大学物理第十章重点小结

合集下载

大学物理知识点总结(振动及波动)

大学物理知识点总结(振动及波动)

2/2
解:(1)y Acos(ωt );
24
A
2;ω
2π T
π; 2
由t
0, 2 2

2c o s;得

π3 ; 又 v0

0 ,所 以

π; 3
所以y
2c
o
s (πt 2
π3 )
;
( 2 ) u

T
1,y

2co
s
[π( 2
t-
x
)π3 ]
t(s)
[例2] 一平面简谐波在 t = 0 时刻的波形图,设此简谐波的频率
相互垂直的同频率的简谐运动的合成平面运动合振幅最大振动加强合振幅最小振动减弱第十章第十章波动波动机械波机械波的产生机械波的描述波动过程中能量的传播波在介质中的传播规律机械波的产生1产生的条件
大学物理
知识点总结
(振动 及 波动)
第九章 振动
机械振动
简谐振动
简谐振动 的特征
简谐振动 的描述
简谐振动 的合成
2
x 0)
波动过程中能量的传播
1)能量密度:
w

A2 2
s in2 [ ( t

x) u
0 ]
2)平均能量密度: w 3)能流密度(波的强度):
1 A2 2
2 I wu
1 2


2
A2
u
波在介质中的传播规律
基本原理:传播独立性原理,波的叠加原理。 现象:波的反射(波疏媒质 波密媒质 界面处存在半波损失)
由旋转矢量法知:
0 )
0

4
y Acos(500 t 2x )

大学物理第十章重点小结

大学物理第十章重点小结


) (1
2πr1

)




r1 r2



r1 r2 称为波程差(波走过的路程之差)
加强 2kπ 2π 2π r1 r2 (2k 1) π 减弱
第十章 波动
17
物理学
第五版
将合振幅加强、减弱的条件转化为干涉 的波程差条件,则有 干涉的波程差条件 当 r1 r2 k 时(半波长偶数倍) 合振幅最大
2 1
2
1
AC

]
u y A (3 10 m) cos(410s )t πm 8m 5m 9m
C B
2
1
oA
D
x
11
第十章 波动
物理学
第五版
点 D 的相位落后于点 A
AD y D (3 10 m)cos[4 s ]t 2 λ 9 2 1 (3 10 m) cos[( 4 π s )t π] 5
2 1
C D 2π
xC xD

22 2π 4.4π 10
9m
u
λ 10 m
C 8m B 5m
10m
D
oA
x
13
第十章 波动
物理学
第五版

平面简谐波的能量
在波动传播的介质中,任一体 积元的动能、势能、总机械能均随 x, t 作周期性变化,且变化是同相位的. 体积元在平衡位置时,动能、势能 和总机械能均最大. 体积元的位移最大时,三者均为零.
3

y (2 A cos


x) cos t (2 A cos

大一物理第十章知识点

大一物理第十章知识点

大一物理第十章知识点回顾在大学物理课程中,第十章通常是关于电磁波和光学的内容。

这一章节涵盖了许多重要的知识点,既涉及到基本的电磁学原理,又涉及到光的传播和干涉现象。

本文将回顾,并结合实例进行解释和说明。

1. 电磁波的本质电磁波是一种由电场和磁场相互作用而形成的波动现象。

在电磁波中,电场和磁场垂直并且相互垂直地传播。

电磁波可以分为不同的频率和波长,包括射频、微波、红外线、可见光、紫外线、X射线和γ射线等。

2. 光的传播速度光的传播速度在真空中是常数,约为3×10^8 m/s,也即是光速。

光速是自然界中最快的速度之一,它的存在也决定了许多电磁学和相对论的基本原理。

3. 光的反射和折射光在介质之间传播时,会遇到不同介质的边界。

这时,光会发生反射和折射。

反射是指光线在遇到介质边界时,改变方向并保持传播的现象;而折射是指光线从一种介质传播到另一种介质时,改变传播方向的现象。

4. 玻璃棱镜的工作原理玻璃棱镜是光学实验中常用的光学元件。

它利用光的折射现象将入射光线分解成不同颜色的光谱。

这是因为不同波长的光在通过玻璃棱镜时会发生不同程度的折射,从而形成光谱。

5. 干涉现象干涉现象是指两个或多个波相互叠加形成的新的波动现象。

光的干涉常见于双缝干涉和薄膜干涉实验中。

在双缝干涉实验中,光通过两个紧密排列的缝隙后,会形成交替出现的明暗条纹。

而在薄膜干涉实验中,光通过薄膜后,会发生干涉现象,产生彩色的干涉条纹。

6. 波的衍射现象波的衍射是指波通过障碍物或通过狭缝时,波的传播方向发生改变并产生弯曲的现象。

光的衍射可以用来解释太阳光在云层后面形成彩虹的现象,以及人眼所能看到的景象。

7. 光的偏振现象偏振是指光的方向性特征。

光可以是无偏振的,也可以是偏振的。

在光通过某些介质后,光的振动方向将受到限制,使光的偏振发生改变。

这在实际生活中有很多应用,如太阳镜和液晶显示器等。

以上只是大一物理第十章的一些基本知识点的回顾。

电磁波和光学是一个庞大而且复杂的领域,涉及到更深的原理和应用。

各章总结大学物理上

各章总结大学物理上

E 外表面附近
0 不同与无限大带电平面电场
(3)孤立导体静电平衡后,表面各处的电荷面密度
与曲率有关,曲率越大,σ越大。(如尖端放电现象)
前页 后页 目录 11
三、空腔导体和静电屏蔽
1、空腔导体内无带电体
——无论空腔导体本身是否带电,也无论空腔导体外是否有带电体, 可以证明,静电平衡时,空腔导体:
RB RA
真空中孤立导体球
C 40R
前页 后页 目录 14
电容器的串联和并联
串联: 1 1 1 1
C C1 C2
Cn
并联: C C1 C2 Cn
五、静电场的能量 (1)电容器的电场能量
We 1 Q2 1 CU 2 1 QU
2C 2
2
(2)所有静电场的能量 W
V wedV
i
dΦ dt
d dt
S
B dS
前页 后页 目录 19
感生电动势 1)利用法拉第电磁感应定律计算(常用)
2)用感 E感 d l 计算(不常用)
2、自感和互感
自感电动势
L
L
dI dt
自感系数 L dΦN ΦN dI I
螺线管的自感系数 L 0n2V
前页 后页 目录 20
互感电动势
21
M 21
2)安培环路定理 L B d l 0 I内
适用于对称性磁场
前页 后页 目录 16
磁场复习 2、磁场的性质
1)磁场的高斯定理 S B d S 0
稳恒磁场是无源场
2)安培环路定理 L B d l 0 I内
稳恒磁场是有旋场 (非ห้องสมุดไป่ตู้守场)
3、磁场的特点 1)对运动电荷 F
q

物理必修三第十章知识点总结

物理必修三第十章知识点总结

物理必修三第十章知识点总结第十章:电磁感应与电磁波电磁感应是指当导体中有磁通量的变化时,导体内产生感应电动势,并产生感应电流的现象。

电磁感应现象是电磁学中的重要基础,也是电磁场理论的重要组成部分。

1. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的定律之一,它表明当磁通量的变化率发生变化时,感应电动势的大小与磁通量的变化率成正比。

即感应电动势E等于磁通量变化率dΦ/dt乘以一个常数负号,该常数称为电磁感应系数,通常用负号表示。

2. 楞次定律楞次定律是描述电磁感应现象的另一个定律,它表明当感应电流产生时,其磁场会产生一个方向,使得磁场的变化趋势减弱或抵消感应电流产生的原因。

楞次定律是能量守恒定律的一个推论,它保证了感应电流产生时系统的能量不会凭空消失。

3. 磁通量磁通量是描述磁场穿过一个给定面积的量度,它是磁感应强度B与该面积A的乘积。

磁通量是一个标量,单位是韦伯(Wb)。

当磁场垂直于给定面积时,磁通量的大小等于磁感应强度的大小乘以该面积。

4. 电磁感应的应用电磁感应现象在现实生活中有着广泛的应用。

例如,电磁感应技术广泛应用于电力工业中的发电、变压器、电动机等设备中。

此外,电磁感应还常被应用于磁悬浮列车、电磁炉、感应加热器等领域。

5. 自感与互感自感是指导体中产生感应电流时,该导体本身产生的感应电动势。

互感是指在多个线圈之间产生的感应电动势。

自感和互感是电磁感应中的两个重要概念,它们在电路设计和电磁设备中起着重要的作用。

6. 电磁波的产生与传播当电场和磁场相互作用时,就会产生电磁波。

电磁波是一种能够在真空中传播的波动现象,其传播速度等于光速。

电磁波包括可见光、无线电波、微波等。

电磁波的传播是通过电场和磁场的相互作用不断地传递能量。

7. 电磁波的特性电磁波具有波长、频率、振幅等特性。

波长是指电磁波在垂直于传播方向的一个完整周期的长度,单位是米。

频率是指单位时间内经过一个点的电磁波的周期数,单位是赫兹。

物理10章知识点总结

物理10章知识点总结

物理10章知识点总结1.力和运动力是物体之间相互作用的表现,在物理中是一个非常重要的概念。

力的计量单位是牛顿(N)。

力可以使物体发生运动,也可以改变物体的运动状态。

而运动是物体位置随时间的变化,运动的描述包括位置、速度和加速度等。

2.牛顿三定律牛顿三定律是物理学中非常重要的概念,它阐明了物体之间相互作用的规律。

第一定律是惯性定律,它指出物体若不受力作用,将保持匀速直线运动或静止状态;第二定律是运动定律,它描述了力和物体的加速度之间的关系;第三定律是作用与反作用定律,它指出作用在物体上的力总会有相等大小、相反方向的反作用力。

3.功、能量和机械能功是力对物体做的位移所做的功,它可以使物体具有能量。

而能量是物体具有做功的能力,它有动能、势能和机械能等形式。

机械能是动能和势能的总和。

4.动能和动能定理动能是物体由于运动而具有的能量,它与物体的质量和速度有关。

动能定理则是指出,物体的动能的变化量等于外力对物体所做的功。

5.势能和势能定理势能是物体由于位置的不同而具有的能量,例如重力势能、弹性势能等。

势能定理指出,外力对物体所做的功等于势能的变化量。

6.机械能守恒定律机械能守恒定律是指在没有摩擦力的情况下,一个封闭系统内的机械能总和不变。

这个定律对于许多物理问题的处理非常重要。

7.电荷和静电场电荷是物质固有的属性,有正电荷和负电荷。

当电荷在空间分布成一定的规律时,它就会产生静电场。

静电场中电荷之间的相互作用是通过静电力来实现的。

8.电流和电阻电流是电荷的流动,通常用符号I表示,单位是安培(A)。

而电阻是电路中阻碍电流通过的障碍,单位是欧姆(Ω)。

电流和电阻是电路中非常重要的基本概念,我们需要对其有深入的了解。

9.电压和电功率电压是电源对电荷做的功在电路中的表现,通常用符号U表示,单位是伏特(V)。

电功率是电路中电源对电流做功的速率,通常用符号P表示,单位是瓦特(W)。

10.电磁感应和法拉第定律当导体在磁场中运动或磁场变化时,就会在导体中产生感应电动势,这就是电磁感应现象。

大学物理第十、十一章 振动和波总结

大学物理第十、十一章 振动和波总结

A
x02
v02
2

0
arct
an(
v0
x0
)
2. 周期 频率 圆频率 2 2
T
x Acos(t 0)
3. 相位 t 0, 初相位 0
同一简谐振动的不同时刻相位差
t
相位差: 同频率不同简谐振动的相位差 20 10 0
三. 同方向同频率简谐振动的合成
两个独立分谐振动:
合振动:
x1 A1 cos(t 10)
波的强度(平均能流密度):单位时间垂直通过单位
截面积的平均能量 I A2
波的干涉
相干条件
振动 方向相同 两个波源 振动 频率相同
振动 相位差恒定
6
平面简谐波的波函数:
y(x, t) A cos ( t
x u
)
0
求解波函数的步骤:
1. 原点振动方程:振幅A、角频率、初相0
2. x处滞后(或超前)时间:波速u=f y
x Acos(t 0)
x2 A2 cos(t 20)
A A12 A22 2A1A2 cos
振动加强、减弱的条件:
2k (2k 1)
同相加强
反相减弱 k 0, 1, 2,
四. 旋转矢量法
t=t A
t+ 0
0
o
x = A cos( t + 0 )
旋转矢量的大小等于振动的振幅
t=0
A
x
逆时针方向旋转,旋转角速度等于振动的圆频率
旋转矢量在参考轴上的投影即是振动方程
机械波小结
重要概念
振幅 A、周期 T、频率、圆频率 、波速 u、波长
u v
T
平面简谐波的波函数

大学物理II_第十章

大学物理II_第十章

第十章 静电场电荷守恒定律电荷守恒定律是物理学的基本定律之一. 它指出, 对于一个孤立系统, 不论发生什么变化, 其中所有电荷的代数和永远保持不变. 电荷守恒定律表明, 如果某一区域中的电荷增加或减少了, 那么必定有等量的电荷进入或离开该区域;如果在一个物理过程中产生或消失了某种电荷, 那么必定有等量的异号电荷同时产生或消失. 库仑定律库仑定律(Coulomb's law), 法国物理学家查尔斯·库仑于1785年发现, 因而命名的一条物理学定律. 库仑定律是电学发展史上的第一个定量规律. 因此, 电学的研究从定性进入定量阶段, 是电学史中的一块重要的里程碑. 库仑定律阐明, 在真空中两个静止点电荷之间的相互作用力与距离平方成反比, 与电量乘积成正比, 作用力的方向在它们的连线上, 同号电荷相斥, 异号电荷相吸.0221041r rq q F πε= 21212010854187817.8---⋅⋅⨯=m N C ε, 真空电容率(真空介电常数)电场强度电场强度是用来表示电场的强弱和方向的物理量. 实验表明, 在电场中某一点, 试探点电荷(正电荷)在该点所受电场力与其所带电荷的比值是一个与试探点电荷无关的量. 于是以试探点电荷(正电荷)在该点所受电场力的方向为电场方向, 以前述比值为大小的矢量定义为该点的电场强度, 常用E 表示. 按照定义, 电场中某一点的电场强度的方向可用试探点电荷(正电荷)在该点所受电场力的电场方向来确定;电场强弱可由试探电荷所受的力与试探点电荷带电量的比值确定.0q F E =;02041r r q E πε=点电荷系在某点产生的电场的电场强度等于各点电荷单独在该点产生的电场强度的矢量和∑∑==02041iii i r r q E E πε 带电体在一点产生的电场强度等于所有电荷元产生的电场强度的矢量积分⎰⎰==0204r r dq E d E πε 高斯定理真空中的静电场中, 穿过任一闭合曲面的电通量, 在数值上等于该闭合曲面内所包围的电量的代数和乘以ε0的倒数.∑⎰=⋅insi Sq S d E 01ε⎰⎰=⋅VSdV S d E ρε01给予空间的某个区域内, 任意位置的电场. 原则上, 应用高斯定律, 可以很容易地计算出电荷的分布. 只要积分电场于任意区域的表面, 再乘以真空电容率, 就可以得到区域内的电荷数量.但是, 更常遇到的是逆反问题. 给予电荷的分布, 求算在某位置的电场. 这问题比较难解析. 虽然知道穿过某一个闭合曲面的电通量, 这资料仍旧不足以解析问题. 在闭合曲面任意位置的电场可能会是非常的复杂.假若, 问题本身显示出某种对称性, 促使在闭合曲面位置的电场大小变得均匀. 那么, 就可以借着这均匀性来计算电场. 像圆柱对称、平面对称、球对称等等, 这些空间的对称性, 都能帮助高斯定律来解析问题. 若想知道怎样利用这些对称性来计算电场, 请参阅高斯曲面(Gaussian surface). 静电场环路定理在静电场中, 电场强度沿任一闭合路径的线积分(即电场强度的环流)恒为零0=⋅⎰Ll d E电势能在静电学里, 电势能(Electric potential energy)是处于电场的电荷分布所具有的势能, 与电荷分布在系统内部的组态有关. 电势能的单位是焦耳. 电势能与电势不同. 电势定义为处于电场的电荷所具有的电势能每单位电荷. 电势的单位是伏特.电势能的数值不具有绝对意义, 只具有相对意义. 所以, 必须先设定一个电势能为零的参考系统. 当物理系统内的每一个点电荷都互相分开很远(分开距离为无穷远), 都相对静止不动时, 这物理系统通常可以设定为电势能等于零的参考系统. 假设一个物理系统里的每一个点电荷, 从无穷远缓慢地被迁移到其所在位置, 总共所做的机械功为, 则这物理系统的电势能U 为.W U =⎰⋅='0'0aa l d E q W在这过程里, 所涉及的机械功W, 不论是正值或负值, 都是由这物理系统之外的机制赋予, 并且, 缓慢地被迁移的每一个点电荷, 都不会获得任何动能. 如此计算电势能, 并没有考虑到移动的路径, 这是因为电场是保守场, 电势能只跟初始位置与终止位置有关, 与路径无关. 电势在静电学里, 电势(electric potential)定义为处于电场中某个位置的单位电荷所具有的电势能. 电势又称为电位, 是标量. 其数值不具有绝对意义, 只具有相对意义, 因此为了便于分析问题, 必须设定一个参考位置, 称为零势能点. 通常, 一个明智的选择是将无穷远处的电势设定为零. 那么, 电势可以定义如下:假设检验电荷从无穷远位置, 经过任意路径, 克服电场力, 缓慢地移动到某位置, 则在这位置的电势, 等于因迁移所做的机械功与检验电荷量的比值.⎰⋅=='0'0aaa l d E q W u在国际单位制里, 电势的度量单位是伏特(V olt), 是为了纪念意大利物理学家亚历山德罗·伏打(Alessandro V olta)而命名.点电荷系产生的电场中, 某点的电势是各点电荷单独存在时, 在该点产生的电势的代数和∑==ni i a u u 1⎰∞⋅=aa l d E u电势与电场强度的积分和微分关系式⎰⋅='0'aa l d E udl duE l -=;⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=k z u j y u i xu E导体的静电平衡静电平衡是指导体中的自由电荷(通常为带负电荷电的电子)所受到的力达到平衡而不再做定向运动的状态. 处在静电平衡下的导体, 为一个等势体, 其表面为等势面. 导体内部的电场强度处处为零, 导体表面上任意一点场强的方向与表面垂直, 大小与该处的电荷面密度成正比.n E surface 0εσ=电容在电路学里, 给定电势差, 电容器储存电荷的能力, 称为电容(capacitance), 标记为C. 采用国际单位制, 电容的单位是法拉(farad), 标记为F.平行板电容器是一种简单的电容器, 是由互相平行、以空间或介电质隔离的两片薄板导体构成. 假设这两片导板分别载有负电荷与正电荷, 所载有的电荷量分别为-Q 、+Q, 两片导板之间的电势差为V , 则这电容器的电容为VQ C =1法拉等于1库仑每伏特, 即电容为1法拉的电容器, 在正常操作范围内, 每增加1伏特的电势差可以多储存1库仑的电荷.课后习题:10. 1 (1)(2)(3)(4)(5); 10. 2 (1)(2)(4)(5)(7); 建议作业题:10. 4;10. 8(此题为10. 4的延伸);10. 13(类似加深难度的有10. 21);10. 17(可作为填空);10. 18(类似加深难度的有10. 24);10. 33(此题为10. 13的延伸);10. 35(此题为10. 21的延伸);10. 41;10. 4210.1 选择题(1)真空中两平行带电平板相距为d , 面积为S , 且有d 2<<S , 带电量分别为q +和q -, 两板间的作用大小为[D](A)2204q F d πε= (B)20q F S ε= (C)202q F S ε= (D)202q F S ε=解析:平板电容器由两个彼此靠得很近的平行极板(设为A 和B )所组成,两极板的面积均为S ,设两极板分别带有q +,q -的电荷,于是每块极板的电荷密度为Sq=σ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3

y (2 A cos


x) cos t (2 A cos


x) cos(t π)
结论二 一波节两侧各点振动相位相反
第十章 波动
28
物理学
第五版
相位跃变(半波损失)
当波从波疏介质垂直入射到波密介质, 被反射到波疏介质时形成波节. 入射波与反 射波在此处的相位时时相反, 即反射波在分 界处产生 π 的相位跃变,相当于出现了半个 波长的波程差,称半波损失.
相位分布
y (2 A cos
x (



x) cos t A cos t

, ), cos x0 4 4
y (2 A cos


x) cos t
结论一 相邻两波节间各点振动相位相同
第十章 波动
27
物理学
第五版
y


4

4
3 4
5 4
x
x ( , ), cos x0 4 4
A 2 A 为波腹
( 的偶数倍) 4

(k 0,1,2, )
第十章 波动
25
物理学
第五版
讨论
结论 有些点始终不振动,有些点始终振幅最大 相邻波腹(节)间距 2 相邻波腹和波节间距 4 波腹 波节

4
y


4
3 4

5 4
2
x
振幅包络图
第十章 波动
26
物理学
第五版
第十章 波动
14
物理学
第五版
三 波的干涉
1 波的叠加原理 波传播的独立性:两列波在某区域相遇后 再分开,传播情况与未相遇时相同,互不干扰. 波的叠加性:在相遇区,任一质点的振动 为二波单独在该点引起的振动的合成.
第十章 波动
15
物理学
第五版
讨 论
A A1 A2 2 A1 A2 cos
u
8m C B 5m 9m D
oA
x
8
第十章 波动
物理学
第五版
(1) 以 A 为坐标原点,写出波动方程
A 3 10 m T 0.5 s 0
2
λ uT 10 m
t x y A cos[ 2π ( ) ] T t x 2 y (3 10 m) cos2π( ) 0.5 s 10 m
vs 波源向观察者运动 远离 +
第十章 波动
31
第十章 波动
B
19
物理学
第五版

BP 15 20 25
2 2
P 15 m A
10 0.10 100
u
设 A 的相位较 B 超前
20 m
B
A B π
BP AP 25 15 B A 2 π π 2 π 201 π 0.1
第十章 波动
7
物理学
第五版
-1 例 一平面简谐波以速度 u 20 m s沿 直线传播,波线上点 A 的简谐运动方 程 y A 3102 cos( 4 π t ) ; ( y, t 单位分别为m,s). 求:(1)以 A 为坐标原点,写出波动方程; (2)以 B 为坐标原点,写出波动方程; (3)求传播方向上点C、D 的简谐运动方程; (4)分别求出 BC ,CD 两点间的相位差.

)
x

) A cos 2π (t

)
2 A cos 2π
x

cos 2π t
23
第十章 波动
物理学
第五版
讨论
驻波方程 y 2 A cos 2π (1)振幅 2 A cos 2π
1
x

cos 2π t
x
x cos 2 π 0 2 π x (k 1 ) π k 0,1,2, 2
2 2
位相差 决定了合振幅的大小.
干涉的位相差条件 当
2kπ时k 0,1,2,3...
合振幅最大 当
Amax A1 A2
2k 1π
合振幅最小
第十章 波动
Amin A1 A2
16
物理学
即相干波源S1、S2同位相
点P 合振幅
A A1 A2 0
第十章 波动
20
物理学
第五版
例 A、B 为两相干波源,距离为 30 m ,振幅相同, 相同, 初相差为 ,u = 400 m/s, f =100 Hz 。 求 A、B 连线上因干涉而静止的各点位置。 解
r2 r1
P
30m
A
B
(即在两侧干涉相长,不会出现静止点) P 在A、B 中间
2
yB (310 m) cos[(4π s )t π ]
2
1
u
8m C 5m A 9m D
oB
x
10
第十章 波动
物理学
第五版
(3) 写出传播方向上点C、D的运动方程 点C 的相位比点A 超前
yC (3 10 m) cos[( 4 π s )t 2 π
13 (3 10 m) cos[( 4 π s )t π] 5
物理学
第五版
第 第十 章 章 十
波 波
第十章 波动
动 动
1
物理学
第五版
10-0
教学基本要求
一 理解描述简谐波的各物理量的 意义及各量间的关系.
二 理解机械波产生的条件.掌握 由已知质点的简谐振动方程得出平面 简谐波的波函数的方法.理解波函数 的物理意义.理解波的能量传播特征 及能流、能流密度概念.

) (1
2πr1

)




r1 r2



r1 r2 称为波程差(波走过的路程之差)
加强 2kπ 2π 2π r1 r2 (2k 1) π 减弱
第十章 波动
17
物理学
第五版
将合振幅加强、减弱的条件转化为干涉 的波程差条件,则有 干涉的波程差条件 当 r1 r2 k 时(半波长偶数倍) 合振幅最大
u
8m C B 5m 9m D
oA
x
9
第十章 波动
物理学
第五版
(2) 以 B 为坐标原点,写出波动方程
y A (3 10 m) cos( 4 π s )t xB x A 5 B A 2π 2π π 10
2
1
B π
t x y (3 10 m) cos[ 2π ( ) π ] 0.5s 10 m
Amax A1 A2
当 r r (2k 1) 时(半波长奇数倍) 1 2 2 合振幅最小 Amin A1 A2
第十章 波动
18
物理学
第五版
例 如图所示,A、B 两点 P 为同一介质中两相干波源. 15 m 其振幅皆为5 cm,频率皆 A 20 m 为100 Hz,但当点 A 为波 峰时,点B 恰为波谷.设波 速为10 m s 1 ,试写出由A、 B发出的两列波传到点P 时 干涉的结果.
2 -1
λ 10 m
u y A (3 10 m) cos(410s )t πm 8m 5m 9m
C B
2
1
oA
D
x
12
第十章 波动
物理学
第五版
(4)分别求出 BC ,CD 两点间的相位差
y A (3 10 m) cos( 4 π s )t xB xC 8 B C 2π 2π 1.6π 10
第十章 波动
2
物理学
第五版
10-0
教学基本要求
三 了解惠更斯原理和波的叠加原 理.理解波的相干条件,能应用相位差 和波程差分析、确定相干波叠加后振幅 加强和减弱的条件.
四 理解驻波及其形成,了解驻波 和行波的区别. 五 了解机械波的多普勒效应及其 产生的原因.
第十章 波动
3
物理学
第五版

平面简谐波的波函数
第十章 波动
21
物理学
第五版
干涉相消
(在 A,B 之间距离A 点为 r1 =1,3,5,…,29 m 处出现静止点)
第十章 波动
22
物理学
第五版

正向 负向
驻波方程
y1 A cos 2π (t x

)
y2 A cos 2π (t
x
x
y y1 y2
A cos 2π (t
2 1
2
1
AC

]
u y A (3 10 m) cos(410s )t πm 8m 5m 9m
C B
2
1
oA
D
x
11
第十章 波动
物理学
第五版
点 D 的相位落后于点 A
AD y D (3 10 m)cos[4 s ]t 2 λ 9 2 1 (3 10 m) cos[( 4 π s )t π] 5
第十章 波动
29
物理学
第五版
波密介质
波疏介质
当波从波密介质垂直入射到波疏 介质, 被反射到波密介质时形成波腹. 入射波与反射波在此处的相位时时相 同,即反射波在分界处不产生相位跃 变.
第十章 波动
30
物理学
第五版
五 多普勒效应
v0 观察者向波源运动 +
相关文档
最新文档