分式的乘除法 教案

合集下载

《分式的乘除法》教学设计-01

《分式的乘除法》教学设计-01

《分式的乘除法》教学设计教学目标:1 通过类比得出分式的乘除法则,并会进行分式乘除运算。

2 了解约分、最简分式的概念,会对分式的结果约分。

重点、难点:重点:分式乘除法则及运用分式乘除法则进行计算难点:分式乘除法的计算教学过程:一创设情境,导入新课1 分数的乘除法复习计算:(1)2924231039⨯÷;() 分数乘法、除法运算的法则是什么? 2 类比:把上面的分数改为分式:()(1),2f u f u g v g v ⨯÷(0u ≠)怎样计算呢? 这节课我们来学习----分式的乘除法(板书课题)二 合作交流,探究新知1 分式的乘除法则()(1),2(0)f u f u f u f v f v u g v g v g v g u g u⋅⋅⨯=÷=⋅=≠⋅⋅ 你能用语言表达分式的乘除法则吗? 分式乘分式,把分子乘分子,分母乘分母,分别作为积的分子、分母,然后约去分子、分母的公因式。

分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

2 分式乘除法则的初步应用及分式的约分和最简分式的概念例1 计算: ()()22232321;2511x y x x y x x x ⋅÷-- 学生独立完成,教师点评点评:(1)分式的乘法,可以先把分子、分母分别相乘再约去分子、分母的公因式,这叫约分。

分子、分母没有公因式的分式叫最简分式。

(2)分式的除法运算实际上是转化为分式的乘法运算,这里体现了“转化”的思想。

三 应用迁移,巩固提高1 需要分解因式才能约分的分式乘除法例2 计算:(1)22221486;(221211x x x x x x x x x +⋅÷-+++) 点评:如果分子、分母含有多项式因式,因先分解因式,然后按法则计算。

2 分式结果的化简及化简的意义例3 化简:2222944(1);(2)692x x x x x x x--+++- 点评:在进行分式运算的时候,一般要对要对结果化简,为什么要对分式的结果化简呢? 请你先完成下面问题:例4 当x=5时,求22969x x x -++的值。

分式的乘除法教案

分式的乘除法教案

分式的乘除法教案一、教学目标:1. 让学生理解分式的乘法和除法运算规则。

2. 培养学生运用分式的乘除法解决实际问题的能力。

3. 提高学生对分式运算的兴趣和自信心。

二、教学内容:1. 分式的乘法运算:分子乘分子,分母乘分母;2. 分式的除法运算:将除法转化为乘法,即乘以倒数;3. 特殊情况的处理:分式的值为0和不存在的情况。

三、教学重点与难点:1. 教学重点:分式的乘法运算规则和除法运算规则;2. 教学难点:特殊情况下分式的处理和实际应用。

四、教学方法:1. 采用直观演示法,通过例题展示分式的乘除法运算过程;2. 采用归纳法,引导学生总结分式的乘除法运算规则;3. 采用小组讨论法,让学生合作解决实际问题。

五、教学准备:1. 教案、PPT、黑板;2. 练习题;3. 教学工具:多媒体设备。

【教学环节】1. 导入:通过生活实例引入分式的乘除法运算,激发学生兴趣。

2. 新课讲解:讲解分式的乘法运算规则,举例说明,让学生跟随老师一起动手操作。

3. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

4. 讲解分式的除法运算:讲解除法转化为乘法的原理,举例说明。

5. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

6. 特殊情况处理:讲解分式的值为0和不存在的情况,举例说明。

7. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

8. 总结:让学生总结分式的乘除法运算规则,加深印象。

9. 课堂小测:进行课堂小测,了解学生掌握情况。

10. 课后作业:布置课后作业,让学生巩固所学知识。

六、教学评估:1. 通过课堂练习和小测,评估学生对分式乘除法的理解和应用能力。

2. 观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的策略。

3. 收集学生的课后作业,分析他们的错误类型和解决问题的思路。

七、教学反思:1. 反思教学过程中的有效性和学生的参与度,考虑如何改进教学方法以提高学生的学习兴趣。

2. 分析学生的学习困难,针对性地调整教学内容和策略。

八年级分式的乘除说课稿9篇

八年级分式的乘除说课稿9篇

八年级分式的乘除说课稿9篇八年级分式的乘除说课稿(精选篇1)教学目标(一)教学知识点1.分式乘除法的运算法则,2.会进行分式的乘除法的运算。

(二)能力训练要求1.类比分数乘除法的运算法则。

探索分式乘除法的运算法则。

2.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和语言表达能力。

3.用分式的乘除法解决生活中的实际问题,提高“用数学”的意识。

(三)情感与价值观要求1.通过师生共同交流探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感。

2.培养学生的创新意识和应用数学的意识。

教学重点让学生掌握分式乘除法的法则及其应用。

教学难点分子分母是多项式的分式的乘除法的运算。

教学方法引导启发探求教具准备投影片四张第一张:探索交流,(记作§3.2 A);第二张:例1,(记作§3.2 B);第三张:例2,(记作§3.2 C);第四张:做一做,(记作§3.2 D)。

教学过程Ⅰ。

创设情境,引入新课[师]上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?下面我们看投影片(§3.2 A)探索交流--观察下列算式:× = , × = ,÷ = × = , ÷ = × = .猜一猜× =? ÷ =?与同伴交流。

[生]观察上面运算,可知:两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘。

即× = ;÷ = × = .这里字母a,b,c,d都是整数,但a,c,d不为零。

[师]如果让字母代表整式,那么就得到类似于分数的分式的乘除法。

Ⅱ。

讲授新课1.分式的乘除法法则[师生共析]分式的乘除法法则与分数的乘除法法则类似:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。

初中数学_《分式的乘法除法》教学设计学情分析教材分析课后反思

初中数学_《分式的乘法除法》教学设计学情分析教材分析课后反思

分式的乘除法教学设计课型:新授 教师姓名:教学目标: 1、理解分式的乘除运算法则2、会进行简单的分式的乘除法运算教学重点:分式的乘除法运算教学难点:1、分式的乘除法法则的理解2、分子与分母是多项式的分式乘除法运算一、复习回顾1、化简:(1)bc a ac 22142- (2)aa a 2422+- 设计意图:当分子与分母是单项式的时候,可以直接进行约分化简;但当分子与分母是多项式的时候,就要先进行因式分解,然后再约去公因式化简,所以设计这一题考查学生对约分的定义的理解,约分一定要求在分子与分母是乘法的状态下才能进行。

2、计算:(1),10932⨯ (2)211075÷ 3、思考:(1)说出分数的乘除法的法则;分数乘以分数,用分子的积做积的分子,分母的积做积的分母;分数除以分数,把除数的分子分母颠倒位置,与被除数相乘.(2)试一试计算:猜一猜:=⨯c d a b;=÷cd a b 你能总结分式乘除法的法则吗?与同伴交流。

c bd a c d b a ⨯⨯=⨯, db c a d c b a c d b a ⨯⨯=⨯=÷ 二、小组讨论与归纳通过类比分数的乘除法的法则,你能得到分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.设计意图:通过分数的乘除法运算,帮助学生回顾分数的乘除法法则,让学生体会一下类比的数学思想,从而讨论归纳出分式的乘除法法则。

三、例题学习,计算:例题1:(1)226283a y y a⋅ 例题2(1)x y xy 2262÷ 注意:计算结果一定要化为最简分式四、巩固练习,计算:化简:(1)2a b b a⋅ (2) )(x y y x x y -⋅÷ (3)xy xy 3232÷- (4))21()3(43x y x y x -⋅-÷ 5、先观察下面分式的分子与分母与第1到第4题有什么不同之处,然后做一做: aa a a 21222+•-+ 尝试之后老师提问:1、按法则来做分子乘以分子,分母乘以分母,你是先做乘法运算吗?2、分子与分母能进行约分吗?3、总结:当分子与分母是多项式的分式的乘除法运算应注意哪些细节?五、例题学习,计算:1、 bb a a b -+•-2239 2、41441222--÷+--a a a a a注意:当分式的分子与分母都是单项式时:(1)乘法运算步骤是,①用分子的积做积的分子,分母的积做积的分母;②约分(2)除法的运算步骤是,把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。

人教版数学八年级上册《分式的乘除法的应用》教学设计

人教版数学八年级上册《分式的乘除法的应用》教学设计

人教版数学八年级上册《分式的乘除法的应用》教学设计一. 教材分析人教版数学八年级上册《分式的乘除法的应用》是分式部分的一个重要内容。

这部分内容主要让学生掌握分式的乘除法运算,并能应用于实际问题中。

教材通过丰富的例题和练习题,引导学生掌握分式乘除法的运算规则,并能够灵活运用。

二. 学情分析学生在学习本节课之前,已经学习了分式的基本概念、分式的加减法运算。

他们对于分式的运算规则有一定的了解,但可能在实际应用中遇到困难。

因此,在教学过程中,需要关注学生的学习困难,并通过实例引导学生将分式的乘除法应用于实际问题中。

三. 教学目标1.理解分式的乘除法运算规则,并能熟练进行计算。

2.能够将分式的乘除法应用于实际问题中,解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.分式的乘除法运算规则的理解和应用。

2.将分式的乘除法应用于实际问题中,解决实际问题。

五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等教学方法。

通过设置问题情境,引导学生主动探究分式的乘除法运算规则,并通过案例教学,让学生将所学知识应用于实际问题中。

同时,采用小组合作学习法,鼓励学生相互讨论、交流,提高学生的合作能力和解决问题的能力。

六. 教学准备1.教学PPT:制作详细的PPT,包括教材内容、例题、练习题等。

2.教学案例:准备一些实际问题,用于引导学生将分式的乘除法应用于实际问题中。

3.练习题:准备一些练习题,用于巩固学生对分式的乘除法运算的理解和应用。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何利用分式的乘除法来解决这些问题。

2.呈现(10分钟)通过PPT呈现分式的乘除法运算规则,并解释规则的含义。

同时,给出一些例题,让学生跟随讲解,理解并掌握分式的乘除法运算方法。

3.操练(10分钟)让学生独立完成一些练习题,巩固对分式的乘除法运算的理解。

教师在过程中进行巡视指导,解答学生的疑问。

《分式的乘除》教案

《分式的乘除》教案

《分式的乘除》教案分式的乘除教案一、教学目标1. 理解分式的定义和基本概念。

2. 掌握分式的乘法和除法运算规则。

3. 能够解决与分式有关的实际问题。

二、教学重点1. 分式的乘法和除法运算规则。

2. 实际问题的解决。

三、教学难点实际问题的解决。

四、教学准备1. 教师准备:课本、黑板、粉笔。

2. 学生准备:课本、笔记。

五、教学过程1. 概念解释和引入(老师在黑板上写下分式的定义)分式是由分子和分母组成的数,通常用a/b的形式表示,其中a为分子,b为分母,b不等于0。

2. 分式的乘法运算规则(老师在黑板上写下分式的乘法运算规则)分式的乘法运算规则:两个分式相乘时,分子与分子相乘,分母与分母相乘。

例如: 2/3 × 4/5 = (2 × 4)/(3 × 5)= 8/153. 分式的除法运算规则(老师在黑板上写下分式的除法运算规则)分式的除法运算规则:两个分式相除时,分子与分子相乘,分母与分母相乘,然后将被除数的倒数变为乘数。

例如: 2/3 ÷ 4/5 = (2/3)×(5/4)= (2 × 5)/(3 × 4)= 10/12 = 5/64. 例题讲解和练习(老师在黑板上列出一些练习题,学生们进行解答,并逐一讲解)例题1:计算 3/5 × 7/8解答: 3/5 × 7/8 = (3 × 7)/(5 × 8)= 21/40例题2:计算 4/9 ÷ 2/3解答: 4/9 ÷ 2/3 = (4/9)×(3/2)= (4 × 3)/(9 × 2)= 12/18 =2/3例题3:计算 5/6 × 2/5 ÷ 3/4解答: 5/6 × 2/5 ÷ 3/4 = (5/6)×(2/5)÷(3/4)= (5 × 2)/(6 ×5)÷(3/4)= 10/30 ÷(3/4)= 10/30 ×(4/3)= (10 × 4)/(30 × 3)= 40/90 = 4/95. 实际问题解决(老师给出一些与分式有关的实际问题,并帮助学生思考和解决)例题4:小明做了1/3个小时的作业,他又做了2/5个小时的作业,他总共做了多长时间的作业?解答:首先计算出1/3 + 2/5 = (1 × 5 + 2 × 3)/(3 × 5)= (5 + 6)/15 = 11/15,所以小明总共做了11/15个小时的作业。

5.2.分式的乘除法(教案)

5.2.分式的乘除法(教案)
在讲授过程中,我特别强调了分式乘除法则,并且用了一些具体的案例来说明。但是,从学生们的反馈来看,可能还需要更多不同类型的例题来帮助他们更好地理解和消化这些规则。
小组讨论的环节,我发现学生们在交流中能够互补不足,互相学习。但是,也有个别小组在讨论时偏离了主题,这提醒我在今后的教学中,需要更加明确讨论的目标和范围,确保讨论的有效性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式乘除法的基本概念。分式乘除法是指对两个或多个分式进行乘法或除法运算的方法。它在数学运算中非常重要,可以帮助我们解决生活中的许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要计算两个物体的速度比,我们可以通过分式乘除法来得到答案。这个案例展示了分式乘除法在实际中的应用,以及它如何帮助我们解决问题。
5.2.分式的乘除法(教案)
一、教学内容
本节课选自教材第五章第二节“分式的乘除法”。主要内容包括:
1.掌握分式乘法的法则,能够正确进行分式的乘法运算。
-分式乘法法则:a/b × c/d = ac/bd(b、d不为0)
2.掌握分式除法的法则,能够正确进行分式的除法运算。
-分式除法法则:a/b ÷ c/d = a/b × d/c(b、c、d不为0)
3.重点难点解析:在讲授过程中,我会特别强调分式乘法法则和分式除法法则这两个重点。对于难点部分,比如分式乘除混合运算的顺序和符号处理,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式乘除法相关的实际问题,如计算购物打折后的价格。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用代数式的分式乘除法来计算几何图形的面积比。

八年级数学下册《分式的乘除法》教案、教学设计

八年级数学下册《分式的乘除法》教案、教学设计
八年级数学下册《分式的乘除法》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握分式乘除法的运算规则,包括同分母分式相乘除、异分母分式相乘除以及分式乘方、分式乘除混合运算。
2.能够运用分式乘除法解决实际问题,提高运算速度和准确性,培养良好的数学运算习惯。
3.能够运用分式乘除法简化表达式,解决方程、不等式等相关问题,为后续学习打下基础。
3.教师趁机提出:“如果小明的妈妈想要计算每瓶酱油和每瓶醋的平均价格,应该怎么计算呢?”引导学生思考,从而引出分式乘除法的概念。
(二)讲授新知,500字
1.教师讲解分式乘除法的运算规则,以同分母分式相乘除和异分母分式相乘除为例,解释运算过程中需要注意的问题,如通分、约分等。
2.通过示例,演示分式乘除法的具体步骤,让学生跟随教师一起完成计算,加深对规则的理解。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法:
1.以实际问题导入,激发学生的学习兴趣,引导学生通过观察、思考、探究来发现分式乘除法的运算规律。
2.通过小组合作、交流讨论等形式,让学生在实践中掌握分式乘除法的运算方法,培养合作意识和团队精神。
3.利用变式训练,巩固学生对分式乘除法的理解,提高学生的运算能力和解决问题的能力。
4.通过课后练习和拓展任务,让学生在自主探究中加深对分式乘除法的认识,培养自主学习能力。
(三)情感态度与价值观
在本章节的学习过程中,注重培养学生的以下情感态度与价值观:
1.培养学生对数学学习的兴趣和热情,使他们树立正确的数学观念,认识到数学在生活中的重要性。
2.培养学生勇于探索、积极思考的精神,使他们具备面对困难和挑战时的信心和勇气。
(2)鼓励学生将分式乘除法与其他数学知识相结合,提高解决问题的综合能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、学生知识状况分析
知识技能基础:学生在小学已经学过分数的乘除法,掌握了分数的乘除法法则,在学习分式的乘除法法则时可通过与分数的乘除法法则进行类比学习。

在前面学习了整式乘法和因式分解,为分式的运算和结果的化简奠定基础。

能力基础:在过去的数学学习过程中,学生已初步具备观察、分析、归纳的能力和类比的学习方法。

二、教材分析
1、教材的地位和作用
本节教材是北师大版八年级下册第五章第二节的内容,是初中数学的重要内容之一。

一方面,这是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础。

因此,我认为,本节课起着承前启后的作用。

2、教学目标分析
知识目标:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。

能力目标:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。

情感目标:教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。

3、教学重难点
教学重点:分式乘除法的法则及应用.
教学难点:分子分母是多项式的分式的乘除法运算。

三、教法分析
教学方式的改变是新课标改革的目标,新课标要求把过去单纯的老师讲,学生接受的教学方式,变为师生互动式教学。

师生互动式教学以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线。

四、学法分析
从认知状况来说,学生在此之前对分数乘除法运算比较熟悉,加上对本章第一节分式及其性质学习,抓住初中生具有丰富的想象能力和活跃的思维能力,爱发表见解,希望得到老师的表扬这些心理特征,因此,我认为本节课适合采用学生自主探索、合作交流的数学学习方式。

一方面运用实际生活中的问题引入,激发学生的兴趣,使他们在课堂上集中注意力;另一方面,由于分式的乘除法法则与分数的乘除法法则类似,以类比的方法得出分式的乘除法则,易于学生理解、接受,让学生在自主探索、合作交流中加深理解分式的乘除运算。

五、教学过程分析
1、类比联想,探究新知
师生活动:首先让学生计算式子(1)2424
3535

⨯=

5252
7979

⨯=

(2)525959
797272

÷=⨯=

242525
353434

÷=⨯=

解后反思:(1)式是什么运算?依据是什么?(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导)
(学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则.(板书)分式的乘除法则是:
【分式的乘除法法则】
乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

除法法则:分式除以分式, 把除式的分子、分母颠倒位置后,与被除式相乘。

用式子表示为:
a c a c
b d b d ⋅⋅=
⋅ a c b d ÷a d b c
=⋅a d b c ⋅=⋅ 设计意图:由于分式的乘除法法则与分数的乘除法法则类似,故以类比的方法得出分式的乘除法则,易于学生理解、接受,体现了自主探索,合作学习的新理念。

2、想一想:2a b ⎛⎫ ⎪⎝⎭=? 3a b ⎛⎫ ⎪⎝⎭=? n
a b ⎛⎫
⎪⎝⎭
=?
师生活动:(1)教师引导:经过观察、巡视,在学生探讨过程中适当提示,结合乘方的意义,与分式乘法法则思考。

(2)学生自主探索:分式乘方等于把分子、分母分别乘方。

3、例题分析,应用新知 活动内容
[例1]计算:
(1)34a y ·2223y a ; (2)441
2+--a a a ÷4
122--a a
分析:(1)将算式对照分式乘法运算法则,进行运算;强调运算结果如不是最简分式时,一定要进行约分,使运算结果化为最简分式.
(2)将算式对照分式的除法运算法则,进行运算;当分子、分母是多项式时,一般应先分解因式,并在运算过程中约分,可以使运算简化,避免走弯路.
设计意图:通过例题讲解,使学生会根据法则,理解每一步的算理,从而进行简单的分式的乘除法运算,并能解决一些与分式有关的简单的实际问
题,增强学生代数推理的能力与应用意识。

需要给学生强调的是分式运算的结果通常要化成最简分式或整式,对于这一点,很多学生在开始学习分式计算时往往没有注意到结果要化简。

4、练习巩固,培养能力
课堂练习: .
师生活动:教师出示问题,参与并指导,学生独立思考解答,并让学生板演或投影展示学生的解题过程。

设计意图:这四道练习和所讲的例题都不同,主要是为了检测学生的举一反三的能力,达到巩固提高的目的,让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。

5、做一做
购买西瓜时,人们总是希望西瓜瓤占整个西瓜的比例越大越好。

假如我们把西瓜看成球形,并且西瓜瓤的分布是均匀的,西瓜皮的厚度都是d,
(1) 西瓜瓤占整个西瓜的体积各是多少? (2)西瓜瓤占整个西瓜的体积比是多少?
221(1)
22a a a a
+-+2
2
6(2)3y xy x ÷
2222
24
(3)693x x x x x x x
+-÷-+-2
(4)
()a b a a b
b --
(3)你认为大西瓜合算还是买小西瓜合算?与同伴交流。

师生活动:教师出示问题,参与并指导,学生分组讨论、合作交流,并让小组代表板演或投影展示代表的解题过程。

设计意图:通过实例进一步丰富分式乘除法运算的背景,增强学生的代数推理能力和应用意识。

引导学生建立分式模型,能够运用法则处理问题。

解题中,只要学生的做法有道理,即使写法不一样,教师都应该给以肯定及鼓励,树立学生在解题过程中的信心。

6、课堂小结,回顾目标
本节课我们学习了哪些知识?在知识应用过程中需要注意什么?你有什么收获呢?
师生活动:学生反思,提出疑问,集体交流。

设计意图:学习结果让学生作为反馈,让他们体验到学习数学的快乐,在交流中与全班同学分享,从而加深对知识的理解记忆。

7、布置作业:
1.教科书P116随堂练习题.(必做).
2. 补充题:P116 第3、4题. (选做)
六、板书设计
板书设计的好坏直接影响这节课的效果,因此它起着举足轻重的作用。

为了使整个板面重点突出,层次分明,我将黑板分为四版:第一版是概念的讲解,第二版是例1,第三版是练习,第四版作副版使用,用于旧知识的复习。

七、教学评价
根据新课程标准的评价理念,在教学过程中,不仅注重学生的参与意识和学生对待学习的态度是否积极,而且注重引导学生尝试从不同角度分析和解决问题。

本节课教学设计体现了新课标所提倡的教学模式:“问题情境—建立数学模型——解释、应用与拓展”,老师力求在数学活动中营造学生自主探究和合作交流氛围,让学生去探索,去发现规律,解决问题,培养学生的探索和创造能力。

让学生在愉快的活动中体验成功的喜悦,增进学习数学的自信。

相关文档
最新文档