旋转变压器 ppt课件

合集下载

旋转变压器的应用PPT课件

旋转变压器的应用PPT课件

Number of pole pair: 1 Input voltage: 7V(rms) Input frequency: 10kHz Impedances: 180Ω±15% Transformation ratio: 0.5±5%
Max.electrical error: ±10′
. 2
旋变输入输出波形(三对极,假设空间不变,时间变化)
4.2几种类型旋转变压器的比较
由于结构形式和原理的不同,在性能和抗恶劣环境条件能力上,各种类型的旋转变压 器的特点不一样。表1给出了情况比较。
表1 各种类型的旋转变压器性能、特点比较
类型
精度 工艺性 相位移 可靠性 结构
成本
有刷型




复杂

环变型

一般 比较大
R3(WHT)
S2(YEL)
S3(BLK) S4(BLU)
无刷旋转变压器原理图
无刷旋变主要应用于工业控制场合,是伺服电机的理想的位 置传感器。
无刷旋变主要参数包括: 极对数: 1对极 激磁电压:7V(rms) 激磁频率:10kHz 输入阻抗:180Ω±15% 变压比:0.5±5% 电气误差:≤±10′
(1)按输出电压与转子转角的函数关系分为正、余弦旋转变压器,线性旋转变压器,特殊函数旋转 变压器,比例式旋转变压器和感应移相器;
(2)按功能在同步随动系统中分为发送机、接收机、变压器等; (3)按结构分为接触式和无接触式;还可分为单极、多极型和双通道旋转变压器,以及磁阻式旋转 变压器。
. 12
上海赢双电机有限公司
. 7
上海赢双电机有限公司
. 8
高精度双通道旋变
上海赢双电机有限公司

旋转变压器 ppt课件

旋转变压器  ppt课件

6.3 正余弦旋转变压器的工作原理
一、旋转变压器空载时
输出绕组Z1 Z2和Z3 Z4以及定子交轴绕组D3D4开路, 激磁绕组施加交流激磁电压Uf1 。
BD D1
Uf1 D3
D4
D2
此时气隙中将产生一个脉振磁 场BD ,该磁场的轴线与定子激磁 绕组D1D2的轴线重合。
Z1 θ Z3
Z4 设定子绕组D1D2轴线和余弦输出 绕组Z1 Z2轴线的夹角为θ
二、旋转变压器带载时
D1 BD D3 Uf1
实验表明,图中正弦输出绕 D4 组Z3Z4带上负载以后,其输出
电压不再是转角的正弦函数。
Z1
D2
θ
Z4
Z3
ZL
Z2
空载
Um Um
负载
0
90o

空载 Um Um
左图表示了旋转变压
器空载和负载时输出特性
的对比。
Why?
负载
负载电流越大,
0
90o 二者的差别也越大。
Eq34 BZ cos2θ
在一定的转角下, Eq34 正比于 BZ ,而BZ正比于 IR2 ,所以负载电流越大, Eq34也越大,输出特 性偏离正弦函数关系就越远。
Z1 θ Eq34 Z4
BZq
Bq34 Z3
ER2 Bz BZd
IR2
Z2
因此,旋转变压器有载时, 输出特性的畸变,主要是由 交轴磁通引起的。为了消除 畸变,就必须设法消除交轴 ZL 磁通的影响。消除畸变的方 法称为补偿。
360o
• 单极旋变B点(θ0)—U2(1)=Um(1)sinθ不能 驱动伺服电动机
• 多极旋变A点(θ0)—U2(p)=Um(p)sin(pθ) 能够驱动伺服电动机

旋转变压器介绍PPT学习教案

旋转变压器介绍PPT学习教案
②磁阻式旋转变压器。
第1页/共35页
2
B
A
右侧(A): 旋转变压器的定、Fra bibliotek子,信号 变换。
左侧(B): 环形变压器。
定、转子绕组同 心放置。 图1 环变式旋转 变压器结构示意
第2页/共35页
3
图2 10对极的磁阻式 旋转变压器
①励磁绕组和输出绕组 放在同一套定子槽内。
②励磁绕组和输出绕组 的形式不一样,励磁单 相、输出两相。
第13页/共35页
14
U S1S3 (t) U 2m sin(t ) cos U S 2S 4 (t) U 2m sin(t )sin
图7中虚线是励磁正接时的波形相位,实线是 励磁反接时相位波形。和图5比较,发现:
若符合公式(2),零位应沿同一方向向前移 动180°;
第14页/共35页
第29页/共35页
30
5)平衡负载 旋变两相输出端负载不对称时,会产生误 差。所以,使用时注意两相负载平衡。另 外,负载的阻抗值应该尽可能的大,以免 会对旋转变压器的工作产生影响。
6)接线正确 按照规定的标示接线,正弦相、余弦相以 及励磁的正方向都不能错。
第30页/共35页
31
⒌⒉ 旋转变压器使用中问题分析 1)精度偏低 精度偏低的可能原因:
第16页/共35页
17
③正弦相反接(S2、S4端点对调)
第17页/共35页
18
按照图9波形,两种情况: 1)若余弦相仍为余弦相,电机转向改变。因
为:正弦相在前面了,只有反转才能余弦 相在前面。零位不变;
2)若想仍然正转,必须正弦相接到余弦相上、 而且反接,余弦相正向接到正弦相上。此 时零位在另一个方向上与原来相差90°。

旋转变压器原理种类及选用PPT资料42页

旋转变压器原理种类及选用PPT资料42页
-15-
第一章 旋转变压器
特殊函数旋转变压器的结构与正余弦旋转变压器基 本相同,它采用一系列含有各次谐波的绕组,使谐波磁 场产生的合成电动势在任意转角位置时逼近给定函数, 从而实现输出电压与转角之间成任意函数的关系。
对于含有各次谐波的同心式不等匝绕组,根据叠加 原理和谐波分析的方法,在正弦分布绕组的基础上得到 下列输出电压的表达式
关系的线性旋转变压器。
-12-
第一章 旋转变压器
U1E1kuE1cos
UR2kuE1sin
UR21kuksu cinosU1 (1-10)
S1
R1
R3

D

U1
S3
S2

S4 R4
图1-6 线性旋转变压器
Z L2 R2
-13-
第一章 旋转变压器 根据上式,当电源电压一定时,旋转变压器的输出
第一章 旋转变压器
第二节 线性旋转变压器
线性旋转变压器的输出电压与转角成正比。当转 角θ很小时,
sin
U R 2ku U 1sin ku U 1 (1-5)
当转角θ较大时,这种线性函数关系便不再适用。
事实上,对正余弦旋转变压器的连线进行适当改
接,可以得到较大转角范围内输出电压与转角呈正比
f () F() F(m)
-18-
第一章 旋转变压器
选取n个转角值,记下对应的给定函数值,由式(114)可以得到下面n个方程
(1)f(1)(e1sin1 e3sin31 e5sin51esin1) (2)f(2)(e1sin2 e3sin32 e5sin52 esin2)
畸变是必须消除的,下面首先分析畸变产生的原 因,然后介绍消除畸变的措施。
-7-

《旋转变压器 》PPT课件_OK

《旋转变压器 》PPT课件_OK

3、按使用要求分类
解算装置:正余弦旋转变压器 输出电压与转子转角成正余
弦函数关系
线性旋转变压器 输出电压与转子转角成线性关系
比例式旋转变压器 作为调整电压的比例元件
特殊函数旋转变压器
随动系统:旋转变压器发送机
旋转变压器差动发送机
旋变变压器
2
二、旋转变压器结构 旋转变压器结构与绕线式异步电动机类似。 铁芯:定子、转子铁芯采用高磁导率的铁镍硅钢片冲叠而成; 绕组:在定子铁芯和转子铁芯上分别安装有两个在空间上互相 垂直的高精度正弦绕组; 通常设计为2极,转子绕组经电刷和集电环引出。 正余弦旋转变压器结构图如图所示。
输出绕组的端电压分别为:
U r10 E r1 k E f sin kU f sin
输出绕组Z1Z2 称 为正弦绕组
U r20 E r2 k E f cos kU f cos
输出绕组Z3Z4 称
为余弦绕组
8
二、正余弦旋转变压器的负载运行
在实际应用中,输出绕组都接有负载,如控制元件,放大器等, 输出绕组有电流流过,从而产生磁通势,使气隙磁场产生畸变, 从而使输出电压产生畸变,不再是转角的正、余弦函数关系。
Fr2d= Fr2cosα
交轴分量为
Fr2q= Fr2sinα
为消除或减弱造成电压畸变 的交轴分量磁势使Fr2q =Fr1q, 交轴分量磁势完全补偿。
21
Xm
22
按基尔霍夫第二定律:
••


U f I f (Zs jX m ) I r1( jku X m sin ) I r2 jku X m cos
在自动控制系统中可以用作解算元件,实现坐标变换和三角 运算等,在随动系统中,用来传输与角度对应的电信号,此外 还可以用作移相器和角度-数字转换装置等等。

磁阻式旋转变压器简介PPT课件

磁阻式旋转变压器简介PPT课件

3.1 磁阻旋变生产商介绍
国内旋变科研构----西安交通大学、哈尔滨工业大学、南京 航空航天大学、上海大学等等。
3.1 磁阻旋变生产商介绍
国外旋变生产商----日本多摩川精机、日本美蓓亚、德国 LTN、德国西门子、瑞士ABB、美国泰科电气、美国托菲电 气、荷兰ATAS等等。
3.2 设计理念
采用有限元分析与RDC耦合联合仿真,缩短产品开发周期、提 升产品性能、降低研发成本
2.4高铁上的应用
22
3.国外磁阻式旋变先进技术
23
生产商介绍 设计理念 生产流水线 焊接 封装 下线
3.1 磁阻旋变生产商介绍
国内旋变生产商----西安西电微电机有限责任公司、青岛青 微电器有限责任公司、中国电子科技集团公司第二十一研究 所、深圳厚施电子科技有限公司、上海赢双电机有限公司等 等。
pwkw f2Bm 2 kw——与材料有关的比例系数
1.4材料
9
1.4材料
10
为减小涡流损耗,电机和变压器的铁心都用含硅量较 高的薄硅钢片叠成。
1.5标准
11
⑤磁阻式旋转变压器上海市企业标准由上海赢双 电机有限公司于2012年5月提出并起草。 内容:本标准规定了磁阻式旋转变压器的术语和 定义、分类和标记、要求、试验方法、检验方法 、检验规则、标志、标签和包装、运输、贮存
14
3.2 设计理念
a)马达机身泄漏出来的漏磁通导致失真。(b)确立了将失真量降至最小的设计方法。 采用磁场分析来设计
在磁场解析中容易造成问题的是漏磁通。旋转变压器是位于马达内的磁传感器,因此 马达机身泄漏出来的磁通量会使信号失真。为了将这一影响降低至最小限度,美蓓 亚采取了使用磁场分析来设计的方法。这种方法是凭借在EPS马达用途中积累的经 验确立的

旋转变压器工作原理ppt课件

按电机极数的多少来分,常见的旋转变压器一 般有两级绕组和四极绕组两种结构形式,两级 绕组变压器的定子和转子各有一对磁极。除此 之外,还有多极旋转变压器,用于高精度检测 系统。
按旋转变压器的输出电压和转子转角间的函数 关系, 旋转变压器可分为正余弦旋转变压器、 线性旋转变压器以及比例式旋转变压器。
按有无电刷与滑环间的滑动接触来分类,旋转 变压器可分为接触式和无接触式两大类,其中 无接触式旋转变压器运行可靠,抗震动,适应 恶劣环境。
04 旋转变压器的使用
旋转变压器在EPS系统上面的应用
EPS是一个典型的电机伺服系统。在EPS中,汽车转向时,转矩传感器检测到转向盘的力 矩和转动方向,将这些信号输送到电控单元,电控单元根据转向盘的转动力矩、转动方向和 车辆速度等数据向电动机控制器发出信号指令,使电动机输出相应大小及方向的转动力矩以 产生助动力。
04 旋转变压器的使用
旋转变压器在袜机、织布机上面的应用
旋转变压器在纺织机械上面,尤其以袜机为主,织布机、梳棉机上面也越来越大面积 开始使用,主要是由于旋转变压器相比光电编码器有极大的优势,诸如抗震动、耐油污、 寿命长等优点,特别适合纺织行业的S4工作制。
04 旋转变压器的使用
旋转变压器在油田电机上面的应用
4.3 旋转变压器的使用原则
(1) 旋转变压器应尽可能在接近空载的状态下工作。因此,负载阻抗应远大于旋转变压器的输出 阻抗。两者的比值越大,输出电压的畸变就越小。
(2) 使用时首先要准确地调准零位,否则会增加误差,降低精度。 (3)励磁一方两相绕组同时励磁时,即只能采用二次侧补偿方式时,两相输出绕组的负载阻抗应 尽可能相等。
EPS必须满足很高的实时性和较高的精度要求,同时,要确保其具有高的可靠性。无刷旋 转变压器是较好的选择。

《旋转变压器 》课件


旋转变压器的应用领域
汽车工业
用于检测曲轴、凸轮轴位置,以 及车辆四轮定位。
数控机床
用于实现高精度角度控制和位置 检测。
航空航天
用于飞行器的姿态控制和导航系 统。
机器人技术
用于机器人的关节角度检测和运 动控制。
旋转变压器的优缺点
优点
结构简单、可靠性高、耐高温、 抗干扰能力强、测量精度高。
缺点
输出信号为模拟量,需要配合后 续电路进行信号处理;对安装位 置和轴系要求较高,需要专业人 员安装调试。
05
未来旋转变压器的发展趋势
新型旋转变压器的研发
研发高精度、高效率的旋转变压器
随着科技的发展,对旋转变压器的精度和效率要求越来越高,未来将会有更多新 型的旋转变压器被研发出来,以满足各种应用需求。
微型化、集成化旋转变压器
随着微电子技术的发展,微型化和集成化的旋转变压器将成为未来的重要研究方 向,这将有助于减小设备的体积和重量,提高其便携性和可靠性。
02
感应电动势的大小和方向随转子 的位置和极数而变化,从而输出 与转子位置成比例的电压信号。
旋转变压器的控制方式
旋转变压器可以采用模拟控制和数字控制两种方式。
模拟控制方式通过调整励磁电流的大小和方向来控制旋转变压器的输出电压信号。
数字控制方式则通过数字信号处理器(DSP)或微控制器(MCU)对旋转变压器进 行数字化控制,实现更高的控制精度和动态性能。
根据故障现象,结合以上方法,逐步排查 故障原因,采取相应的措施进行排除。
旋转变压器的保养建议
01
02
03
定期进行维护保养
建议每年对旋转变压器进 行一次全面的维护保养, 包括清洗、检查、紧固等 。

旋转变压器PPT课件


多相旋转变压器具有较 高的精度和线性度,适 用于高精度测量和控制 系统中。
根据用途分类:旋转变 压器可分为标准型和特 殊型两种类型。
标准型旋转变压器主要 用于测量和控制系统中, 而特殊型旋转变压器则 根据特定需求进行定制, 如用于高温、高压、腐 蚀等恶劣环境下的旋转 变压器。
03 旋转变压器的应用
对安装和调整要求较高
旋转变压器的安装和调整要求较 高,需要专业的技术人员进行操 作,否则可能会影响测量精度和 稳定性。
对工作环境要求较高
旋转变压器对工作环境的要求较 高,需要在干燥、无尘、无振动 的环境中工作,以确保测量精度 和稳定性。源自 05 未来旋转变压器的发展趋 势
提高精度和稳定性
优化设计
智能化控制
通过改进结构设计、优化材料和制造 工艺,提高旋转变压器的精度和稳定 性。
结合传感器技术和控制算法,实现旋 转变压器的智能化控制,提高其稳定 性和可靠性。
误差补偿技术
采用先进的误差补偿技术,如数字补 偿技术,对旋转变压器的输出进行精 确调整,提高其测量精度。
降低成本和体积
优化生产工艺
通过改进生产工艺和降低制造成 本,实现旋转变压器成本的降低。
01
旋转变压器主要由定子 和转子组成。
02
定子上有励磁绕组,而 转子上则有感应绕组。
03
04
定子和转子之间存在气 隙,以减少磁阻并提高 磁耦合效率。
旋转变压器的结构紧凑, 通常用于高精度测量和 控制系统中。
旋转变压器的工作原理
01
02
03
04
当励磁绕组中通入交流电时, 会在定子中产生一个旋转磁场

详细描述
在汽车领域,旋转变压器用于检测曲轴位置、气门开度等,实现发动机的精确控制;在航空领域,旋转变压器用 于检测飞行器的姿态和角位置;在能源领域,旋转变压器用于风力发电机的转速和角度监测;在工业自动化领域, 旋转变压器用于数控机床、包装机械等设备的运动控制和位置检测。

旋转变压器工作原理PPT课件


分辨率高、通用接口
可靠性较差
分辨率高、可绝对定位
成本高,可靠性较差
可靠性高,高精度、可绝对定 位
使用麻烦
可靠性最高,结构简单紧凑 精度偏低,使用麻烦
02 旋转变压器的类型
02 旋转变压器的类型
从电机原理来看, 旋转变压器又是 一种能旋转的变压器。 这种变压器 的原、 副边绕组分别装在定、 转 子上。 原、 副边绕组之间的电磁 耦合程度由转子的转角决定, 故转 子绕组的输出电压大小及相位必然 与 按转 电子 机的 极转 数角 的有 多关 少。 来分,常见的旋 转变压器一般有两级绕组和四极绕 组两种结构形式,两级绕组变压器 的定子和转子各有一对磁极。除此 之外,还有多极旋转变压器,用于 高精度检测系统。
旋转变压器
演讲人:
CONTENT S
01 概述 02 旋转变压器的类型 03 正余弦旋转变压器 04 旋转变压器的使用
01 概述
01 概述
旋转变压器,又称同步分解器,是一种电磁式传感器,精密 测位用的机电元件,其输出电信号与转子转角成某种函数关系。 旋转变压器也是一种测量角度用的小型交流电动机,主要用来测 量旋作转为物体速的度转及轴位置角传位感移元和件角,速常度用。的有这 样几种:光学编码器、磁性编码器和旋转变 压器。由于制作和精度的缘故,磁性编码器 没有其他两种普及。光学编码器的输出信号 是脉冲,由于是天然的数字量,数据处理比 较方便,因而得到了很好的应用。早期的旋 转变压器,由于信号处理电路比较复杂,价 格比较贵的原因,应用受到了限制。因为旋 转变压器具有无可比拟的可靠性,特别是高 温,严寒、潮湿、高速、高振等。以及具有 足够高的精度,在许多场合有着不可代替的
精度 高 高 低
工艺性 差 一般 好
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ER为激磁绕组和输出绕组轴线重合时磁通φD在 该输出绕组中的感应电势。
BD D1
Uf1 D3
D4
ED
若φD在激磁绕组中的感应电势为 ED ,则:
D2
Z1ER1
Z4
Z3 ER2
Z2
ER / ED = WR / WD = kμ
WR 和 WD分别为输出绕组和激磁绕 组的有效匝数; kμ表示变比或匝数 比。
第6章 旋转变压器
第6章 旋转变压器
6.1 旋转变压器概述 6.2 正余弦旋转变压器的结构特点 6.3 正余弦旋转变压器的工作原理 6.4 线性旋转变压器 6.5 旋转变压器的应用举例 6.6 多级和双通道旋转变压器
第6章 旋转变压器
本章要求:
掌握正余弦变压器的结构特点 熟练掌握正余弦变压器的工作原理
这种输出特性偏离正余弦规律的现象称
为输出特性的畸变。
畸变的原因是什么?如何消除?
三、输出特性畸变原因
D1 BD D3 Uf1
Z3 Z4 接上负载ZL时,绕 组中有电流IR2 , IR2在气隙中 D4 产生相应的脉振磁场BZ 。
将BZ 分解为 BZd和BZq 。其中 直轴分量BZd对BD起去磁作用, 定子外加交流电源将输出电流
掌握线性旋转变压器的工作原理 了解旋转变压器如何提高精度 掌握旋转变压器的主要应用
6.1 概 述
旋转变压器——能转动的变压器,原、付 绕组分别放置在定、转子上。原、付绕组之间 的电磁耦合程度与转子的转角有关,因此,转 子绕组的输出电压也与转子的转角有关。
旋转变压器用途:
坐标变换
D1
Z4 Z1
Z2 Z3
电刷—固定在后端盖上,与滑环摩擦接触
Z3
Z2
旋变——高精度测位用控制电机
精密加工、特殊设计 • 互成90度绕组分布——提高精度 • 金属合金电刷、滑环——提高接触可靠性及寿
命 • 转轴——不锈钢 • 机壳——经阳极氧化处理的铝合金 • 全封闭结构—以适应冲击、振动、污染、潮湿
采用多级式——提高精度
Z1
D2
θ
Z4
增加,以维持D轴方向的合成 磁通(主磁通)基本不变(比
BZq
空载略微减小)。
Z3
Bz BZd
IR2 Z2
ZL交轴分量BZq无外加励磁与其平 衡。因此,交轴分量BZq是引
起输出电压畸变的主要原因。
D1
∑BD D3 Uf1
BD D4
BZq = BZ cosθ
q BZ cosθ
Z1
Eq34 BZ cos2θ
在一定的转角下, Eq34 正比于 BZ ,而BZ正比于 IR2 ,所以负载电流越大, Eq34也越大,输出特 性偏离正弦函数关系就越远。
6.3 正余弦旋转变压器的工作原理
一、旋转变压器空载时
输出绕组Z1 Z2和Z3 Z4以及定子交轴绕组D3D4开路, 激磁绕组施加交流激磁电压Uf1 。
BD D1
Uf1 D3
D4
D2
此时气隙中将产生一个脉振磁 场BD ,该磁场的轴线与定子激磁 绕组D1D2的轴线重合。
Z1 θ Z3
Z4 设定子绕组D1D2轴线和余弦输出 绕组Z1 Z2轴线的夹角为θ
D2
三角函数计算和数据传输 将旋转角度变为电压信号
2914旋转差动变压器 2595旋转变压器
2532旋转变压器 (高频)
2909旋转变压器(低频)
分类
• 正余弦旋变 XZ • 线性旋变 XX • 比例式旋变 XL
• 旋变发送机 XF • 旋变差动发送机
XC • 旋变变压器 XB
• 单极对旋变 • 多级对旋变——提
二、旋转变压器带载时
D1 BD D3 Uf1
实验表明,图中正弦输出绕 D4 组Z3Z4带上负载以后,其输出
电压不再是转角的正弦函数。
Z1
D2
θ
Z4
Z3
ZL
Z2
空载
Um Um
负载
0
90o

空载 Um Um
左图表示了旋转变压
器空载和负载时输出特性
的对比。
Why?
负载
负载电流越大,
0
90o 二者的差别也越大。
高精度
• 接触式旋变——有 电刷和滑环间的滑 动接触
• 无接触式旋变
6.2 正余弦旋转变压器的结构特点
定子
铁心—电工钢片叠成,外圆上均布有齿槽
励磁绕组 D1D2
绕组
交轴绕组 D3D4
D3
D1 D4
旋变
铁心—电工钢片叠成,外圆上均布有齿槽
D2
转子 绕组 余弦绕组 Z1Z2
Z1
正弦绕组 Z3Z4
Z4
滑环(4个)—与转子绕组引出线相接
Z2
D1 BD D3 Uf1
脉振磁场将在转子的输出
D4
绕组Z1 Z2和Z3 Z4中感应变压 器电势。
思考:
D2
Z1 θ
1 、输出绕组Z1 Z2和Z3 Z4中 感应变压器电势的相位如何?
Z4
2、输出绕组Z1 Z2和Z3 Z4中
Z3
感应变压器电势的大小与什 么有关?
Z2
D1
BD D3
D4 假设脉振磁场BD的磁通为φD
旋转变压器正弦输出绕组Z3Z4接上负载后,除 了存在ER2 = - kμ Uf1 sinθ电势外,还附加了正比 于BZ cos2θ 的电势Eq34 。
Z1 θ Eq34 Z4
BZq
Bq34 Z3
ቤተ መጻሕፍቲ ባይዱ
ER2 Bz BZd
IR2
Z2
Eq34的出现破坏了输出电压随 转角作正弦变化的关系,造
ZL 成输出特性的畸变。
D2
θ
BZq θ
Z3 Bz BZd
Z4
IR2 Z2
设 q与输出绕组Z3Z4交 链的磁通为 q34 ,则
q34 = q cosθ
ZL
q34 BZ cos2θ
磁通 q34在Z3Z4绕组中所产生的感应电势也是
一个变压器电势,其有效值为
Eq34= 4. 44 f WRφq34 BZ cos2θ
Uf1
旋转变压器激磁磁通φD在正、
余弦输出绕组Z3Z4和Z1 Z2 中
D2
感应变压器电势。
Z1
φD
φDcos θ θ
ER1
Z4
φDsin θ
Z3
ER2
Z2
ER1= 4. 44 f WRφD cosθ = ER cosθ
ER2= 4. 44 f WRφD cos(θ+90o) = -ER sinθ
ER1= 4. 44 f WRφD cosθ = ER cosθ ER2= 4. 44 f WRφD cos(θ+90o) = -ER sinθ
则得: ER1 = kμ ED cosθ
ER2 = - kμ ED sinθ
BD D1
忽略激磁绕组的电阻和漏抗,
Uf1 D3
D4
ED
则ED = Uf1 ,得:
D2
ER1 = kμ Uf1 cosθ
Z1ER1
Z4 ER2 = - kμ Uf1 sinθ
Z3 ER2
Z2
上式表明当电源电压不变时,输 出电势与转子转角θ有严格的正、 余弦关系。
相关文档
最新文档