新北师大版九年级数学上册4.1 成比例线段(2)导学案.doc
北师大版-数学-九年级上册- 4.1成比例线段(2) 学案

九年级 数学 学科导学案课题:4.1成比例线段(2)【学习目标】课标要求:(1)知识目标:了解线比例线段的基本性质;理解并掌握比例的基本性质及其简单应用;发展学生从数学的角度提出问题、分析问题和解决问题的能力。
(2)能力目标:经历运用线段的比解决问题的过程,在观察、计算、讨论、想象等活动中获取知识。
(3)情感与价值观目标:通过本节课的教学,培养学生的数学应用意识,体会数学与现实生活的密切联系。
目标达成:1、了解线比例线段的基本性质2、理解并掌握比例的基本性质及其简单应用学习流程:【课前展示】(1)成比例线段定义(2)比例的基本性质(3)若 3m = 2n ,你可以得到n m 的值吗?m n 呢?【自学导航】1、等比性质2 例题【合作探究】活动内容:(1)如图,已知21==AE CE AD BD ,你能求出AEAE CE AD AD BD +=+ 的值吗?如果CE AB BC AB = ,那么CE CE AC BD BD AB -=-有怎么样的关系?在求解过 程中,你有什么发现?已知,a,b,c,d,e,f六个数。
(2) 如图,HGADFGCDEFBCHEAB,,,的值相等吗?HGFGEFHEADCDBCAB++++++的值又是多少?在求解过程中,你有什么发现?已知,a,b,c,d,e,f六个数。
成立吗?为什么?那么如果bafdbecfdbfedcb=++++≠++==a),(a成立吗?为什么?和那么如果ddcbbaddcbbdcb-=-+=+=a,a.),(.,bandbmcandbnmdcbaddcbbadcba=++++++≠++===±=±=那么等比性质:如果那么合比性质:如果活动目的:每一个知识点的学习,都需要在一定的知识背景中去认识和练习才能得到巩固应用,从引例的结论中,引出“合比性质”及“等比性质”的学习。
注意事项:1、 合比性质有两种形式:如果d c b a =,那么b b a +=d d c +;如果dc b a =,那么d d c b b a -=-,要灵活应用。
4.1 成比例线段 导学案——2021-2022学年北师大版数学九年级上册

课题:《成比例线段1》导学案 NO.54011班级__ ____姓名 ___小组__ __ 小组评价__ __【学习目标】.1.结合现实情境感受学习线段的比的必要性,借助几何直观了解线段的比和成比例线段.2.掌握比例的基本性质及其简单应用.【重点】比例的基本性质.【难点】成比例线段的定义的理解及比例的基本性质的运用.【学习过程】一、自主学习、巩固旧知1.比例尺的公式为: .2. 勾股定理:.二、自主探究、掌握新知阅读课本P76-77,完成下列问题:1.两条线段的比:如果选用同一量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比就是它们,即AB:CD=,或写成,其中AB,CD分别叫做这个线段比的和.如果把表示成比值k,那么,或AB=.两条线段的比实际上就是的比.注意:(1)两条线段的长度单位要,但与所选的长度单位无关.(2)两条线段的比是有顺序性的.动手试一试:用不同的单位测量课本的长与宽(精确到0.1cm),并求出这两条线段的长度之比.解:经过测量得,长: cm,宽:cm ∴长:宽=:2.P77计算图4-3线段的比值:, , , ,发现了:.比例线段:四条线段a,b,c,d中,如果a与b的比等于c与d的比,即=,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.注意:(1)四条线段a,b,c,d成比例是有顺序,即a cb d=,我们把a,b,c,d分别称为第一,二,三,四比例项;(2)从a:b=c:d来看,a,d叫外项,b,c叫内项.3.比例的基本性质(1)如果a,b,c,d四个数成比例,即a cb d=,求证:ad=bc证明:(2)如果ad=bc(a,b,c,d都不等于0),求证:a cb d=证明:结论:比例的基本性质:①如果a cb d=,那么ad=bc (语言叙述:成比例线段中外项积等于,或交叉相乘积 .)②如果ad=bc(a,b,c,d都不等于0),那么a cb d=三、合作探究、理解应用1.如果a34b=,那么a=3,b=4,对吗?为什么?再问:A.3a=4b; B.ab=12; C.= ; D.= 中哪个对?答: .2.如果AB=3cm, CD=20mm,那么=3.已知:2a=3b,则ab=;已知:3x-5y=0,则xy=;4.下列哪一组数能成比例?(1)3,6,12,24 (2)4,5,6,8 (3)6,4,12,18思考:怎样快速判断4个数能成比例?5. 如图,一块矩形绸布的长AB=m,AD=1m,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即= ,那么的值应当是多少?四、拓展延伸、提升能力1.由a cb d(abcd≠0)这个比例式能得到哪些不同形式的比例式?请一一写出,你怎样判断写出的比例式是否正确?2.若a bb d,则=,这时b叫a、d的比例中项.3.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,则d=__ __.变式:已知有三条线段长分别为a=3cm,b=2cm,c=6cm,若存在某一线段x,使得这四条线段成比例,求x的长.4.已知a:b:c=2:3:4,且a+b+c=15,则a=__ _,b=_ _,c=___ .问:a:b:c=2:3:4还有什么形式的写法?请写出五、归纳总结、完善建构1.什么叫两条线段的比?求两条线段的比要注意哪几点?2. 什么叫做成比例线段?什么叫做比例中项?3.比例的基本性质六、我的作业1. 在△ABC中,∠B=90°,AB=BC=10cm; 在△DEF中,ED=EF=12cm,DF=8 cm.求AB与EF之比,AC与DF之比。
新北师大版九年级数学上册第四章4.1成比例线段第1课时比例线段导学案版

4.1 成比例线段4.1.1 线段的比,成比例的线段学习目的:1、知道线段的比的概念。
理解成比例线段的概念2、会计算两条线段的比。
3、掌握成比例线段的判定方法。
重点:线段的比与成比例线段的概念。
教学过程:一、自主预习(一)阅读课本 ,思考并回答下列问题:1、一般地,如果选用 量得两条线段AB ,CD 的长度分别为m,n ,那么这两条线段的比就是他们长度的比,即AB ∶CD= m:n,或写成,n m CD AB =其中,线段AB ,CD 分别叫做这个线段比的前项和后项.如果把n m 表示成比值k,那么CD k AB k CDAB ∙==或,。
(1)在比ba 或a ∶b 中,a 是 ,b 是 。
⑵两条线段的 要统一 。
⑶在同一单位下线段长度的比与选用的 无关。
⑷线段的比是一个没有 的数。
(二)比例尺1、在地图上或工程图纸上,图上长度与实际长度的比通常称为比例尺。
2、比例尺为1:50000,意思为: 。
(三)成比例线段的概念1、一般地,在四条线段中,如果 等于 的比,那么这四条线段叫做成比例线段。
(举例说明)如:2、四条线段成比例,记作:其中a,d 叫比例外项,b,c 叫比例内项。
3、四条线段a,b,c,d 成比例,有顺序关系。
即a,b,c,d 成比例线段,则比例式为:a:b=c:d ;a,b, d,c 成比例线段,则比例式为:a:b=d:c4、思考:a=12,b=8,c=6,d=4成比例吗?a=12,b=8,c=15,d=10呢?三、例题解析:例1、A 、B 两地的实际距离AB= 250m ,画在一张地图上的距离A'B'=5cm,求该地图的比例尺。
例2:已知,在Rt △ABC 中,∠C =90°,∠A =30°,斜边AB =2。
求⑴BC AB ,⑵ABAC四、巩固练习1、已知某一时刻物体高度与其影长的比值为2:7,某天同一时刻测得一栋楼的影长为30米,则这栋楼的高度为多少?2、某地图上的比例尺为1:1000,甲,乙两地的实际距离为300米,则在地图上甲、乙两地的距离为多少?3、已知线段a,d,b,c 是成比例线段,其中a=4,b=5,c=10,求线段d 的长。
北师大版九年级数学上册导学案成比例线段2

北师大版九年级数学上册导学案年级九班级学科数学课题成比例线段(2)第 2 课时编制人审核人使用时间第周星期使用者课堂流程具体内容学习目标1.进一步了解比例线段的概念、巩固并掌握比例的基本性质.2.能推导并理解比例的等比性质和合比性质.3.能运用比例的性质解决与比例线段有关的几何问题.学法指导温故知新(1)成比例线段定义(2)比例的基本性质(3)若3m = 2n,你可以得到nm的值吗?mn呢?学生回答,3分钟操作(一)合比性质:1如果dcba==k(k为常数),那么ddcbba+=+成立吗?2、如果dcba=,那么ddcbba-=-成立吗?为什么?如果dcba=,那么。
(二)等比性质如图,HGADFGCDEFBCHEAB,,,的值相等吗?HGFGEFHEADCDBCAB++++++的值又是多少?在求解过程中,你有什么发现?每一个知识点的学习,都需要在一定的知识背景中去认识和练习才能得到巩固应用,从引例的结论中,引出“合比性质”及“等比性质”的学习。
北师大版数学九年级上册 4.1成比例线段导学案

成比例线段学习目标:1.结合实际情境了解线段比的概念,并会计算两条线段的比.2.结合实际情境了解比例线段的概念.3.理解并掌握比例的基本性质,并能进行简单应用.学习重点:理解线段的比和比例线段的概念,会求两条线段的比及判断线段是否成比例.学习难点:掌握比例的基本性质,并能进行简单应用.学习过程:预习案一.预习教材:1.请同学们阅读教材54页-57页的内容,并完成书后习题。
2.预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的随堂练习和习题。
二.感知填空:1.线段比的定义:如果选用同一个长度单位量得两条线段AB 、CD 的长度分别是m 、n ,那么就说这两条线段的比 或写成 ,其中,线段AB 、CD 分别叫做这两个线段比的前项和后项.如果把m n 表示成比值k ,则AB CD=k 或AB =kCD. 2.求两条线段的比时,应保持两条线段的长度单位 .3.比例线段的定义:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a b =c d,那么这四条线段a ,b ,c ,d 叫做成 ,简称 .4.比例的性质:(1)比例的基本性质:如果a ∶b =c ∶d ,那么 ;(2)如果ad =bc(a 、b 、c 、d 都不等于0),那么 .三.自主提问:探究案一、探究一:1.已知四条线段a 、b 、c 、d 的长度,试判断它们是否成比例?跟踪练习:1.已知一矩形的长a =1.35m ,宽b =60cm ,则a ∶b = .2.下列各组线段(单位:cm )中,成比例线段的是 ( )A .1,2,2,3B .1,2,3,4C .1,3,2,4D .1,2,2,43.如图,点C 、D 是线段AB 上的两点,AC =1cm ,CD =2cm ,DB =3cm ,找出图中能成比例的四条线段,并用比例式表示.作业案一、过关习题1.如图,线段AB ∶BC =1∶2,那么,AC ∶BC 等于( )A .1∶3B .2∶3C .3∶1D .3∶22.等边三角形的一边与这边上的高的比是( )A.3∶2B.3∶1 C .2∶ 3 D .1∶ 33.下列线段中,能成比例的是( )A .2cm ,3cm ,4cm ,5cmB .1.5cm ,2.5cm ,4cm ,5cmC .1.1cm ,2.2cm ,3.3cm ,4.4cmD .1cm ,2cm ,3cm ,6cm4.已知线段a ,b ,c ,d 是成比例线段,且a =6,c =4,d =2,则b = .5.在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米,南京到北京的实际距离是 千米。
【北师大版】九年级数学上册导学案:4.1成比例线段

4.1 成比例线段第1课时线段比和比例基本性质1. 了解线段比和比例线段概念.2. 掌握比例基本性质,会求两条线段比,并应用线段比解决实际问题.(重点)阅读教材P76〜79,完成下列内容:(一)知识探究1. 线段比:如果选用同一个长度单位量得两条线段AB, CD长度分别是m n,那么这两条线段比(ratio)就是它们_________ 比,即AB: CD= m:n,或写成CD=,其中,线段AB, CD分别叫做这个线段比 _____________ 和________ .如果把马表示成比值k,那么AB= k或AB= k - CD.两条线段比实n CD际上就是两个数比.2. 四条线段a, b, c, d中,如果a与b比等于c与d比,即_______ ,那么这四条线段a, b, c, d叫做成比例线段,简称_________ .3. 比例基本性质a c如果「=";,那么ad= .b da如果ad= bc(a , b, c, d都不等于0),那么___________ .(二)自学反馈1. 下列各组线段(单位:cm)中,成比例线段是()A.1 , 2, 3, 4B.1 , 2, 2, 4C.3 , 5, 9, 13D.1 , 2, 2, 32.把mn ^ pq 写成比例式,错误是()會佗探究活动1小组讨论式将它裁成相同三面矩形彩旗,且使裁出每面彩旗宽与长比与原绸布宽AE_ AD AD T AB , 1 3a1 _ a , 即^a 2_1.a _ 3.开平方,得a _ ■' 3(a _ — '3舍去).G8Q 本例提供了应用比例基本性质一个具体情境, 应注意阅读和 理解题意,然后由比例式得到等积式,再通过计算求得结果. 易错提示:开平方后求得结果,需要检验是否符合题意.m qB. P _n P nm q qnD.m p-——二m pn qA. C. 例如图,一块矩形绸布长AB= a m 宽A[> 1 m 按照图中所示方与长比相同,即AE_ADAD TA ,那么a 值应当是多少? 解:根据题意可知, AB= a m,3a m? AD T 1 m.活动2跟踪训练1. 等边三角形一边与这边上高比是()A. 「;3 : 2B. :3 : 1C.2 ::3D.1 ::32. 若四条线段a.b.c.d 成比例,且a = 3, b = 4, c = 6,则d=()A.2B.4C.4.5D.83. 在比例尺为1 : 900 000安徽黄山交通图中,黄山风景区与市政府所在地之间距离是4 cm,这两地实际距离是()A.2 250 厘米B.3.6 千米C.2.25 千米D.36 千米4. A.B两地之间高速公路为120 km,在A.B间有C.D两个收费站,已知AD: DB= 11 :1, AC: CD= 2 : 9,贝卩 C.D间距离是__ km.AD AE5. 如图,已知, AD=6.4 cm , DB= 4.8 cm , EC= 4.2 cm,求DB ECAC长.活动3课堂小结1. 线段比概念.表示方法;前项.后项及比值k.2. 两条线段比是有序;与采用单位无关,但要选用同一长度单位.3. 两条线段比在实际生活中应用.【预习导学】(一)知识探究a c1.长度前项后项2 -= 比例线段b d(二)自学反馈 1.B 2.D 【合作探究】 活动2跟踪训练 1.C 2.D 3.D 4.9048 T 洛.解得 AE T 5.6. A AC T AE + EC T 5.6 + 4.2 4.8 4.2=9.8(cm).第2课时等比性质1.理解并掌握等比性质.(重点)2. 运用等比性质解决有关问题.(难点)阅读教材P79〜80,自学“例2”,完成下列内容: (一)知识探究活动1小组讨论AB BC CA 3 r 例 在厶ABC W^ DEF 中,若击=、=;,且厶ABC 周长为18 cmDE EF FD 4求厶DEF 周长.… AB BC CA 3 解: DE EF FD 4, .AB+ BO CA AB_ 3 …DE T E F +F D T 4.b eAD L AE D E Ta c等比性质:如果b T d Tmn (b + d +…2 * 0),那么a + c + …+ mb + d +…+ n —.4(AB + BO CA) = 3(DE + EF+ FD),即DE+ EF+ F» 3(AB + BC+ CA).3又•••△ ABC周长为18 cm,即卩AB+ BC+ C2 18 cm,4 4.D曰EF+ FA 3(AB + BC+ CA) = 3 X 18 = 24(cm),3 3即厶DEF周长为24 cm.EXJ0O 在应用等比性质时,要抓住题目已知条件:三角形ABC周长, 即三边之和为18 cm.活动2跟踪训练ace 口1.已知口 =匚=-=4, 且a + c+e = b8,贝S b + d+ f等于(d fA.4B.8C.32D.2a+b b+c c + a2.若 = = =k,且a+b+ C M0,贝S k 值为()cabA.2B. —1C.2或—1D. 不存在3. 已知b=d = f =3,ace4. 如果 b=d =f = k(b + d + f 半 0),且 a + c + e = 3(b + d + f),那么 k_ . a c e 2 「、. a + 2c — 3e,.5. 已知b = d = f = 3,b+2d — 3f半°,求b + 2d — 3f 值.活动3课堂小结a c m a + c +…+ ma等比性质:如果b = d =^= n (b +d +…W 0),那么b + d+...+ n = b.【预习导学】 (一)知识探究(二)自学反馈【合作探究】 活动2跟踪训练1.D2.A 23.24.3e 2 a 2c — 3e 2f = 3,b+ 2d — 3f丰 °,二 b = 2d =—3f = 3.V b + 2d — 3fa + 2c — 3e 2b + 2d — 3f = 3.注意在运用等比性质时,前提条件是:分母 b +d +…+ n z 0.(二)自学反馈a c 5a + c如果 b = d = 2(b+dz 0),那厶 b + d T _______ .a c 5「b = d =。
4.1 成比例线段 第二课时 导学案

丹东市第二十四中学 4.1 成比例线段 第二课时主备:李春贺 副备:曹玉辉 孙芬 审核: 2014年9月2日 一、 学习准备:1.已知a:b=3:2,且a-b=10,则a+b = . 2.若=y x 3,则=x y ; =y x 2 ;=-y yx 23.已知345c b a ==,则=+--+cb ac b a 32 . 二、学习目标:1.、知道比例的基本性质,能进行证明和运用. 2、知道合分比性质,能进行证明。
. 3、知道等比性质,能进行证明。
4、能简单运用比例的三个性质解决问题。
三、自学提示: (一)合作探究:1.通过自主探究,归纳总结出比例的基本性质,完成目标一。
(1)思考 :1:若a,b,c,d 四个数满足d cb a =, 那么ad =bc 吗?与同伴交流.根据等式的基本性质,两边同时乘以( ),得ad=bc,(2)思考 2:若ad =bc (a,b,c,d 都不为0),那么d cb a =吗?根据等式的基本性质,两边同时除以( ),得dcb a =. 比例的基本性质:【练一练】1、若3a=5b,那么a ∶b=_________. 2、a ∶b=4:7,那么_________. 2、通过小组合作探究,归纳总结出合比性质,完成目标二。
(1)如图,已知d c b a ==3,则b b a +=ddc +吗?(2)如果dcb a ==k (k 为常数),那么d d c b b a +=+成立吗?为什么? (3)如果dc b a =,那么d dc b b a -=-成立吗?为什么?归纳:如果d cb a =,那么 . 这是比例的合分比性质 练习:已知b a =23,则=+b b a ,bba -= .3. 通过师生合作探究,归纳总结出等比性质,完成目标三。
(1)如果d c b a ==…=nm =k (b +d +…+n ≠0),那么b a n d b m c a =++++++ =k 成立吗?你能写出推理过程吗?因此, ,这是比例的等比性质 (2)练习:如果f ed c b a ===2,求fd be c a ++++的值 四、学习小结: 五、夯实基础: 1、填空 (1)若=y x 25 则=x y ;=-y y x ; =+y y x 2 ;(2)已知23=a b 则=+b a b ;=-ba b 2 . 2、已知:d c b a ==fe=5(b +d +f ≠0) (1)fd be c a +-+- (2)f b ea 55--3、如图,已知23===DE BC AE AC AD AB ,且△ABC 的周长为36cm ,求△ADE 的周长六、能力提升:已知a ,b ,c 都是不等于零的实数,且k cba b c a a c b =+=+=+,求k 的值布置作业: 【评价反思】。
北师大版九年级数学上精品导学案(可打印)4.1成比例线段(2)导学单

九年级数学导学案 班级: 姓名: 【学习课题】 §4.1 成比例线段(二) 【学习目标】 1、理解比例的等比性质和合比性质; 2、能灵活运用比例的性质解决实际问题。
【学习重点】比例的相关性质的推导和运用。
【学习难点】比例性质的灵活运用。
【学习过程】 一、温故知新1、一般地,如果选用 量得两条线段AB ,CD 的长度分别为m,n ,那么这两条线段的比就是它们长度的比,即AB ∶CD= ,或写成=CD AB 。
其中,线段AB ,CD 分别叫做这个线段比的 和 .如果把n m 表示成比值k,那么=CD AB 或=AB 。
2、四条线段 a 、b 、c 、d 中,如果 等于 ,即 = ,那么这四条线段a 、b 、c 、d 叫做 , 简称 。
其中a,d 叫 ,b,c 叫 。
3、比例的基本性质: 。
4、若a,b,c,d 是成比例线段,以下结论正确的有( )bc ad E cd ab D c b d a C d c b a B d b c a A =====. . . . . .__y __,,1832,3yx 若5===+=x y x 则且、 6、如图,HG AD FG CD EF BC HE AB ,,,的值相等吗?HGFG EF HE AD CD BC AB ++++++ 的值又是多少?在求解过程中,你有什么发现?7、已知d c b a ==3,求b b a +和d d c +。
二、探究新知(一)等比性质如果d c b a ==…=nm (b +d +…+n ≠0),那么 。
【跟踪训练】 1、已知:△ABC 和△DEF 中, 且43===FD AC EF BC DE AB , △ABC 的周长为18cm 。
求:△DEF 的周长.2、若75===f e d c b a ,则=++++fd be c a __________;=+-+-f d b e c a 33 。
3、(二)合比性质:如果dc b a =,那么 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新北师大版九年级数学上册4.1 成比例线段(2)导学案
一知识链接:
(1)成比例线段定义
(2)比例的基本性质
(3)若3m = 2n,你可以得到
n
m
的值吗?
m
n
呢?
二、目标落实:
1 目标一:比例的等比性质
导读:如图,HG
AD
FG
CD
EF
BC
HE
AB
,
,
,
的值相等吗?HG
FG
EF
HE
AD
CD
BC
AB
+
+
+
+
+
+
的值又是多少?在求解过程中,你有什么发现?
已知,a,b,c,d,e,f六个数。
记录:
2、目标二:比例的合比性质
学习目标
1.了解比例线段的基本性质;理解并掌握比例的基本性质及其简单应用;
2.运用线段的比解决问题的过程,在观察、计算、讨论、想象等活动中获取知识。
成立吗?为什么?
那么
如果
b
a
f
d
b
e
c
f
d
b
f
e
d
c
b
=
+
+
+
+
≠
+
+
=
=
a
),0
(
a
导读:(1)如图,已知
2
1
=
=
AE
CE
AD
BD
,你能求出
AE
AE
CE
AD
AD
BD+
=
+
的值吗?如果
CE
AB
BC
AB
=,
那么
CE
CE
AC
BD
BD
AB-
=
-
有怎么样的关系?在求解过程中,你有什么发现?
已知,a,b,c,d,e,f六个数。
记录:
三、拓展提升
四、课堂小结
1、知识归纳:
2、感悟生成:
五、当堂测试
成立吗?为什么?
和
那么
如果
d
d
c
b
b
a
d
d
c
b
b
d
c
b
-
=
-
+
=
+
=
a
,
a
.
),
(
.
,
b
a
n
d
b
m
c
a
n
d
b
n
m
d
c
b
a
d
d
c
b
b
a
d
c
b
a
=
+
+
+
+
+
+
≠
+
+
=
=
=
±
=
±
=
Λ
Λ
Λ
Λ那么
等比性质:如果
那么
合比性质:如果
的周长。
求
,
的周长为
且
中,若
与
、在
;
与
求
、已知
DEF
ABC
FD
CA
EF
BC
DE
AB
DEF
ABC
b
a
∆
∆
=
=
=
∆
∆
+
=
cm
18
,
4
3
)2(
b
b-a
b
b
a
,
3
2
)1(
_____
,
9
17
1=
=
+
y
x
y
y
x
则
、若
____
2
3
,
4
1
2的值为
则
、若
b
b
a
b
a+
=
的值
)
的值(
)
求(
、已知:
c
a
c
b
b
c
b
c
b
a
+
-
+
+
+
=
=
3
2
a
2
a
1
.
7
5
3
3。