎫÷ ⎪-⎝⎭g .【答案】解: (1)332212b ba a ab⎛⎫⎛⎫⎛⎫-÷-÷⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23263382633312212b b b a a b a ba a ab a b⎛⎫⎛⎫=-÷-÷==⎪ ⎪⎝⎭⎝⎭g g.(2)2222()m n n m m nm n mn m--+⎛⎫÷⎪-⎝⎭g22222()()()()m n m n m n m m nm n m n m n mn+---==-+g g.。
分式的乘除法

分式的乘除法【教材研学】一、分式的乘除法1. 分式的乘除法法则:(1) 分式的乘法法则:两个分式相乘,用分子的积做积的分子,分母的积做积的分母. 用字母表示为:bdac d c b a =⨯ (2)分式的除法法则:两个分式相除,将除式的分子、分母颠倒位置后,与被除式相乘。
用字母表示为:bc ad c d b a d c b a =⨯=÷ (3)分式的乘方法则:分式乘方是把分子、分母各自乘方。
用公式表示为:n nn n ab a b a b a b a b =个43421⋯⨯⨯=)((n 是正整数) 老师:根据分式的乘除法法则,怎样进行分式乘除法的混合运算?小明:可以按照从左到右的顺序逐步进行。
比如:2232232222222xy x x y x y x y x y x y x y =•=÷=÷• 小刚:可将除法首先统一为乘法,再进行乘法运算。
比如:22222222xy x x y x y x y x y x y =••=÷• 老师:这两种做法都对,在运算过程中,可利用乘法的交换律、结合律,结果保留最简分式或整式.2.分式乘除法中的求值题分式乘除法中,求值题一般有两种要求:(1)求值.这时可以选择直接求值,也可以选择化简后再求值,常常是将分式先化简成最简形式,然后再代入求值比较方便;(2)先化筒再求值.二、探究活动:问题:在上一节学习了分式的约分,为整式的乘除法做好了准备。
那么约分在分式的乘除法中有哪些应用呢?探究:分式的乘除法作为分式的运算,要求结果保留最简分式或整式,因而在分式乘除法运算中经常会用到约分。
分式的乘除法运算通常有两种思路:(1)直接利用法则相乘,然后再约分。
比如:abc b a abc c b a a bc 54100804525162222==⨯。
(2)在分式相乘前,能约分的先约分;依据法则相乘.比如:ab b a c b a a bc 5415445251622=⨯=⨯ 一般地,选择第(2)中方法较为简便。
分式的乘除法

x y x y y x y
x y
②
x2 z
y 3
x6 z3
y3 ;
③
x3 y2 z
2
x6 y4 ; z2
④
b2 a
2n
b4n a2n
(n为正整数);
⑤
2b3 3a 2
3
8b9 27a6
.
2、计算:
b d b c bc a c a d ad
分式的乘方法则:把分子、分母分别乘方.
n m
k
nk (k是正整数) mk
二、边学边导,基础过关:
计算:①
ay2 b2 x
a2x by2
ay2 a2 x b2 x by2
a3 b3
②
2b a
4a 2 4bc 2
三是运算顺序;
四是结果的符号.
五、拓展延伸,智力闯关:
3 2
(a b)2 8ab (a b)2 4ab
原式= x 2 1 y4 2
x2 x2
9 4
=
x x
2 3
(x (x
3)( x 2)( x
3) 2)
=
x x
3 2
②( xy x2 )
x y =x( y x) xy
xy x y
=
x2 y
③
m2 4m m2 4
4
分式的乘除

xx年xx月xx日
分式的乘除
目录
contents
分式乘除法概述分式乘法规则与技巧分式除法规则与技巧分式乘除法的应用分式乘除法的问题与解决方案分式乘除法练习题与答案
01
分式乘除法概述
请输入您的内容
分式乘除法概述
02
分式乘法规则与技巧
分式的乘法运算中,首先将分子与分子相乘。
分式乘法的规则
分子乘分子
单位换算
使用分式的乘除法可以求解物理量,例如在电学中计算电阻、电流、电压等。
求解物理量
பைடு நூலகம்
物理应用
化学方程式的计算
在化学中,常常需要计算化学方程式的系数或产物的量,使用分式的乘除法可以简化计算过程。
质量分数的计算
质量分数是化学中常用的概念,使用分式的乘除法可以方便地计算质量分数。
化学应用
05
分式乘除法的问题与解决方案
04
分式乘除法的应用
通分
将几个分式化成相同分母,以便于比较或计算。
约分
将一个分式简化成更简单的形式,便于进一步计算或化简。
分式的乘除法
在解决代数问题时,常常需要使用分式的乘除法来化简表达式或求解方程。
代数应用
在物理学科中,单位换算是经常需要进行的操作,而分数的乘除运算可以方便地帮助我们进行单位换算。
答案解析
THANKS
感谢观看
06
分式乘除法练习题与答案
练习题
4. $\frac{a^{2}+b^{2}}{ab} \div \frac{a-b}{ab}$
3. $\frac{a+b}{a-b} \times \frac{a^{2}-b^{2}}{a+b}$
5.2.分式的乘除法(教案)
小组讨论的环节,我发现学生们在交流中能够互补不足,互相学习。但是,也有个别小组在讨论时偏离了主题,这提醒我在今后的教学中,需要更加明确讨论的目标和范围,确保讨论的有效性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式乘除法的基本概念。分式乘除法是指对两个或多个分式进行乘法或除法运算的方法。它在数学运算中非常重要,可以帮助我们解决生活中的许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要计算两个物体的速度比,我们可以通过分式乘除法来得到答案。这个案例展示了分式乘除法在实际中的应用,以及它如何帮助我们解决问题。
5.2.分式的乘除法(教案)
一、教学内容
本节课选自教材第五章第二节“分式的乘除法”。主要内容包括:
1.掌握分式乘法的法则,能够正确进行分式的乘法运算。
-分式乘法法则:a/b × c/d = ac/bd(b、d不为0)
2.掌握分式除法的法则,能够正确进行分式的除法运算。
-分式除法法则:a/b ÷ c/d = a/b × d/c(b、c、d不为0)
3.重点难点解析:在讲授过程中,我会特别强调分式乘法法则和分式除法法则这两个重点。对于难点部分,比如分式乘除混合运算的顺序和符号处理,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式乘除法相关的实际问题,如计算购物打折后的价格。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用代数式的分式乘除法来计算几何图形的面积比。
分式基本概念与运算法则
乘方与开方的混合运算
乘方与开方的 混合运算是指 将分式的乘方 和开方进行混
合运算
混合运算的步 骤包括:先乘
方,后开方
混合运算的结 果是一个新的
分式
混合运算需要 注意的问题包 括:分式的符 号、分母的变
化等
分式与整式的运算
05
顺序
先乘除后加减的顺序
分式与整式的运算顺序: 先乘除后加减
乘除法运算:先计算乘除 法,再计算加减法
先进行分数与小数的运算
分数与小数的运算顺序:先分数后小数
分数与小数的运算方法:分数与小数可以相互转化,然后进行运算
分数与小数的运算技巧:利用分数与小数的性质和规律,简化运算过 程 分数与小数的运算应用:在实际问题中,分数与小数的运算可以解 决很多问题
先进行根式与分式的运算
根式与分式的运算顺序:先根式后分式 根式与分式的运算方法:根式运算法则、分式运算法则 根式与分式的运算技巧:简化、合并、化简 根式与分式的运算实例:具体例子,如根式与分式的加减乘除运算
乘除混合运算的 注意事项:注意 运算顺序,避免 错误
乘除混合运算的 应用:解决实际 问题,如计算面 积、体积等
04
分式的乘方与开方
分式的乘方法则
分式的乘方: 分式的分子 和分母分别 乘方
分式的开方: 分式的分子 和分母分别 开方
分式的乘除: 分式的分子 和分母分别 乘除
分式的加减: 分式的分子 和分母分别 加减
YOUR LOGO
20XX.XX.XX
分式基本概念与运算法则
,a click to unlimited possibilities
汇报人:
目 录
01 分 式 的 定 义 与 性 质 02 分 式 的 加 减 法 03 分 式 的 乘 除 法 04 分 式 的 乘 方 与 开 方 05 分 式 与 整 式 的 运 算 顺 序02分式的加减法
初二数学下册知识点归纳
初二数学下册知识点归纳初二数学下册知识点归纳篇1第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3、整数指数幂的加减乘除法4、分式方程及其解法第二章反比例函数1、反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形第四章四边形1、平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判断:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;有四条等边的四边形是菱形。
(3)正方形:它既是一个特殊的长方形,又是一个特殊的菱形,所以它具有长方形和菱形的所有性质。
2.2 分式的乘除法
152.2 分式的乘除法互动思维导图[基础知识与基本技能]1.分式的乘除法法则 ⑴分式乘法的法则为:分式乘以分式,把分子乘以分子,分母乘以分母,分别作为积的分子、分母,然后约去分子与分母中的公因式.用符号语言表达:f g ·u v =fugv.⑵分式除法的法则为:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用符号语言表达:f g ÷u v =f g ·vu=fv gu (u ≠0).(1)22368y x x y ;(2)222224a a a a a +---. 分析:⑴式是两个分式相乘,分式的分子、分母都是单项式,可直接利用分式乘法法则进行计算;⑵中的两个分式相乘,分子或分母是多项式,要先对分子或分母进行因式分解,然后再运用法则计算.16解:(1)223633298424y x y x x x x y x y y y== . (2)22222(2)242(2)(2)2a a a a a a a a a a a a a +-+-==---+-- . 方法技巧:⑴两个分式相乘,如果分子、分母是多项式,那么要先对分子或分母因式分解.然后运用分式的乘法法则进行计算;⑵最后计算的结果要通过约去分子、分母的公因式(数)化到最简;⑶在分式的乘法运算中,既可以用法则来计算,也可以根据情况先约去公因式再相乘,后者方法有时会更简便.(1)234xy ÷92y x ; ⑵2a-1a 44a -+÷2214a a --;⑶22442x xy yx y+++÷(4x 2-y 2).思维幻灯片:分析:⑴中的分式的分子、分母都是单项式,可以直接利用分子计算;⑵中的分子或分母有多项式,先把多项式因式分解,然后再运用法则计算;⑶中的除式是整式,把整式看作是分母为1的式子,再运用除法法则计算.解:⑴原式=234xy ·29x y =23249xy x y ∙⨯=26x y ;⑵原式=2a-1a 44a -+·2241a a --=2a-1(a 2)-·(a+2)(a-2)(a+1)(a-1) =2(2)(1)a a a +-+.⑶原式=22442x xy y x y +++·2241x y -=2(2)2x y x y ++·1(2x+y)(2x-y)=12x y-.方法技巧:⑴两个分式相乘,如果分子、分母都是单项式,可以直接利用分式除法法则进行计算,如果分子、分母有多项式,那么要先对分子或分母进行因式分解,然后运用分式的除法法则进行计算;⑵计算结果通过约去公因式化到最简或整式;⑶如果遇到分式与整式相乘除时,可以把整式看作分母为1的式子进行计算;⑷通常情况下,计算最后的结果要使分子和分母的符号都为正号.2.分式的约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.约分的关键是正确找出分子与分母的公因式.其一般方法是:①当分子和分母都是单项式时,先找分子、分母系数的最大公因数,再找相同字母的最低次幂;②当分子和分母都是多项式时,首先要对分子、分母进行因式分解,把分子、分母变为几个因式的积后,再找分子、分母的公因式.[温馨提示]⑴约分的依据是分式的基本性质,分子、分母都除以的整式是它们的公因式.由于原分式有意义,可知分子与分母的公因式一定不为零,故利用分式的基本性质约去公因式时,不必强调公因式不为零,直接约分即可.⑵要牢记分子、分母都是乘积形式时,才能进行约分;分子、分母是多项式时,通常先将分子、分母分解因式,然后再约分.43243521a b ca b d.分析:分子的数字因数是35,分母的数字因数是21,其最大公因数是7,分子、分母中的相同因式是a、b,其最低次幂分别为2、3,故最大公因式是723a b.解:43232224233575532173a b c a b a c a cbda b d a b bd⋅==⋅.方法技巧:当约分的分式的分子、分母都是单项式时,只要约去分子、分母的最大公因数和相同字母的最低次幂即可.2222a aba ab b+++.分析:此分式的分子和分母都是多项式,要先各自因式分解,然后约去公因式.解:原式=2()()a ab aa ba b+=++.方法技巧:约分的根据是分式的基本性质,将分子、分母的公因式约去,若分子、分母是多项式,须先因式分解,再约去公因式.特别注意分子、分母必须是乘积形式时1718才能进行约分. 4.最简分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-A .1个B .2个C .3个D .4个分析:分子分母是多项式的,先把分子、分母都分解因式,看分子、分母中是否有公因式,第1个不能再分解了,是最简分式;第2个可化为2221(1)(1)x x x -+-有公因式x 2-1;第3个不能分解,也没有公因式;第4个可化为(2)(2)a ab a a b +-没有公因式,是最简分式.故有3个最简分式. 解:C .方法技巧:判断一个分式是否是最简分式,关键看分子、分母中有没有公因式,有些分式的分子、分母虽然都能因式分解,都是分解后仍然没有公因式,这样的分式仍然是最简分式. 5.分式的乘方分式的乘方是把分子、分母各自乘方.用符号语言表达:()nn n f f g g=.1922y x-)2;⑵(2222a ab ab b+-)3. 分析:⑴中的分式的分子、分母是单项式,可以直接运用法则计算;⑵中的分式的分子、分母是多项式,应该先各自因式分解,发现有公因式,先约分,然后再运用法则计算.解:⑴原式=2222()y x -()=244y x .⑵原式=((2)(2)a a b a a b +-)3=(22a b a b+-)3=3(2)a b +3(a-2b)方法技巧:在计算乘方运算时,如果分子、分母是单项式,可以直接运用法则计算;如果是多项式,要先因式分解,通常约去公因式后再计算,也可以先进行乘方运算后再约去公因式.32222183442x x x x x ⎛⎫--⎛⎫- ⎪⎪-+-⎝⎭⎝⎭÷ .思维幻灯片:分析:题目是求两个乘方的商,根据运算顺序,应先算乘方,后算除法.由于第一个分式的分子、分母是多项式,所以要先分解因式后再算乘方,最后将第二个分式的乘方分子、分母颠倒后再与第一个分式乘方的结果相乘.解:原式3232(3)(3)3(2)2x x x x x ⎡⎤+--⎛⎫= ⎪⎢⎥--⎝⎭⎣⎦÷=322(3)(3)(2)x x x ⎡⎤+-=⎢⎥-⎣⎦·223x x -⎛⎫ ⎪-⎝⎭322(3)(3)(2)x x x ⎡⎤+-=⎢⎥-⎣⎦·22(2-x )(3-x)203342348(3)(3)1(2)(3)8(3)(3)(2)x x x x x x x +-=--+-=-.方法技巧:分式的运算顺序与分数的运算顺序一样,要先算乘方,后算乘除,有括号的先算括号内的.[基本方法与拓展延伸]6.分式乘除法的步骤和运算顺序⑴分式乘除法的步骤:对一个分式进行乘除法运算时,先观察分式,看一个分式的分子、分母能否进行分解因式,若能分解因式的应先分解.当分解完成以后,要进行约分,直到分子、分母没有公因式时再进行乘除.⑵分式乘除法的运算顺序:分式乘除法与整式乘除法运算顺序相同一般是从左向右,有除法的先把除法转化为乘法.⑶进行分式乘除法运算时应注意的问题:在进行分式乘除法运算时,特别要注意,当分解因式后进行约分时,一定要先把除法转化为乘法后才可以进行.xy =3,求222223x xy y x xy y +--+的值.分析:有两种思路:其一可用含y 的代数式替代x,即x=3y,代入分式求值;其二可把求值分式变形,使之出现已知中的xy的式子. 解法一:由xy=3,可得x=3y. 则222223x xy y x xy y +--+=222222(3)2(3)31212.7(3)(3)7y y y y y y y y y y +-=-+ 解法二:将分式分子、分母都除以2y ,得222223x xy y x xy y +--+=222396312.93171x xy y x xy y ⎛⎫+⋅- ⎪+-⎝⎭==-+⎛⎫-+ ⎪⎝⎭方法技巧:解此类题目,用解法一求,变化已知条件,使求值分式能用同一个字母代替;用解法二求,所变化的分式,使之出现已知的式子,以便能用已知的数据来代替.这两种方法既是求分式值常用的方法,也是求代数式的值常用的方法.222222x y x yx xy y x xy--÷+++.分析:分式的分子、分母都是多项式,可先分解因式,再约分.解:222222x y x yx xy y x xy--÷+++=2()()()()x y x y x x yx yx y+-+⨯-+=x.方法技巧:当分式的分子、分母有公因式时,要先因式分解,变除法为乘法后约分,再按照运算法则计算.7.分式的乘除法混合运算分式的乘除法混合运算与分数的乘除法混合运算一样,应先把除法运算转化为乘法运算,使整个算式变为乘法运算,其运算顺序是由左到右依次运算,并且乘法的交换律和结合律在分式的乘法中依然可以运用,根据具体问题利用运算律可以简化运算.(1)221111121x x xx xx x-+-÷⋅-+-+.(2)0.60.424155aa--÷210.2 1.31230.15a aa-+-÷1210a-.分析:⑴中的分式的分子、分母都是多项式,所以应先各自因式分解,然后将除法转化为乘法计算即可;⑵中的分式的分子、分母的系数是分数,要先把分子、分母中的系数变为整数,再进行计算.解:⑴221111121x x xx xx x-+-÷⋅=-+-+221111121x x xx xx x---⋅⋅++-+2122=2(1)(1)(1)111(1)x x x x x x x +----⋅⋅++-=11x x --+; (2)原式=916212a a --÷2213156a a a -+-÷1210a -=-)6(2)32(3--a a ·)5)(32(6---a a a ·2(a -5)=-3.方法技巧:分式的乘除运算与分数的乘除法法则和运算顺序都相同,归根到底是分式的乘法运算,运算的实质是分式的约分.[基本能力与创新应用]8.分式的化简、求值的开放题分式化简、求值题是分式部分重要的题型,灵活运用前面学习的数学知识和思想方法,是解决分式求值问题的关键. 分式求值是代数式求值常见的题型之一,其基本解法是先化简,再把字母的值代入计算.但在条件开放下的分式求值问题,与传统题目不同的是,代入值由同学们自己选取,一方面题目开放,有无数种结果,另一方面也考查了分式有意义的条件,在实际解题时却有很多同学由于代入了使分式无意义的数值,从而导致错误.44,2,4222+---x x x x x 中,任选两个你喜欢的式子组成一个分式是 ,把这个分式化简所得的结果是 .分析:本例是一道组合开放型试题,所给的三个式子都是整式,并且都含有字母.因此可任意选择其中两个,一个为分子,另一个为分母,先组成分式,再进行化简,故答案不唯一.解:如:222(2)(2)42244(2)x x x x x x x x +--+==--+-.方法技巧:本题是条件开放,结论也开放,因此,这种题的答案不唯一,只要合理计算正确即可.24462x x x +--÷(x +3)·x x x --+362,并选择一个你喜欢的x 的值求出分式的值. 思维幻灯片:23分析:⑴本题是乘除法运算,乘法、除法属于同一级运算,计算时要从左到右,千万不能把运算顺序理解为先乘法后除法;⑵化简完毕后,把一个x 的值代入求出即可.解:24462xx x +--÷(x +3)·x x x --+362=2)2()3(2--x x ·31+x ·xx x -++3)2)(3(=22--x . 当x =-2时,原式=222---=21.误区警示:这类问题的答案不唯一,解答时,一是按常规先化简,二是代入求值时需防“陷阱”,在取值时既要注意使运算简捷,同时又要考虑到“隐含条件”的约束,所取字母的值必须使原分式有意义,如本题中x 的值不能取2和3以及-3,这样会使原分式无意义,而实际上部分同学往往只注意最后一步中x 不能取2,而忽视了原分式中隐含条件是x 不能为2,3,-3,从而导致错误.[迁移应用与分级检测]1.下列分式中不是最简分式的是( )A .2222a b a b +- B .24a a a + C .12a a ++ D .a a b +答案:B点拨:选项A 、C 、D 中的分式的分子、分母没有公因式,是最简分式,而选项B 中的分式的分子、分母含有公因式a ,不是最简分式. 2.计算33bab a÷的结果是( ) A .2bB .18aC .9aD .29a答案: D点拨:按照除法法则变为乘法,积为9a 2,故选择D . 3.计算1m n n÷ 的结果是( )24A .mB .2m nC .2mn D .2n m答案:B点拨:本题往往不注意运算顺序,先把n 和1n约分(相乘),得出错误答案m ,从而错误地选择A .4.计算22ab cd÷34ax cd -等于( )A .223b xB .32b 2xC .-223b xD .-222238a b xc d答案:C点拨:本题有两种方法,一是直接利用法则计算正确地得出选项C ;二是用排除法,由符号易排除选项A 、B ,由被除式和除式的分母都有cd 可知变为乘法后被约去,不可能是选项D ,故选择C .5.下面约分的四式中,正确的是( )A.22y y x x =B.22a c abb c +=+ C.12a b ma mb m +=+ D.1a b b a -=-- 答案:D点拨:对分式约分是约去分子与分母的公因式.实际上A ,B 两个分式的分子与分母没有公因式.C 式虽有公因式,但应把分母先分解因式然后再约去因式,即1()a b a b ma mb m a b m++==++,正确的是:1()a b a b b a a b --==----,故选D.6.约分3232105a bca b c -.解:3322322322221010522555a bc a bc a bc a a a b c a b c a bc b c b c=-=-=-- . 点拨:当分式的分子或分母的系数是负数时,应先把负号提到分式的前边再约分(即先确定整个分式的符号再约分).7.化简:222692693x x x x x x-+--+÷.解:原式=2(3)(3) (3)(3)2(3)x x xx x x-+ +--⨯=(3)(3)22x x xx--=--⨯.点拨:当分式的分子、分母是多项式时,应先各自因式分解后再按照法则计算.8.计算:①2222253518x ya bxy ab⨯;②2234()()()y xx yx y-÷-;解:①22222535566518x ya b a x axy b byxy ab⨯=⨯=.②226234234211 ()()()()y yx xx yx y x y x y y-÷-=⨯⨯-=- .点拨::注意运算顺序,先算乘方,后算乘除,在运算的过程中要正确确定结果的符号.9.(2009年淄博市)化简222a ba ab-+的结果为()A.ba-B.a ba-C.a ba+D.b-答案:B点拨:先将分子、分母因式分解,然后约去公因式a+b即可得出选项B.10.计算:(1)322822444x x xxx x-+⨯-++;(2)22212211x x xxx-+-÷+-解:(1)322822444x x xxx x-+⨯-++=22(2)(2)22(2)(2)x x x xxx-++⨯-+=2x.(2)22212211x x xxx-+-÷+-2(1)(1)1(1)(1)2(1)2x xx x x-+=⋅=-+---.点拨:分式的乘除运算中常将除法转化为乘法,再依据乘法法则先把分子、分母分别相乘,化成一个分式后再约分,但实际计算时,也可根据情况先约分,再相乘,这样有时既可简化运算过程,又不易出错.11.计算:239()33x x xx x x--⋅-+.2526解: 239()33x x x x x x--⋅-+ =(3)(3)(3)(3)333x x x x x x x x x x+-+-⋅-⋅-+ =3(x +3)-(x -3)=3x +9-x +3 =2x +12.点拨:本题可以按照乘法的分配律进行计算,约去公因式后变成两个整式,再合并同类型即可.12.计算:⑴ (xy z )3·(-xz y)3÷(yzx-)4;⑵3()a b ab-÷(b-a )2·(ab b a -)2.解:⑴原式=333x y z ·(-333x z y )·444()x y x -=-333x y z·333x z y ·444x y x =-1044x y x .⑵原式=3()a b ab -·21(a-b )·22()()ab b a -=2222()()a b ab a b a b -- 3(a-b )=aba b -. 点拨:在运算过程中,一定要严格按照运算顺序,先算乘方,后算乘除,特别注意变化过程中分式的符号.13.(2222a x a x-+)3÷(22442a ax x a x ++-)2·[21()a x -]2解:原式=322322)()(x a x a +-÷224222)()2(x a x ax a -++·4)(1x a -=32233)()()(x a x a x a +-+·422222)()()()(x a x a x a x a +-++·4)(1x a -=22()()a x a x a x +-+=2222xa x a +- 点拨:本题分式的分子、分母都含有公因式[中考零距离]1.(2009湖北省荆门市)计算22()ab a b -的结果是( )A .aB .bC .1D .-b27答案:B点拨:本题考查积的乘方运算与分式的化简,()22222ab a b b a ba b-==,故选B . 2.(2009年黄冈市)化简2422a a a a a a -⎛⎫-⋅ ⎪-+⎝⎭的结果是()A .-4B .4C .2aD .-2a答案:A点拨:2422aa a a a a -⎛⎫-⋅ ⎪-+⎝⎭=22a a a a a ⎛⎫-⋅ ⎪-+⎝⎭(2+a )(2-a) -(2+a)-(2-a)=-4.3.(2008山西省太原市)化简222m n m mn-+的结果是( )A .2m nm- B .m nm- C .m n m + D .m nm n-+ 答案:B点拨:把分式的分子、分母因式分解后约去公因式m+n 即可得出答案为选项B .4.(2008内蒙古呼和浩特市)计算:222233y x y x-÷= .答案:392x -点拨:按照除法法则变为乘法后约分即可.5.(2010广东中山)化简:22211x xy y x y -+---=_________.答案:x-y+1点拨:222211(1)(1)111x xy y x y x y x y x y x y x y -+----+--==------()= x-y+1.6.(2010江苏连云港)化简:(a -2)·a 2-4a 2-4a +4=___________.答案:a+2点拨:(a-2)·a2-4a2-4a+4=(a-2)·2(2)(2)(2)a aa+--=a+2.<教材问题与习题参考答案>教材问题详解本节无教材习题详解28。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题分式的乘除(一)
课时 1
课时
内容
分式乘除法的法则主备人:李惠朝
教学
目标
理解分式乘除法的法则,会进行分式乘除运算。
重点难点教学重点:会用分式乘除的法则进行运算。
教学难点:灵活运用分式乘除的法则进行运算。
教学过程
集体备课个人设计
一、例、习题的意图分析
1.P10本节的引入还是用问题1求容器的高,问题2求大拖
拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所
得到的容器的水面高是
n
m
ab
v
⋅,大拖拉机的工作效率是小拖拉机
的工作效率的⎪
⎭
⎫
⎝
⎛
÷
n
b
m
a
倍。
引出了分式的乘除法的实际存在的意
义,进一步引出P11从分数的乘除法引导学生类比出分式的乘除法
的法则。
但分析题意、列式子时,不应耽误太多时间。
2.P11例1应用分式的乘除法法则进行计算,注意计算的结
果如能约分,应化简到最简。
3.P11例2是较复杂的分式乘除,分式的分子、分母是多项
式,应先把多项式分解因式,再进行约分。
4.P12例3是应用题,题意也比较容易理解,式子也比较容
易列出来,但要注意根据问题的实际意义可知a>1,因此
(a-1)2=a2-2a+1<a2-2+1,即(a-1)2<a2-1。
这一点要给学生讲清楚,
才能分析清楚“丰收2号”单位面积产量高。
(或用求差法比较两
代数式的大小)
罗田县双凤坳中学集体备课教案
数学学科。