固体物理倒格子的原理

合集下载

固体物理倒格矢

固体物理倒格矢

—— 第一布里渊区
原点和12个近邻格点连线的垂直平分面围成的正十二面体
倒格矢 K n n1 b n2 b n3 b 3 1 2 2 [( n2 n3 )i (n1 n3 ) j (n1 n2 )k ] a



体心立方的倒格子是面心立方,离原点最近的有 十二个倒格点,在直角坐标系中它们的坐标为:
二维长方晶格的布里渊区
二维六方晶格的十个布里渊区
(3) 三维晶格
a. 简立方晶格
b1 a1 ai a 2 aj b2 a 3 ak b 3
倒易空间示意图
2 a 2 a 2 a i j 倒易点阵仍为简立方晶 格 k
( Rl和Gh 不一定平行)
可见, Rl和 Gh的量纲是互为倒逆的, Rl是格点P的位 置矢量,称为正矢量, kh称为倒易矢量。 若令Gh= h1b1+h2b2+h3b3, 则称由b1,b2,b3为基矢构成的点阵为倒易点阵. (b1,b2,b3)如何确定?
1.9.2 倒格子空间(倒易点阵)*
(1).倒矢与正格矢的关系:
离原点最近的倒 格点有4个: b1,-b1,b2,-b2.
-b1
b2
b1 -b2
离原点次近的倒 格点有4个: -b1+b2 b1+b2 ,b1-b2 ,b2, -b2.
b1 +b2
-b1-b2
b1-b2
离原点再远的倒格点有4个: 2b1,-2b1,2b2,-2b2.
2b2
-2b1
2b1
-2b2
二维正方晶格的布里渊区
(2) 两个点阵格矢之间的关系: 正点阵: 正格矢 Rl l1a1 l2a2 l3a3 l1、l2、l3 Z 倒易点阵: 倒格矢Gh h1b1 h2b2 h3b3 h1、h2、h3 Z 则有: Rl Gh = 2 Z 结论: 若两矢量点积为2的整数倍, 且其中一个矢量 为正点阵位矢, 则另一个矢量必为倒易点阵的位矢。

1.3倒格子-固体物理

1.3倒格子-固体物理

方法2:利用
b2 2π a 3 a1 Ω

b3 a1 a2 Ω
a2 a2 j
a1 a1 i
a1 a1 i
正格子
a2
a2
j
假定 a3 k ,则 Ω a1 a2 a3 a1a2

2 2
b1 Ω a 2 a 3 a1a2 a2i a1 i
b2 2π Ω
Rn n1a1 n2 a2 n3 a3
倒格子 倒格基矢 b1,b2 ,b3 倒格(点位)矢:
K n h1b1 h2b2 h3b3
每一个布拉菲格子都有一与之相对应的倒格子
一、倒格子定义
倒格子基矢定义为:
b1 2π a2 a3 Ω
b2 2π a3 a1 Ω
b3 2π a1 a2 Ω
同理得:
b2
2π a
ik
b3
2π a
i
j

a3
a2 2
j k 2π a
jk
2
倒格矢:
b1
2π a
jk
b2
2π a
ik
b3
2π a
i
j
FCC基矢:
a
a1 i j 2
a 2 a j k 2 a a3 k i
2
体心立方的倒格子是边长为4/a的面心立方 。
Rl l1 a1 l2 a 2 l3 a 3 K h h1 b1 h2 b2 h3 b3
Rl K h (l1 a1 l2 a 2 l3 a 3 ) ( h1b1 h2 b2 h3 b3 )
2π( l1h1 l2h2 l3h3 )
2π ( i j )

a i b j 2π ij

固体物理03-倒格子空间

固体物理03-倒格子空间

4
dr
nj
(r )r 2
sin Gr Gr
实验发现固体中的原子形状因子与自由原子的差别不大
其它实验手段
1. 电子衍射 (动量空间)
与X射线相比,电子波长更短,所以更加精确;更容易被物体吸收适 合于研究微薄膜、小晶体。
2. 中子散射 (动量空间)
可以测量晶体磁结构
3. 扫描隧道显微镜(实空间,表面)
S v1v2v3 f {1 exp i v2 v3 exp i v1 v3 exp i v1 v2 }
S 4 f 所有指数均为奇数,或均为偶数 S 0 其它情况
面心立方 的x-ray 散射图像
原子形状因子 f j dV n j (ρ)eiGρ
对自由原子:
f j 2 dr r 2 d cos n j exp(iGr cos )
j
ρ r rj
定义原子的形状因子 f j dV n j (ρ)eiGρ
结构因子
化简后可以得到晶体的结构因子
SG
f eiGr j j
j
对于第 j 个原子
G rj v1b1 v2b2 v2b2 x ja1 y ja2 z ja3 2 v1x j v2 y j v3z j
散射幅度
SG
dV n(r)eiGr
cell
结构因子
结构因子
假设晶胞中有 s 个原子,可以把原胞中的电荷密度分配到每一 个原子上(分配方法不唯一),即:
s
n(r) n j (r rj )
j 1
SG
cell dV n j (r r j )eiGr
j
eiGrj cell dV n j (ρ)eiGρ
晶体点阵的Fourier变换,晶体点阵则是倒易点阵的Fourier逆 变换。正格子的量纲是长度 L, 称作坐标空间,倒格子的量钢是 长度的倒数 L-1,称作波矢空间(或称动量空间)。

简述倒格子点阵的物理意义

简述倒格子点阵的物理意义

简述倒格子点阵的物理意义
倒格子点阵是固体物理学中的一个重要概念,用于描述晶体中离子、原子或分子的排列方式。

它表示了晶体中离子在晶格中的周期性排列。

倒格子点阵在物理意义上具有以下重要特征:
1.倒格子与晶体结构的相互关系:倒格子是晶体格矢的补格。

晶体格矢是描述晶体结构的向量,而倒格子则是晶格矢的傅里叶变换。

倒格子点阵的形状和大小与晶体结构紧密相关。

2.表征晶体的动量空间:倒格子点阵的形成使得晶体在动量空间中的结构得以描述。

晶体具有动量离散化的性质,电子、声子等载流子在动量空间中的行为可以通过倒格子点阵的形态和性质来理解和
分析。

3.描述布里渊区和能带结构:倒格子点阵的布里渊区(Brillouin Zone)是动量空间中与晶格有关的基本单元。

布里渊区的形状和大小直接决定了电子能带结构、光学性质和输运特性等重要物理现象。

4.反映物质衍射性质:倒格子点阵的概念是描述晶体衍射的基础。

实验中利用晶体的衍射现象可以确定物质的结构和性质,倒格子点阵提供了理论上的基础框架。

倒格子点阵在固体物理学中具有重要的物理意义,它是描述晶体结构和性质的关键概念,并与动量空间、能带结构、衍射性质等密切相关。

通过倒格子点阵的分析,可以深入理解晶体的属性和行为,为研究材料科学和固体物理学提供了有力的工具和理论基础。

固体物理§1.5倒格子

固体物理§1.5倒格子

r r r Kh ⊥ CA Kh ⊥ CB ⇒ Kh ⊥ 晶面 ABC。 ,
9
r 3.倒格矢 Kh和面间距的关系 倒格矢 晶面ABC为晶面族中最靠近原点的晶面。 为晶面族中最靠近原点的晶面。 晶面 为晶面族中最靠近原点的晶面
dh1h2h3 r a1 = ⋅ h1
r r r r r Kh a1 ⋅ h1b1 + h2b2 + h2b3 r = r Kh h1 Kh
( Ω Ω=2π )

3
3 r r r (2π ) (a a ) [(a a ) (a a )] r r r r r r ∗ Ω = b1 ⋅ (b2 × b3 ) = 2× 3 ⋅ 3× 1 × 1× 2 3 Ω r r r r r r r r r 利用: A 利用: × (B × C) = ( A⋅ C)B − ( A⋅ B)C r r r r r r r r r r r r r (a3 × a1 ) × (a1 × a2 ) = [(a3 × a1 ) ⋅ a2 ]a1 − [(a3 × a1 ) ⋅ a1 ]a2 = Ωa1
1
2.倒格子基矢和正格子基矢之间的关系 倒格子基矢和正格子基矢之间的关系
r r r r r r 正格子基矢: a 正格子基矢: 1、a2、a3;倒格子基矢: 1、b2、b3; 倒格子基矢: b
晶面族: a d 晶面族: 1a2、a2a3、a3a1的面间距分别为 3、d1、d2;
r b3
r a3
r b2
3.倒格矢和正格矢的关系 倒格矢和正格矢的关系
r r r r r r r r Kh ⋅ Rl = (l1a1 + l2a2 + l3a3 ) ⋅ (h b1 + h2b2 + h3b3 ) 1 = 2πµ (µ为整数)

固体物理03-倒格子空间

固体物理03-倒格子空间

实空间点阵
简立方
a1 a i, a2 a j, a3 a k
倒空间点阵
简立方
2
2
2
b1 a i, b2 a j, b3 a k
2 a 2
a
2 a
四方晶格
简单点阵的倒易点阵也是简单点阵。 正格子的基矢越长,倒格子的基矢越短,反之亦然。
六角点阵
正格子空间六方结构,在倒格子空间亦为六方结构。 不过其基矢尺寸关系发生变化,基矢方向也转了30度。
k 2 2k G G 2 k 2
2k G G 2 (G 和 –G 都是倒格矢)
G
衍射方程(也是布里渊区的边界方程)
k
k ·(G/2)=(G/2)2
Ewald 图解法
1. 选择原点以入射 k 矢长度 为半径作圆,保证另一端 点在倒格矢上。
2. 连接从原点到与圆相交的 所有倒格矢的波矢k’都能 发生衍射。
4
dr
nj
(r )r 2
sin Gr Gr
实验发现固体中的原子形状因子与自由原子的差别不大
其它实验手段
1. 电子衍射 (动量空间)
与X射线相比,电子波长更短,所以更加精确;更容易被物体吸收适 合于研究微薄膜、小晶体。
2. 中子散射 (动量空间)
可以测量晶体磁结构
3. 扫描隧道显微镜(实空间,表面)
4. 原子力显微镜(实空间,表面)
中国散裂中子源
扫描隧道显微镜(STM)
Si (100) 表面
原子力显微镜(AFM)
Si (111) 表面
作业 2
1. 证明正格子与倒格子互易 2. 证明面心立方格子的倒格子是体心立方,体心立方的倒格子是
面心立方!
3. 证明只有 k G' 时,衍射幅度F才不为0。

倒格子讲解

中文名称:倒格子英文名称:Reciprocal lattice术语来源:固体物理学倒格子,亦称倒易格子(点阵),它在固体物理学中,特别是在晶格动力学理论、晶体电子论以及晶体衍射方面有着较为广泛的应用。

1定义假定晶格点阵基矢a1、a2、a3(1、2、3表示 a 的下标,粗体字表示a1 是矢量,以下类同)定义一个空间点阵,我们称之为正点阵或正格子,若定义b1 = 2 π ( a2× a3) /νb2 = 2 π ( a3× a1) /νb3 = 2 π ( a1× a2) /ν其中 v = a1· ( a2× a3 ) 为正点阵原胞的体积,新的点阵的基矢b1、b2、b3是不共面的,因而由b1、b2、b3也可以构成一个新的点阵,我们称之为倒格子,而b1、b2、b3 称为倒格子基矢。

2性质1. 倒格子的一个矢量是和晶格原胞中一组晶面相对应的,它的方向是该晶面的法线方向,而它的大小则为该晶面族面间距倒数的2π倍。

2. 由倒格子的定义,不难得到下面的关系a i ·b j = 2 πδij3. 设倒格子与正点阵(格子)中的位置矢量分别为G = αb1+ βb2 + γb3R = ηa1 + θa2 + λa3 (α,η,β,θ,γ,λ皆为整数)不难证明G·R = 2π ( αη + βθ +γλ ) = 2π n,其中n为整数。

4. 设倒格子原胞体积为ψ,正格子原胞体积为 v ,根据倒格子基矢的定义,并利用矢量乘法运算知识,则可得到ψ v = ( 2 π )^3.5. 正格子晶面族(αβγ)与倒格子矢量G = αb1+ βb2 + γb3 正交(具体的内容及证明过程,请参考文献[1])3倒格子引入的意义这里简单的说一点,如上面的性质1,倒格子中的一个基矢对应于正格子中的一族晶面,也就是说,晶格中的一族晶面可以转化为倒格子中的一个点,这在处理晶格的问题上有很大的意义。

06 固体物理 1.4.1 倒格子

1 3
CB OB OC



a2
h2

a3
h3
0
a1/h1
B a2 a2/h2 A
a1
a a Gh1h2 h3 CA (h1b1 h2b 2 h3b 3 ) ( 1 3 ) 2 2 0 h1 h3 同理: Gh1h2h3 CB 0,
i j i j
2 c a1 (a 2 a3 )
由此,可以直接定义倒格子基矢为:
相应的倒格子基矢为:
a2 a3 2 (a2 a3 ) b1 2 a1 (a2 a3 )
a3 a1 2 (a3 a1 ) b2 2 a1 (a2 a3 )
所以有
( r ) 在傅氏 F (K h ) 是物理量 Rl 是正格矢, 空间的表示形式 K h应是 Rl 的倒格矢
e
iK h Rl
1
即:物理量在正格子中表示和在倒格子中表示满足傅氏变换关系; 正空间周期性物理量的傅氏空间就是其倒空间; 正格子和倒格子互为傅氏变换。
ai b j 2ij 确定,则以上条件成立。
K h Rl (h1b1 h2b2 h3b3 ) (l1a1 l2a2 l3a3 ) 2 (h1l1 h2l2 h3l3 ) 2
li , hi 都是整数, 也应是整数, eiKh Rl ei 2 1
2可以证明,Fra bibliotek* (2 )3 /, 即,* (2 )3
* (2 )3 /, 即,* (2 )3
2、倒格子的倒格子是原布拉菲格子
c2, c3 ,可以证明 ci ai , i 1,2,3 按倒格子基矢定义构造基矢 c1, 2 (b 2 b3 ) 2 即令:c1 * b 2 b3 b1 b 2 b3 (2 ) 2 b 2 b3 (a3 a1 ) (a1 a 2 ) 利用 A B C B( A C) C( A B) 2 ( A B) C ( B C) A (C A) B (2 ) 2 (2 ) 2 a1 a1 2 Rl,Kh所代表点的集合 2 2 (2 ) 2 (b 2 b3 ) 都是布拉菲格子,且 a1 c1 * b1 b 2 b3 互为正倒格子。事实 上在

固体物理学 倒格子

(2π ) v v v v = 2 ( a2 × a3 ) ⋅ a1 v0
3 * 0
(2π ) v = v0
* 0
3
01 04 倒格子 —— 晶体结构
2) 正格子中一簇晶面 ( h1 h2 h3 ) 和
v Gh1h2h3 正交
v v v v Gh1h2h3 = h1b1 + h2b2 + h3b3
—— 积分在一个原胞中进行
01 04 倒格子 —— 晶体结构
—— 倒格子与正格子间的关系 1) 正格子原胞体积反比于倒格子原胞体积
v v v * v0 = b1 ⋅ (b2 × b3 )
3
v v v v v v v v v A × B × C = ( A ⋅ C ) B − ( A ⋅ B )C
(2π ) v v v v v v = ( a2 × a3 ) ⋅ ( a3 × a1 ) × ( a1 × a2 ) 3 v0
v v v a2 × a3 b1 = 2π v v v a1 ⋅ a2 × a3
v v v v v v a3 × a1 a1 × a2 b2 = 2π v v v b3 = 2π v v v a1 ⋅ a2 × a3 a1 ⋅ a2 × a3
v v v 以 b1 , b2 , b3 为基矢构成一个倒格子
01 04 倒格子 —— 晶体结构
v 3) 倒格子矢量 Gh1h2h3 为晶面( h1h2 h3 ) 的法线方向
v v v v 晶面方程 ( h1b1 + h2b2 + h3b3 ) ⋅ x = 2πn
各晶面到原点O点的距离
v v v (2π n ) / h1b1 + h2b2 + h3b3
v v ai ⋅ b j = 2πδ ij

倒格子

倒格子(倒易点阵) 倒格子(倒易点阵)
倒格子的定义: 倒格子的定义:
• 在固体物理学中:实际观测无法直接测量 在固体物理学中: 正点阵, 正点阵,倒格子的引入能够更好的描述很 多晶体问题, 多晶体问题,更适于处理声子与电子的晶 格动量。 格动量。 • 在X射线或电子衍射技术中:一种新的点阵, 射线或电子衍射技术中: 射线或电子衍射技术中 一种新的点阵, 该点阵的每一个结点都对应着正点阵中的 一个晶面,不仅反映该晶面的取向, 一个晶面,不仅反映该晶面的取向,还反 映着晶面间距。 映着晶面间距。
b1 =
2
(a ×a ) a ⋅ (a ×a ) 1 (a ×a ) b = a ⋅ (a ×a )
1
2 2 3 1 3 3 1
b3 =
(a ×a ) a ⋅ (a ×a )
1
1 1 2 3 2
2
3
1
确定倒格矢的方法:对于一切整数 h,k,l,作出 作出 ( hb1 + k b 2 + l b3),这些向 这些向 量的终点就是倒格 子的节点。 子的节点。
倒格子(倒易点阵)的基本性质: 倒格子(倒易点阵)的基本性质:
• 正点阵与倒易点阵的同名基矢的点积为 ,不同 正点阵与倒易点阵的同名基矢的点积为1, 名基矢的点积为零; 名基矢的点积为零; • 正点阵晶胞的体积与倒易点阵晶胞的体积成倒数 关系; 关系; • 正点阵的基矢与倒易点阵的基矢互为倒易; 正点阵的基矢与倒易点阵的基矢互为倒易; h • 任意倒易矢量( b1 + kb2 + lb3 )垂直于正点阵中的 任意倒易矢量( (hkl)面; ) • 倒易矢量的模等于正点阵中晶面间距的倒数。 倒易矢量的模等于正点阵中晶面间距的倒数。
• 任何一个晶体结构都有两个格子:一个是 任何一个晶体结构都有两个格子: 正格子空间(位置空间 位置空间), 正格子空间 位置空间 ,另一个为倒格子空 状态空间)。 间(状态空间 。二者互为倒格子,通过傅里 状态空间 二者互为倒格子, 叶变换。 叶变换。晶格振动及晶体中电子的运动都 是在倒格子空间中的描述。 是在倒格子空间中的描述。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

倒格子
摘要:倒格子是现在固体物理,半导体物理,器件物理的前沿,用量子场论的非相对论形式描述多体,各种散射过程的精确描述都少不了它。

为此为了研究的方便,结晶学家喜欢用正格子,而物理学家喜欢用倒格子,因为它在数学处理上具有优越性。

和正格子相比,它在固体物理学中,特别是在晶格动力学理论、晶体电子论以及晶体衍射方面有着较为广泛的应用。

因此倒格子具有很重要的物理意义,及其所组成的倒易点阵,更是研究晶格性质的重要手段。

关键词:倒格子正格子点阵布里渊区
一、倒格子的定义及其相关概念:
(1)倒格子:亦称倒易格子(点阵),倒格子就是和布拉发矢量(晶格矢量)共轭的另一组矢量基,俗称动量空间,适合于用来描述声子、电子的晶格动量。

它在固体物理学中,特别是在晶格动力学理论、晶体电子论以及晶体衍射方面有着较为广泛的应用。

是现在固体物理,半导体物理,器件物理的前沿,用量子场论的非相对论形式描述多体,各种散射过程的精确描述都少不了它。

晶格振动及晶体中电子的运动都是在倒格子空间中的描述。

(2)倒格子的定义:
已知有正格子基矢,定义倒格矢基矢为:
;说明b1垂直于a2和a3所确定的面。

;说明b2垂直于a3和a1所确定的面。

;说明b3垂直于a1和a2所确定的面。

正格子体积:
(3)相关概念:
①倒格点:平移操作所产生的格点叫。

②倒格矢:为。

③倒格子:倒格点的总体叫。

④倒格基矢:一组。

二、倒格子的性质:
(1) 正点阵晶胞的体积与倒易点阵晶胞的体积成倒数关系:
倒格子体积: ,
(2) 正格子与倒格子间的关系:倒格矢与任一个正格矢
的乘
积必等于, 即 = 。

(3) 正格子中一族晶面(321h h h )和倒格子基失矢正交,即晶面的弥勒指数是垂直于该晶面的最短倒格矢坐标。

(4) 倒格子的一个基矢是和晶格原胞中一组晶面相对应的,它的方向是该晶面的法线方向;倒格矢的大小正比于晶面族(h1h2h3)的面间距的倒数:
d
G π2//=
三、倒格子原胞和布里渊区:
倒格子原胞,作由原点出发的诸倒格矢的垂直平分面,这些平面完全
封闭形成的最小的多面体(体积最小)------第一布里渊区。

同理。

第一布里渊区以外,封闭的三角形的体积----------------第二布里
渊区。

依次可以得到第三布里渊区。

四、正格子和倒格子的比较:
20世纪80年代STM 问世前,人们无法直接观测到正格子空间,只能通过
X 射线衍射、电子衍射、中子衍射得到倒格子空间,再反推出正格子、晶面及晶格常数等
(1)每个晶体结构有两个点阵同它联系:晶体点阵和倒格子点阵,
①正格子点阵:是真实空间的点阵,
②倒格子点阵:是在波矢空间的点阵。

结晶学家喜欢用正格子,而物理学家喜欢用倒格子,因为它在数学处
理上具有优越性。

(2)任何一个晶体结构都有两个格子:
①正格子空间(位置空间)
②倒格子空间(状态空间)。

二者互为倒格子---------傅里叶变换。

晶格振动及晶体中电子的运动都是在倒格子空间中的描述。

五、倒格子的物理意义:
(1)倒格子中的一个格点与正格子中的一族晶面相对应。

(2)倒易点阵基矢的方向是该晶面的法线方向;
(3)倒易点阵基矢的大小是该晶面族的晶面间距的倒数的2π倍。

(4)倒格子是边长为 a
2 的正方形格子。

六、倒易点阵:
(1)倒易点阵和14种晶体点阵是一一对应的,因此也只有14种类型的倒易点阵和14种不同形状的第一布里渊区。

第一布里渊区的形状只与晶体的布拉菲点阵的几何性质有关,与晶体的化学成分、晶胞中的原子数目无关。

布里渊区是一个对称性原胞,它保留了相应的布拉菲点阵的点群对称性。

因此第一布里渊区里依然可以划分为几个完全等同的区域。

对一种晶体来说,它的所有布里渊区都有同样大小的体积,利用平移对称性可以找出第一布里渊区和所有较高的布里渊区之间的全等性。

倒空间和波矢空间重合,倒易点阵能有效地分析晶体的衍射、散射等相互作用。

倒空间和倒易点阵可以方便地计算晶体学中的晶面间距、面角、晶面法线等几何量。

(2)倒易点阵是晶体学中极为重要的概念,也是衍射理论的基础。

晶体点阵------实空间。

由晶体的周期性直接抽象出的点阵(正点阵); 倒易点阵------倒易空间。

由正点阵的傅里叶变换得来的点阵(倒易点阵)。

参考文献:
黄昆、韩汝琦,《固体物理学》,高等教育出版社,1988.10
胡赓祥、蔡珣《材料科学基础》第三版,上海交通大学出版社,2000.11。

相关文档
最新文档