大学物理小结

合集下载

大学物理实验小总结

大学物理实验小总结

大学物理实验小总结第一篇:大学物理实验小总结大学物理实验总结时间过得很快,恍惚之间物理实验课程就已经开始了。

犹记得新学期,刚开设大学物理实验时候的情景。

每个人心里充满了对于实验操作强烈的冲动。

可是一旦接触了实验,会发现不是那么的简单。

当然有挑战就会有所收获。

经过这一学期的学习,让我们学到了很多,真正了解大学物理实验这门课程。

它是我们进入大学后接受系统实验方法和实验技能训练的开端。

可谓受益匪浅。

物理实验这门课程,作为大学生,要知道遵守规定,养成良好的习惯;需要你用眼睛去认真观察,思考的同时要多动手;实验课程有它独到之处,需要你的严谨的分析问题。

所以,它是培养我的严谨的态度,提高我们处理问题的能力,这个加强了基础能力。

实验的同时,需要的还有我们的创新能力,这种要求是比较高的。

我们都很清楚,实验之前需要我们的认真预习,这让我们受益颇多。

这却让我们有了预习的好习惯。

“实验就是为了让你动手做,去探索一些你未知的或是你尚不是深刻理解的东西。

”动手能力的重要新不必多说,大学物理实验正好为我们提供了这一平台,以提高动手能力。

然而每个实验做起来都不可能一帆风顺,这又培养了我们坚持不懈的品质。

大学物理实验让我感受的前辈伟人在开辟科学道路的艰辛。

虽说我们的大学物理实验只是对前人的经典实验的重复,但是对于一个知识尚浅、探索能力还不够的人来说,这些探索也非一件易事。

大学物理实验都是一些经典的给人类带来了难以想象的便利与财富。

对于这些实验,我在探索中学习、在模仿中理解、在实践中掌握。

大学物理实验让我慢慢开始“摸着石头过河”。

在这一年多来的做实验当中,让我感受到那种出乎意料的无奈,而又诧异于柳暗花明的明了。

总之,实验总会那么的新奇。

我们期望与顺利,需要的是细致。

记得“牛顿环”的那个实验,我跟我的同桌做时十分的顺利,但最后的结果却是什么都没看到,后来经过老师的解释,才知道我们在调整镜子角度和距离时出错了,一节课的幸苦白费了,幸好最后做出来了。

大学物理各篇小结(上部)

大学物理各篇小结(上部)

衍射现象
光波遇到障碍物或通过小孔时,光波的传播方向会发生改变,形 成明暗相间的衍射条纹。
衍射分类
根据产生衍射的原因,可分为菲涅尔衍射和夫琅禾费衍射。
衍射公式
根据菲涅尔衍射公式,当衍射角θ=0时,衍射光强最大;当 θ=±π/2时,衍射光强最小。
光的偏振
01
02
03
偏振现象
光波的电矢量或磁矢量在 某一特定方向上振动,这 种现象称为光的偏振。
干涉现象
当两束或多束相干光波在空间 某一点叠加时,光波的振幅会 相加,形成明暗相间的干涉条
纹。
干涉条件
相干光波、有恒定的相位差、 有相同的振动方向、有相同的
频率。
干涉公式
光强与相位差有关,当相位差 为2nπ(n为整数)时光强最
大,为Imax;相位差为 (2n+1)π时光强最小,为Imin。
光的衍射
详细描述
弹性力学是研究物体在受力时如何发生形变和应力分布的学科。它涉及到弹性材料的性质、应力和应 变的关系、弹性形变的计算方法等。弹性力学在工程领域有着广泛的应用,如建筑、机械、航空航天 等领域的结构设计都需要考虑弹性力学原理。
02 热学篇小结
热力学基础
总结词
热力学基础是研究热现象的宏观规律的科学,主要涉及温度、热量、熵等基本 概念。
交流电与电磁波
交流电与电磁波是电磁学中的重要应用,它们在电力传输 、无线通信等领域具有广泛的应用。
交流电是指电流方向随时间周期性变化的电流,广泛应用 于电力系统。电磁波是指交替变化的电场和磁场,以波的 形式传播能量。无线通信、电视信号传输和雷达等应用都 基于电磁波的传播特性。
04 光学篇小结
光的干涉
详细描述

大学生物理学习总结范文(4篇)

大学生物理学习总结范文(4篇)

大学生物理学习总结范文经过两个学期的物理学习后,我对物理学习有了一定的心得和感受。

首先要做好课前准备。

北京邮电大学的《大学物理》课程开始于大一下学期,在正式开始物理学习之前,最好能根据老师对课程体系的介绍,以及在高年级同学那里得到的信息,弄清课程特点和必备的基础知识,结合自己对中学物理的学习情况,提前做好充分准备。

因为大学物理与高中的物理是紧密相关的,是高中物理知识的扩展和提高,所以适当复习高中的物理概念和公式,以及常用的物理模型是很有必要的。

当然,大一上学期的高等数学知识例如积分部分也是需要及时复习的。

然后要有科学的学习方法。

每个人都有不同的学习习惯和方法,更有参差不齐的基础知识,要正确认识自身,熟悉周围学习条件和学习环境,根据课程特点,把一天中学习效果最好的时间安排给相应课程的学习。

以我自己为例,本人就对物理这门学科的兴趣还是很浓厚的,高中的时候由于题目类型固定,各种题目做得多,所以能取得相应比较好的成绩。

但是到大学,在学习时间没有高中多的情况下,怎样调动自己的学习兴趣,提高单位时间的学习效率是最需要解决的问题。

必须做一道题通一类题,这样才能在有限的学习时间内获得最大的学习效果。

再者就是要共同学习。

科学家中很少有独立进行科学研究的,他们更多的是在团队中合作工作。

向他们那样,如果能与同学或老师经常面对面或通过互联网等形式进行交流,甚至参与老师的科研项目,或者与同学组成学习小组共同学习,那么将会收获更多的知识和乐趣。

我在平时尽量要求自己,争取每节课后提出一个问题。

如果没有问题,也可以在老师身边听听同学有什么问题。

有一些问题可能折射出我们在某个知识点上的欠缺,所以问问题是必要的查漏补缺环节。

另外,经常逛逛物理学习交流论坛,参与问题讨论也是件很有乐趣的事。

更要注重课堂学习。

课堂学习是学习的主要方式,教师的课堂讲解和示范对于正确理解物理理论有很大帮助,保证课堂学习效果是提高整体学习效率的关键一环。

要保证课堂学习效果,就要做好预习、认真听讲、积极思考、跟紧老师思路、理解理论内涵,掌握例题解法、记录课堂笔记,还要把课后复习、完成作业及总结提高与课堂学习相结合。

大学物理学习心得体会5篇

大学物理学习心得体会5篇

大学物理学习心得体会5篇大学物理学习感想经过了一个学期的物理学习,让我从学物理有什么用的思维转换为不学物理不行。

我深切认识到物理学习的重要性,特别是作为一个工科的学生,物理显得尤为重要。

物理学是关于自然界最基本形态的科学,是一切自然科学的基础。

“大学物理”课是工科专业的一门重要的基础课。

它对学生知识结构的形式、智能训练和能力培养等诸多方面都起着重要的作用。

因为大学物理和中学物理在学习方法等各方面有许多不同,若我们已习惯于中学物理的学习方法,已经形成了一定的思维定势,将对大学物理的学习带来负面影响,正如俗话所说:一张白纸上好画画。

所以,尽量做好大学物理和中学物力的衔接,使我们尽快地从中学物理过渡到大学物理的学习,是大学物理学习迫切需要解决的一个问题从内容上看,大学物理共分五大部分:力学、热学、光学、电磁学、近代物理,中学物理也是学习这五大部分,但它们所研究的外延有所不同,中学物理主要研究特殊情况,如力学部分中,对于运动学的研究,中学物理主要研究匀速或匀变速的直线运动和曲线运动,动力学中所涉及的功是恒力的功,所研究的对象是质点,而大学物理研究的运动是变速的运动,功是变力做的功,研究的对象不仅是质点,还包括质点系,对于概念、定理的阐述都在中学的基础上进行了扩展,需要矢量及微积分知识的支撑。

在热学部分中,大学物理与中学物理最大的不同是研究的广度大了,从微观的角度解释了热学中的宏观量,更能体现热学与力学的联系。

在光学部分中,中学所研究的主要是几何光学,而大学物理研究的是波动光学,这是光学的两个不同的侧面,因此无论从内容上还是从方法上都有很大的不同,但其共同点是都能锻炼学生的形象思维,在波动光学的学习中,需要同学们多归纳多总结。

电磁学部分中大学物理与中学物理的衔接比较大,从物理概念和定理、定律的理解相对来说要容易一些,但是在大学物理中,微积分知识在这里得到极大的发挥,在做题时,由于学生在高中时所形成的思维定式,所以往往用高中时所用的方法来解决他们所遇到的问题,这是大多数学生容易犯错误的地方,也是高数与物理结合的难点,近代物理的学习中,大学物理比中学物理要广泛的多,由于没有思维定式,反而不容易出现似是而非的问题。

2024年大学物理学习心得范文(二篇)

2024年大学物理学习心得范文(二篇)

2024年大学物理学习心得范文物理学这门学科在大学阶段是一个非常重要且挑战性的科目。

作为一名大学物理学学习者,我在2024年度付出了很多努力,不仅在理论知识的学习上取得了进步,还在实践操作和科研方面有了一些经验。

通过这一年的学习,我深刻体会到了物理学的魅力和挑战,下面我将分享一些我在学习物理学过程中的心得和收获。

首先,物理学学习需要有扎实的数学基础。

物理学中的很多概念和原理都需要运用数学方法进行推导和分析。

因此,在学习物理学之前,我首先加强了数学学习,包括微积分、线性代数等数学基础课程。

通过系统学习数学,我更好地掌握了物理学中的数学运算技巧,能够更快地理解和解决物理问题。

其次,在物理学的学习过程中,理论知识的学习和实践操作相结合是非常重要的。

理论知识可以帮助我们理解事物的本质和规律,而实践操作则可以帮助我们巩固和应用所学的理论知识。

在物理实验课上,我不仅学习了一些基本的实验操作技巧,还有机会亲自进行实验,并通过实验结果来验证理论知识。

在实践操作时,我学会了如何正确使用仪器设备,如何记录实验数据以及如何分析实验结果。

这些经验对我今后的科研和工作都将非常有帮助。

此外,物理学学习中需要培养良好的逻辑思维和问题解决能力。

物理学是一门理论与实践相结合的学科,其中有很多复杂的概念和推导过程。

在学习过程中,我要善于运用逻辑思维,将抽象的物理概念与具体的实例相结合,帮助自己更好地理解和记忆所学的内容。

同时,解决物理问题需要思路清晰、分析准确,因此我在学习过程中注重培养问题解决能力,通过反复练习和解析题目,提高自己在物理问题解决上的能力。

最后,物理学是一门涉及范围广泛的学科,需要我们对现实世界有较全面的认知。

在学习物理学的过程中,我深刻理解到物理学与其他学科的联系,在学习中注重与其他学科的交叉应用,通过了解与其他学科的联系,有助于更深入地理解物理学的内容。

例如,在学习光学时,我学习到了物理学与光学工程、材料学等学科的联系,通过学习这些学科的知识,我能够更好地理解和应用光学的原理和方法。

大学物理实验课程总结(通用10篇)

大学物理实验课程总结(通用10篇)

大学物理实验课程总结大学物理实验课程总结(通用10篇)总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它能够使头脑更加清醒,目标更加明确,让我们一起来学习写总结吧。

如何把总结做到重点突出呢?下面是小编精心整理的大学物理实验课程总结(通用10篇),仅供参考,希望能够帮助到大家。

大学物理实验课程总结篇1在即将结束的这个学期里,我完成了大学物理实验这门课程的学习。

物理实验是物理学习的基础,虽然在很多物理实验中我们只是复现课堂上所学理论知识的原理与结果,但这一过程与物理家进行研究分子和物质变化的科学研究中的物理实验是一致的。

在物理实验中,影响物理实验现象的因素很多,产生的物理实验现象也错综复杂。

老师们通过精心设计实验方案、严格控制实验条件等多种途径,以最佳的实验方式呈现物理问题,使我们通过努力能够顺利地解决物理实验呈现的问题,考验了我们的实际动手能力和分析解决问题的综合能力,加深了我们对有关物理知识的理解。

通过一学年的课程,我学到了很多东西。

做大学物理实验时,为了在规定的时间内快速高效率地完成实验,达到良好的实验效果,需要课前认真地预习,首先是根据实验题目复习所学习的相关理论知识,并根据实验教材的相关内容,弄清楚所要进行的实验的总体过程,弄懂实验的目的、基本原理,了解实验所采用的方法的关键与成功之处;思考实验可能用到的相关实验仪器,对照教材所列的实验仪器,了解仪器的工作原理,性能、正确操作步骤,如在使用旋转螺母时为避免空回造成的误差要沿同一个方向,还有特别是要注意那些可能对仪器造成损坏的事项。

然后还要写预习报告,预习报告能够帮助我们顺利完成实验中的各项操作。

在写预习报告的时候,我们一般包括实验目的,基本原理,实验仪器,操作步骤,测量内容,数据表,预习思考题等。

预习思考题,是加深实验内容或对关键问题的理解、开发视野的一些问题,在实验前认真地思考并回答这些问题,有助于提高实验质量。

大学物理课程总结报告五篇范文

大学物理课程总结报告五篇范文

大学物理课程总结报告五篇范文第一篇:大学物理课程总结报告大学物理课程总结报告通过这一学期的学习,我对大学物理有了更深一层的了解,这学期主要上的是力学基础中的机械振动以及机械波,气体动理论和热力学,波动光学。

下面我就一一总结一下各个章节的主要知识点。

机械振动这一章主要是讨论简谐振动和振动的合成,并简要介绍了阻尼震动、受迫振动和共振现象以及非线性振动。

物体在某固定位置附近的往复运动叫做机械振动,它是物体一种普遍的运动形式,任何一个具有质量和弹性的系统在其运动状态发生突变时都会发生振动。

这一章算是力学中计算比较复杂的一个章节,而且还要结合图像进行分析,所以学起来比较困难。

机械波算是机械振动的一种延伸,如果在空间某处发生的振动,以有限的速度向四周传播,则这种传播着的振动称为波,机械振动在连续介质内的传播叫做机械波,电磁振动在真空或介质中的传播叫做电磁波,近代物理指出,微观粒子以至任何物体都具有波动性,这种波叫做物质波,不同性质的波动虽然机制各不相同,但它们在空间的传播规律却具有共性。

这一章主要就是讨论了机械波的波动运动规律。

气体动理论基础是统计物理最简单、最基本的内容。

这一章介绍了热学中的系统、平衡态、温度等概念,从物质的微观结构出发,阐明平衡状态下的宏观参量压强和温度的微观本质,并导出理想气体的内能公式,最后讨论了理想气体分子在平衡状态下的几个统计规律。

热力学基础这一章用热力学方法,研究系统在状态变化过程中热与功的转换关系和条件,热力学第一定律给出了转换关系,热力学第二定律给出了转换条件热力学第一定律就是说明了系统吸收的热量,一部分转化成系统的内能,另一部分转化为系统对外所做的功。

热力学第二定律就是关于自然过程方向性的规律,即不可能制成一种循环动作的热机,它从一个单一温度的热源吸收热量,并使其全部变为有用功,而不引起其他变化。

波动光学主要就是讲光的干涉,衍射和偏振。

光的干涉主要就是介绍几个比较著名的实验以及结论,比如杨氏双缝干涉,薄膜干涉,劈尖干涉,牛顿环。

大学物理小结

大学物理小结

一、质点运动的描述 在笛卡尔坐标系中 1、位置和位移 位置矢量运动方程)(t r r运动方程的分量形式位移位移的分量2、速度 平均速度速度速度的分量位移公式3、加速度 平均加速度 加速度 加速度的分量速度公式4、匀加速运动公式二、切向加速度和法向加速度在自然坐标系中,以运动方向为正方向。

1、路程(运动方程) 2、速率 速度沿轨道切向并指向前进一侧。

3、加速度 切向加速度,沿轨道切向。

法向加速度,指向轨道的曲率中心。

加速度的大小加速度与速度的夹角满足v 增加时, 沿v 方向,为锐角; v 减小时,逆v 方向,为钝角。

三、圆周运动的角量描述 在平面极坐标系中1、角位置(角量运动方程)2、角速度角位移公式3、角加速度 角速度公式4、匀角加速运动公式5、角量与线量的关系四、相对运动设两个笛卡尔坐标系k 和 的x 、y 、z 轴指向相同。

1、位置变换位移变换2、速度变换加速度变换3一、牛顿运动定律第一定律惯性和力的概念,惯性系定义。

第二定律常用形式为或笛卡尔直角坐标系分量式,,自然坐标系分量式,第三定律二、牛顿运动定律应用两大类问题已知质点运动状态求力。

已知质点受力情况求运动状态。

三、动量动量守恒定律1、冲量:力对时间的累积称为力的冲量。

2、动量定理:合外力的冲量等于质点(系)动量的增量。

(微分形式)(积分形式)3、动量守恒定律:合外力为零时,质点(系)动量守恒。

4、碰撞完全弹性碰撞:动量守恒,机械能(动能)守恒。

非完全弹性碰撞:动量守恒。

完全非弹性碰撞:动量守恒。

5、平均冲力:四、角动量角动量守恒定律1、角动量:对惯性系中某参考点。

质点的角动量,大小为质点系的角动量2、力矩:对某参考点。

,大小为合力矩为各分力对同一参考点的力矩的矢量和。

3、冲量矩:力矩对时间的累积称为力矩的冲量矩。

4、角动量定理:对惯性系中某参考点,合外力矩等于质点(系)角动量对时间的变化率。

(微分形式)或:合外力矩的冲量矩等于质点(系)角动量的增量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理热学部分小结
大学物理的热学部分还是相对不是太难的,因为与高中的物理关联很大,很多概念都是以前接触过的,但是没有深入研究,这已经给这部分的学习带来了极大的便利。

如果说要有什么不同,主要那有如下几个方面:
1、研究方法的不一样:虽然很多内容是接触过的,但是重新学习的时候明显感觉到不一样的是研究方法,随着其他知识的累积,尤其是高数的引入,给物理的学习带来的极大的便利,特别是一些公式的推理过程让我们更好的了解公式的来由,更好的便于记忆和理解。

2、准确度的不同:在学习过程中,总有些以前的东西对推翻,因为要考虑的东西越来越多,微观的宏观的等压的等温的……这些都告诉我们要全面细致地学习,应用的知识越来越多,要把知识串成串。

3、学习方法的不同:大学阶段的物理学习和中学阶段的物理学习存在着很大的不同,课少了,作业也少了,但是仍然不能放松,毕竟在中学几乎每天都在学物理,所以现在的物理学习更需要自己的主动和认真。

大学物理力学小结
能量守恒定律定律内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。

1)自然界中不同的能量形式与不同的运动形式相对应:物体运动具有机械能、分子运动具有内能、电荷的运动具有电能、原子核内部的运动具有原子能等等。

(2)不同形式的能量之间可以相互转化:“摩擦生热是通过克服摩擦做功将机械能转化为内能;水壶中的水沸腾时水蒸气对壶盖做功将壶盖顶起,表明内能转化为机械能;电流通过电热丝做功可将电能转化为内能等等”。

这些实例说明了不同形式的能量之间可以相互转化,且是通过做功来完成的这一转化过程。

(3)某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等.某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。

能量守恒的具体表达形式保守力学系统:在只有保守力做功的情况下,系统能量表现为机械能(动能和位能),能量守恒具体表达为机械能守恒定律。

热力学系统:能量表达为内能,热量和功,能量守恒的表达形式是热力学第一定律。

相对论性力学:在相对论里,质量和能量可以相互转变。

计及质量改变带来能量变化,能量守恒定律依然成立。

历史上也称这种情况下的能量守恒定律为质能守恒定律。

能量守恒定律的重要意义能量守恒定律,是自然界最普遍、最重要的基本定律之一。

从物理、化学到地质、生物,大到宇宙天体。

小到原子核内部,只要有能量转化,就一定服从能量守恒的规律。

从日常生活到科学研究、工程技术,这一规律都发挥着重要的作用。

人类对各种能量,如煤、石油等燃料以及水能、风能、核能等的利用,都是通过能量转化来实现的。

能量守恒定律是人们认识自然和利用自然的有力武器。

基本内容:热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。

普遍的能量转化和守恒定律在一切涉及热现象的宏观过程中的具体表现。

热力学的基本定律之一。

表征热力学系统能量的是内能。

通过作功和传热,系统与外界交换能量,使内能有所变化。

根据普遍的能量守恒定律,系统由初态Ⅰ经过任意过程到达终态Ⅱ后,内能的增量ΔU 应等于在此过程中外界对系统传递的热量Q和系统对外界作功A之差,即UⅡ-UⅠ=ΔU =Q-A或Q=ΔU+A这就是热力学第一定律的表达式。

如果除作功、传热外,还有因物质从外界进入系统而带入的能量Z,则应为ΔU=Q-A+Z。

当然,上述ΔU、A、Q、Z均
可正可负。

对于无限小过程,热力学第一定律的微分表达式为
dQ=dU+dA因U是态函数,dU是全微分;Q、A是过程量,dQ和dA只表示微小量并非全微分,用符号d以示区别。

又因ΔU或dU只涉及初、终态,只要求系统初、终态是平衡态,与中间状态是否平衡态无关。

热力学第一定律的另一种表述是:第一类永动机是不可能造成的。

这是许多人幻想制造的能不断地作功而无需任何燃料和动力的机器,是能够无中生有、源源不断提供能量的机器。

显然,第一类永动机违背能量守恒定律。

两者的区别与联系:热力学第一定律是人类在长期的生产和科学实验中总结出来的一条普遍规律,适用于一切热力学过程。

热力学第一定律表明,一切热力学过程都必须服从能量守恒定律,因此热力学第一定律实际上是包括热现象在内的能量转化与守恒定律。

大学物理学习小结
《大学物理》是我们工科必修的一门重要基础课,但由于我们现在所学的《大学物理》涵盖的内容广,包括力学、热学、电磁学、光学、量子力学与相对论以及一些新兴的科学如混沌等,而且对高等数学、线性代数等数学基础要求较高,是我们大家都望之不寒而栗的一门课。

首先,“课堂”和“课后”是学习任何一门基础课的两个重要环节,对大学物理来说也不例外。

课堂上,我认为高效听讲十分必要,如何达到高效呢?我们听讲要围绕着老师的思路转,跟着老师的问题提示思考,同时又能提出一些自己不太明白的问题。

对于老师的一些分析,课本上没有的,及时提笔标注在书上相应空白的地方,便于自己看书时理解。

课后,我们在完成作业之前应该先仔细看书回顾一下课堂内容,再结合例题加深理解,然后动笔做作业。

除此之外,我认为可以借助一些其他教材或辅导资料来扩展我们的视野,不同教材分析问题的角度可能不同,而且有些教材可能更符合我们自己的思维方式,便于我们加深对原理的理解。

总之,课堂把握住重点与细节,课后下功夫通过各种途径来巩固加深理解。

第二,对大学物理的学习,我认为自己的脑海中一定要有几种重要思想:一是微积分的思想。

大学物理不同与高中物理的一个重要特点就是公式推导定量表示时广泛运用微分、积分的知识,因此,我们要转变观念,学会用微积分的思想去思考问题。

二是矢量的思想。

大学物理中大量的物理量的表示都采用矢量,因此,我们要学会把物理量的矢量放到适当的坐标系中分析,如直角坐标系,平面极坐标系,切法向坐标系,球坐标系,柱坐标系等。

三是基本模型的思想。

物理中分析问题为了简化,常采用一些理想的模型,善于把握这些模型,有利于加深理解。

如力学中刚体模型,热学中系统模型,电磁学中点电荷、电流元、电偶极子、磁偶极子模型等等。

当然,我们还可总结出一些其他重要思想。

最后,我们还要充分发挥自己的想象力、空间思维能力。

对于有些模型,我们可以制出实物来反映,通过视觉直观感受,而大学物理中还存在大量我们无法直观反映的模型,因此就必须通过发挥自己的想象力来构造出来。

半学期的大学物理学习体会
通过接近半学期的大学物理学习,感觉自己的思维有了一个值的飞跃。

在学习物理的时候,根据不同的物理规律,选择不同的物理对象,变换不同的思维角度,对我们的创造思维和发散思维的发展是非常有利的。

因而更好的锻炼了理性思考问题的能力。

学习物理开阔了我的视野,使我了解到物理给我们的生活带来的巨大变化,物理学的研究对象具有极大的普遍性,它的基本理论渗透在自然科学的一切领域,广泛地应用于生产技术的各个部门,它是自然科学和工程技术的基础。

在科学的前沿,物理是最有用的基础学科。

学习物理,使我更好的学习了数学,因为大学物理的计算必须利用数学的知识。

因而在学习物理的同时提高了数学水平。

而物理这个学科本身又让我们更明白一些事物的发展规律引导着我们怎样去思考平常在生活中遇到的一些看似平常,但却包含着好多的规律和知识。

学习物理还可以让我更明白自己以后的发展前景,在一些和物理联系紧密的学科里,比
如说:航天,航空,电器等等。

可以密切的联系生活,比如我们现在知道了光、无线电、电话、电视这些都和物理有关,可以激发我们去思考他们的有关物理的一些问题。

学习物理关键在于多思考,搞清楚其中的原理。

、学习物理不是简单的套用公式,进行数字推导;物理知识重要的是要掌握扎实的基础知识。

要对基本物理概念、物理规律清楚弄清本质,明白相关概念和规律之间的联系,明白物理公式定理、定律在什么条件下应用而不能简单地以做习题,对基本概念和基本规律的学习和理解,如果概念不清做题不仅费时间费精力,而且遇到的矛盾或困惑就越多,,做题的目的是为了巩固基本知识,从而达到灵活运用。

所以上课时是最重要的。

相关文档
最新文档