常见等量关系
等量关系式定义

等量关系式定义:等量关系式就是表达数量间得相等关系得式子,如果要求用方程解答时,就需找出题中得等量关系,从而列出等量关系式。
常见关系式:减法等量关系式:被减数=减数+差差=被减数-减数减数=被减数-差加法等量关系式:加数=与-另一个加数与=加数+加数乘法等量关系式:积=因数×因数因数=积÷另一个因数除法等量关系式:被除数=除数×商商=被除数÷除数除数=被除数倍数等量关系式:每份数×份数=总数总数÷每份数=份数总数÷份数=每份数一、译式法将题目中得关键性语句翻译成等量关系。
(一)从关键语句中寻找等量关系。
1、关键句就是“求与”句型得、例:先锋水果店运来苹果与梨共720千克,其中苹果就是270。
运来得梨有多少千克?2、关键句就是“相差关系”句型。
关键词:比一个数多几,比一个数少几,例:小张买苹果用去7、4元,比买橘子多用0、6元,每千克橘子多少元?3、关键句就是“倍数关系”句型。
饲养场共养2400只母鸡,母鸡只数就是公鸡只数得2倍,公鸡养了多少只?4、有两个关键句,既有“倍数”关系,又有“求与”或者“相差”关系。
(必考考点) 一般把“与差”关系作为全题得等量关系式,倍数关系作为两个未知量之间得关系,用来设未知量。
(1倍数设为x ,几倍数设为几x 。
)如果只有与差关系得话,一般把求与关系作为全题得等量关系式,相差关系作为两个未知量之间得关系。
(把较小数设为x ,则较大数为x +a 。
)例:果园里共种240棵果树,其中桃树就是梨树得2倍,这两种树各有多少棵?例:河里有鹅鸭若干只,其中鸭得只数就是鹅得只数得4倍。
又知鸭比鹅多27只,鹅与鸭各多少只?例:后街粮店共运来大米986包,上午比下午多运14包,上午与下午各运多少包?二)没有关键句,找关键字上,寻找等量关系式。
“一共”、“还剩”例:网球场一共有1428个网球,每筒装5个,还剩3个。
(完整word版)一元一次方程中常见的等量关系.docx

七年上一元一次方程1、行程行程的基本公式:速度×= 路程常见的等量关系(1) 相遇一般公式:× 速度和= 相遇路程一、由意得例:甲、乙两地相距 1500千米,两汽同从两地相向而行,其中吉普每小行 60 千米,是客速度的 1.5 倍。
注意数学用,如:等于,⋯⋯与⋯⋯相等,一共有,剩余,是⋯⋯(1)几小后两相遇?(2)若吉普先开 40 分,那么客开出两相遇?的几倍,比⋯⋯多几等等。
例 1:一个数的1与 3 的差等于最大的一位数,求个数。
( 2)追及7一般公式:例 2:一个三位数,三个数位上的数字之和是17,百位上的数字比十出地不同,同出:×速度差 = 路程差(追及路程)位上的数大 7,个位上的数字是十位上的三倍,求个三位数。
出地相同,先后出: A× A速度= B× B速度例 3 :从正方形的皮上,截去一个2cm 的方形条,剩余的面是80cm2,,那么原来皮的是多少?例:小明家距离学校 1000米。
一天小明以80 米每分的速度去上学, 5二、前后不分后爸爸小明没文,开始以180米每分的速度去追小明,并在途中追上了他。
例1:在要将一个底面半径 3,高 12 的柱条重新熔成一个底面半径 9的柱,求熔后的柱高。
例 2:小一本,每天( 3)形跑道20 ,需要 12 天完,如果每天多 4分析意,分析两人路程差或者差,将形跑道直,需要多少天完?如果每天少两,需要几天完?相遇或者追及。
三、算公式例:甲乙两人在形跑道上跑步。
已知跑道一圈400 米,乙每例如面公式,公式等等。
3秒跑 6 米,甲的速度是乙的。
4四、数量关系( 1)若甲、乙两人在环形跑道上相距8 米处同时相向出发,经过几秒( 5)火车问题两人相遇?火车过桥总路程= 桥长 + 火车身长( 2)若甲在乙前 8 米处同时同向出发,那么经过多长时间两人首次相火车完全在桥上时的路程= 桥长 - 火车身长遇?火车过隧道总路程= 隧道长 + 火车身长火车完全在隧道里的路程= 隧道长 - 火车身长(4)顺流(风)逆流(风))以及上下坡问题例:一座桥长1000 米,一列火车从桥上通过,从上桥到离开桥公用1静水速度是指船在静水中的速度,也就是船自身的速度。
等量关系什么意思

等量关系什么意思
等量关系式是表达数量间的相等关系的式子,如果要求用方程解答时,就需找出题中的等量关系,从而列出等量关系式。
常见的等量关系:
1、减法等量关系:
(1)被减数=减数+差
(2)差=被减数-减数
(3)减数=被减数-差
2、加法等量关系:
(1)加数=和-另一个加数
(2)和=加数+加数
3、乘法等量关系:
(1)积=因数×因数
(2)因数=积÷另一个因数
(3)单价×数量=总价
(4)速度×时间=路程
(5)工作效率×工作时间=工作总量
扩展资料
找等量关系的方式:
一、根据常用的计算公式找出等效关系:
常用的数量关系:长方形面积=长×宽;可以根据计算公式找等量关系.例如:“一个长方形的面积是19平方米,它的长是4米,那么宽是多少米?”根据长方形面积的计算公式“长×宽=面积”,可列出方程4=19。
二、掌握数学术语以找到等效关系:
常见的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程。
三、根据常见的数量关系找等量关系:
常见的数量关系:工作效率×工作时间=工作总量;单价×数量=总价;速度×时间=路程……,在解题时,可以根据这些数量关系去找等量关系。
[生活]常见等量关系
![[生活]常见等量关系](https://img.taocdn.com/s3/m/8dc4884cbf23482fb4daa58da0116c175f0e1e63.png)
常见等量关系列方程解应用题的一般步骤:1.认真审题,找出已知量和未知量,以及它们之间的关系;2.设未知数,可以直接设未知数,也可以间接设未知数;3.列出方程中的有关的代数式;4.根据题中的相等关系列出方程;5.解方程;6.答题。
一、行程问题:基本相等关系:速度×时间=路程(一)相遇问题相遇问题的基本题型及等量关系1.同时出发(两段)甲的路程+乙的路程=总路程2.不同时出发(三段)先走的路程+甲的路程+乙的路程=总路程(二)追及问题追及问题的基本题型及等量关系1.不同地点同时出发快者行驶的路程-慢者行驶的路程=相距的路程2.同地点不同时出发快者行驶的路程=慢者行驶的路程慢者所用时间=快者所用时间+多用时间(三)飞行、航行的速度问题等量关系:顺水速度=静水速度+水流速度(顺风飞行速度=飞机本身速度+风速)逆水速度=静水速度-水流速度(逆风飞行速度=飞机本身速度-风速)顺水(顺风)的路程=逆水(逆风)的路程二、商品的利润率:基本相等关系利润利润=售价-进价实际售价=折扣数×10%×标价利润率=进价利润率=进价进价售价- 销售额=售价×销售量 售价=进价×(1+利润率)利息-利息税=应得利息 利息=本金×利率×期数利息税=本金×利率×期数×税率本息和=本金+本金×年利率×年数三、变化率的问题:1、 基本相等关系(增长率、下降率问题)a(1±x )n=b (其中a 为变化前的量,x 为变化率,n 为变化次数,b 为变化后的量)四、工程问题:1、 基本相等关系工作效率=工作总量/工作时间 工作量=工作效率×工作时间各工作量之和=总工作量甲、乙一起合做:1+=合做天数合做天数甲独做天数乙独做天数甲先做a 天,后甲乙合做:1++=a 合做天数合做天数甲独做天数甲独做天数乙独做天数全部工作量之和=各队工作量之和,各队合作工作效率=各队工作效率之和五、不等式问题:1、 友情提醒注意审清题意,不要列成方程来解题。
等量关系的几种常见类型

八、“公式”型: 根据计算公式找等量关系。如: 长方形的周长=(长+宽)×2 长方形面积=长×宽 正方形周长=边长×4
例:一个长方形的面积是19平方米,它 的长是4米,那么宽是多少米? 解:设宽是x米。 长方形的面积=长×宽 19 4 x 即4x=19
练一练:一幅画长是宽的2倍,做画框 共用了1.8米的木条,求这幅画的面积 是多少? 理解:“做画框共用了多长的木条”这 句话是告诉我们画框的周长。要求这幅 画的面积就要知道长和宽。由条件列方 程求出它的长和宽。
九、“不变量”型: 把题目中的“不变量”作为等量关系。 例:某工地有一批钢材,原计划每天用 6吨,可以用70天,现在每天节约0.4吨, 现在可以用多少天? 解:设现在可以用x天。 实际总量=原计划总量 (6-0.4)x = 6×70 练一练:加工一批零件,原计划每天生 产20个,50天完成。实际40天完成了任 务,实际每天生产多少个?
解:设乙汽车每小时行x千米。 甲行的路程+乙行的路程=全程 68 ×3 +3x =300
练一练1:甲乙两站相距255千米,一列 客车从甲站开出,一列货车从乙站开出, 2.5小时后相遇。客车每小时行48千米, 货车每小时行多少千米?
练一练2:某款式的服装,零售价为36 元/套,现有216元,问一共可以买多少 套衣服?
练一练:一支钢笔比一支圆珠笔贵6.8元。 钢笔的价钱是圆珠笔价钱的4.4倍。钢笔 和圆珠笔的价钱各是多少元? 七、“数量关系 ”型: 如:工作效率×工作时间=工作总量; 单价×数量=总价;速度×时间=路程 例:AB两站相距300千米,甲乙两辆汽车 同时从的两个,站相向开出,3小时后两 车相遇,甲汽车每小时行68千米,乙汽 车每小时行多少千米?
例2:学校开展植树活动,五年级植树50 棵,比四年级植树棵数的2倍少4棵,四 年级植树多少棵? 解:四年级植树x棵。 四年级植树的棵数×2-4=五年级植树 的棵数 X ×2-4= 50 练一练2:某校五(2)班植树385棵, 比五(1)班植树棵树的1.5倍多5棵。 五(1)班植树多少棵?
等量关系式定义

等量关系式定义:等量关系式是表达数量间的相等关系的式子,如果要求用方程解答时,就需找出题中的等量关系,从而列出等量关系式。
常见关系式:减法等量关系式:被减数=减数+差差=被减数-减数减数=被减数-差加法等量关系式:加数=和-另一个加数和=加数+加数乘法等量关系式:积=因数×因数因数=积÷另一个因数除法等量关系式:被除数=除数×商商=被除数÷除数除数=被除数倍数等量关系式:每份数×份数=总数总数÷每份数=份数总数÷份数=每份数一、译式法将题目中的关键性语句翻译成等量关系。
(一)从关键语句中寻找等量关系。
1、关键句是“求和”句型的 .例:先锋水果店运来苹果和梨共720千克,其中苹果是270。
运来的梨有多少千克?2、关键句是“相差关系”句型。
关键词:比一个数多几,比一个数少几,例:小张买苹果用去7. 4元,比买橘子多用0. 6元,每千克橘子多少元?3、关键句是“倍数关系”句型。
饲养场共养2400只母鸡,母鸡只数是公鸡只数的2倍,公鸡养了多少只?4、有两个关键句,既有“倍数”关系,又有“求和”或者“相差”关系。
(必考考点) 一般把“和差”关系作为全题的等量关系式,倍数关系作为两个未知量之间的关系,用来设未知量。
(1倍数设为x ,几倍数设为几x 。
)如果只有和差关系的话,一般把求和关系作为全题的等量关系式,相差关系作为两个未知量之间的关系。
(把较小数设为x ,则较大数为x +a 。
)例:果园里共种240棵果树,其中桃树是梨树的2倍,这两种树各有多少棵?例:河里有鹅鸭若干只,其中鸭的只数是鹅的只数的4倍。
又知鸭比鹅多27只,鹅和鸭各多少只?例:后街粮店共运来大米986包,上午比下午多运14包,上午和下午各运多少包?二)没有关键句,找关键字上,寻找等量关系式。
“一共”、“还剩”例:网球场一共有1428个网球,每筒装5个,还剩3个。
装了多少筒? 例:一辆公共汽车上有乘客38人,在火车站有12人下车,又上来一些人,这时车上有乘客54人。
六年级数学等量关系知识点

六年级数学等量关系知识点数学是一门抽象而又普遍的科学,同时也是充满逻辑和推理的学科。
在数学学科中,等量关系是一个重要的概念,在六年级的学习中,学生需要掌握并应用等量关系的知识。
本文将介绍六年级数学中的等量关系知识点。
一、什么是等量关系等量关系表示物体的两种属性或者两个量之间存在着相等的关系。
在数学中,等量关系常常用符号“=”来表示。
例如,2 + 3 = 5中的等号表示2 + 3和5之间存在着相等的关系。
二、等式和算式在数学中,等式是指两个表达式之间等于关系的陈述。
等式中的等号表示左右两边的表达式是相等的。
例如,2 + 3 = 5就是一个等式。
而算式是指可以进行运算的等式。
例如,2 + 3 = 5就是一个算式。
三、等量关系的性质等量关系具有一些重要的性质,这些性质可以帮助我们进行等式的变形和运算,进而解决问题。
1. 传递性等量关系具有传递性,即如果a = b,b = c,那么a = c。
例如,如果2 + 3 = 5,5 = 7,那么我们可以得出2 + 3 = 7。
2. 对称性等量关系具有对称性,即如果a = b,那么b = a。
例如,如果2 + 3 = 5,那么我们可以得出5 = 2 + 3。
3. 替换性等量关系具有替换性,即在等式的两边同时替换相等的量,等式仍然成立。
例如,如果2 + 3 = 5,那么我们可以将2 + 3替换为5,得到5 + 3 = 5。
四、等量关系的运算在解决数学问题时,我们常常需要进行等量关系的运算。
以下是几种常见的等量关系运算。
1. 相等量的加减运算如果等式两边分别加上或者减去相等的量,等式仍然成立。
例如,如果3 + 2 = 5,那么我们可以得出3 + 2 + 4 = 5 + 4。
2. 相等量的乘除运算如果等式两边同时乘以或者除以相等的非零量,等式仍然成立。
例如,如果4 × 2 = 8,那么我们可以得出4 × 2 × 3 = 8 × 3。
列方程中常见的实际问题中的等量关系

列方程中常见的实际问题中的等量关系:
1.行程问题: 路程=时间×速度
2.工程问题: 工作总量=工作效率×工作时间
3.浓度问题: 溶质质量=溶液质量×溶液浓度
4.营销问题: 商品利润=商品进价×商品利润率
(或商品利润=商品售价-商品进价)
5.水上航行中的有关量之间的关系:
逆水速度=船在静水中的速度-水速
顺水速度=船在静水中的速度+水速
6.数字数位问题: 数字×数位=数
7.和倍差倍问题: 因实际问题具体处理
8.相遇时,分段距离和等于相距.追及时,快者路程=慢者路程与相距之和
列方程解应用题的步骤:
1.审题:理解题意,弄清已知量、未知量及它们之间的关系
2.设元:选择适当的未知数,可直接设元,也可间接设元(设元的语句必须完整,并包括元素名称及单位)
3.列方程:用含未知数的式子表示问题中的相等关系
4.解方程:解所列方程,准确求出未知数的值
5.写答案:检验所列方程的解,符合题意后,写出答案,并注明单位名称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见等量关系
列方程解应用题的一般步骤:
1. 认真审题,找出已知量和未知量,以及它们之间的关系;
2. 设未知数,可以直接设未知数,也可以间接设未知数;
3. 列出方程中的有关的代数式;
4. 根据题中的相等关系列出方程;
5. 解方程;
6. 答题。
一、行程问题:
基本相等关系: 速度×时间=路程
(一)相遇问题
相遇问题的基本题型及等量关系
1.同时出发(两段) 甲的路程+乙的路程=总路程
2.不同时出发(三段 ) 先走的路程+甲的路程+乙的路程=总路程
(二)追及问题
追及问题的基本题型及等量关系
1.不同地点同时出发 快者行驶的路程-慢者行驶的路程=相距的路程
2.同地点不同时出发 快者行驶的路程=慢者行驶的路程 慢者所用时间=快者所用时间+多用时间
(三)飞行、航行的速度问题 等量关系:
顺水速度=静水速度+水流速度
(顺风飞行速度=飞机本身速度+风速)
逆水速度=静水速度-水流速度
(逆风飞行速度=飞机本身速度-风速)
顺水(顺风)的路程=逆水(逆风)的路程
二、商品的利润率:
基本相等关系
利润=售价-进价 实际售价=折扣数×10%×标价 利润率=进价
利润 利润率=
进价进价售价 销售额=售价×销售量 售价=进价×(1+利润率)
利息-利息税=应得利息 利息=本金×利率×期数
利息税=本金×利率×期数×税率
本息和=本金+本金×年利率×年数
三、变化率的问题:
1、 基本相等关系(增长率、下降率问题)
a(1±x )n =b (其中a 为变化前的量,x 为变化率,n 为变化次数,b 为变化后的量)
四、工程问题:
1、 基本相等关系
工作效率=工作总量/工作时间 工作量=工作效率×工作时间 各工作量之和=总工作量 甲、乙一起合做:1+=合做天数合做天数甲独做天数乙独做天数
甲先做a 天,后甲乙合做:1++=a 合做天数合做天数甲独做天数甲独做天数乙独做天数
全部工作量之和=各队工作量之和,各队合作工作效率=各队工作效率之和
五、不等式问题:
1、 友情提醒
注意审清题意,不要列成方程来解题。
留意“至少”、“多于”、“少于”、“不超过”、“不低于”等字眼,通常包含这些字词的题目都要列不等式(组)解题,并且要理解这些字词所代表的数学意义。
六、方案问题(方程与不等式结合型):
七、浓度问题及相等关系
浓度=溶液质量溶质质量×100%
溶液质量=溶质质量+溶利质量
八、形积变化中的方程
(1)相关公式
①长方体体积=长×宽×高。
②圆柱体体积=底面积×高。
③长方形面积=长×宽;长方形周长=2×(长+宽)。
④圆的面积=π×半径2;圆的周长=直径×π。
(2)“等积变形”中常见的情况
①形状发生了变化,而体积没变。
②形状、面积发生了变化,而周长没变。
③形状、体积发生了变化,但根据题意能找出体积之间的关系,把这个关系作为等量关系。
④形状、周长发生了变化,但概括题意能找出周长之间的关系,求面积。
(3)形积变化问题
形积变化,即图形的形状改变时,面积也随之发生变化。
注意:在形积变化时,图形的形状和面积都发生了变化,应注意在已知题目中找出不变的,也就是找出等量关系列出方程。
列方程解应用题的常用方法
1、译式法:就是将题目中的关键性语言或数量及各数量间的关系译成代数式,然后根据代数之间的内在联系找出等量关系。
2、线示法:就是用同一直线上的线段表示应用题中的数量关系,然后根据线段长度的内在联系,找出等量关系。
3、列表法:就是把已知条件和所求的未知量纳入表格,从而找出各种量之间的关系。
4、图示法:就是利用图表示题中的数量关系,它可以使量与量之间的关系更为直观,这种方法能帮助我们更好地理解题意。