23.1图形的旋转课件.ppt

合集下载

23.1《图形的旋转》课件

23.1《图形的旋转》课件

归纳新知: 归纳新知: • 共同特点:如果把时针、风车风轮 共同特点:如果把时针、
• 当成一个图形,那么这些图形都可以绕 当成一个图形, 转动一定的角度. 着 某一固定点 转动一定的角度. • 像这样,把一个图形绕着某一点o转动一个 像这样, 旋转 角度的图形变换叫做______ ______, 角度的图形变换叫做______,点o叫 做旋转中心 ,转动的角叫做 旋转角 . • 如果图形上的点P经过旋转变为点P′,那 如果图形上的点P经过旋转变为点P′ P′, 么这两个点叫做这个旋转的对应点. 图形的旋转不改变图形的形状、 图形的旋转不改变图形的形状、 大小,只改变图形的位置. 大小,只改变图形的位置.
观察思考
问题
(1)钟表的指针在不停地旋转, (1)钟表的指针在不停地旋转,从3点到5点, 钟表的指针在不停地旋转 点到5 时针转动了多少度? 时针转动了多少度? (2)风车车轮的每个叶片在风的吹动下转动到 (2)风车车轮的每个叶片在风的吹动下转动到 新的位置. 新的位置. 这些现象有哪些共同特点?
. M

E C
4.如图,△ABC为等边三角形,D是△ABC 如图, 为等边三角形, 是 如图 为等边三角形 内一点,若将△ 经过旋转后到△ 内一点,若将△ABD经过旋转后到△ACP 经过旋转后到 位置,则旋转中心是__________,旋转角等 位置,则旋转中心是 A , 于_________度,△ADP是___________三 度 是 等边 三 60 角形. 角形 A
对比平移、 对比平移、轴对称两 种图形变换, 种图形变换,旋转变换 与它们有哪些共性和 区别, 3.如图,杠杆绕支点转动撬起重物,杠 如图 杆的旋转中心在哪里? 杆的旋转中心在哪里?旋转角是哪个 角?

《23.1 图形的旋转》优质课件(两套)

《23.1 图形的旋转》优质课件(两套)
平移: 平移的方向 平移的距离
仅靠平移 无法得到
下图由四部分组成,每部分都包括两个小”十”字, 红色部分能经过适当的旋转得到其他三部分吗?能经过 平移吗?能经过轴对称吗?还有其他方式吗?
旋转: 旋转中心 旋转角 旋转方向
整个图形可以看作是
左边的两个小“十字”绕
O
着图案的中心旋转3次,分
别旋转90°、180°、
A.DE=3 B.AE=4 C.∠CAB是旋转角 D.∠CAE是旋转角
6.如图(1)中,△ABC和△ADE都是等腰直角三角形, ∠ACB和∠D都是直角,点C在AE上,△ABC绕着A 点经过逆时针旋转后能够与△ADE重合,再将图(1) 作为“基本图形”绕着A点经过逆时针旋转得到图 (2).两次旋转的角度分别为( A )
试一试
画出下图所示的四边形 ABCD 以 O为中心, 旋转角都为 60°的旋转图形.
A' D'
D B'
A
C
C'
B
O
拓展提升
平移和旋转的异同:
①相同:都是一种运动;运动前后不改变图形的形状和大小.
②不同
图形变换 平移 旋转
运动方向
运动量的衡量
直线
移动一定距离
顺时针或逆时针 转动一定的角度
典例精析
二 旋转的性质
合作探究
A
. A′
△ABC是如何运动 到△A′B′C的位置?

绕点C逆时针旋转45°.
B′
... 45°
CM
B
根据上图填空. 旋转中心是点_____C_____; 图中对应点有 __点__A_与__点__A_′_,点__B_与__点__B__′,_点__M_与__点__M__′,_点__N_与__点__N_′; 图中对应线段有 __线__段__C_A__与__C_A_′_、__C_B_与__C__B_′、__A_B__与__A_′B__′ ____. 每对对应线段的长度有怎样的关系? 相等 图中旋转角等于__4_5_°____.

23.1图形的旋转(第二课时)课件.ppt

23.1图形的旋转(第二课时)课件.ppt
旋转的概念:
在平面内,将一个图形绕着一个定点沿某个方向 转动一个角度,这样的图形运动称为旋转.
旋转的性质:
对应点到旋转中心的距离相等;(保距性)
对应点与旋转中心所连线段的夹角等于旋转角;
旋转前、后的图形全等(。保形性) (保角性)
图形变换: 平移、轴对称、旋转。 (全等变换)
简单的旋转作图
例1 将A点绕O点沿顺时针方向旋转 6点0?的. 旋转作法
旋转性质:在图形旋转中,对应线段的夹角即为旋 转角(保角性质的派生).
例4、如图是一个直角三角形的苗圃,由正方形
花坛和两块直角三角形的草皮组成,如果两个直
角三角形的两条斜边长分别为3米和6米,你能求
出草皮的面积是多少?
M
A
D
6
C B
3 FE
在几何中,旋转的目的是什么?
?在初中几何中,任何全等变换的目的都是为了 使已知条件在特定的图形中汇聚。
2. 将点B绕点O顺时针旋转 60 ?, 得点D ;
3. 连接CD, 则线段CD即为所求作 .
B
注意:利用旋转的性质作旋转图形,关键是如何 保距和转后,
顶点A的对应点为点 D,试确定顶点 B、
C的对应点 E、F的位置,以及旋转后
的△DEF
.D A
.O
B
C
简单的旋转作图
2、如图所示,△ ABC绕某点旋转后, 边AB旋转到A' B'的位置,请确定旋转 中心并画出旋转后的△ A'B'C' 。
A B'
B
C
A'
A
D
E
B
C
? 例3 如图,E是正方形ABCD中CD边上任意一点,

人教版数学九年级上册第二十三章《23.1 图形的旋转》课件

人教版数学九年级上册第二十三章《23.1 图形的旋转》课件
= 3 ,OA ′ =5 ,旋转角等于44 ° .
2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt
△ADE,点B的对应点D恰好落在BC边上.若AC= ,
∠B=60 °,则CD的长为(D )
A. 0.5
B. 1.5 C.
D. 1 E
C
A
D B
3.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转 45°而成的. (1)若AB=4,则S正方形A′B′C′D1′=6 ; (2) ∠BAB ′= 45°, ∠B′AD= 45.°
怎样来定义这种图形变换?
把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.
风车风轮的每个叶片在风的吹动下转动到新的位置.
旋转的定义
把一个图形绕着平面内某点O沿 某个方向转动一个角度的图形变 换叫做旋转.
P
对应点
O
旋转中心
旋转角
P′
1.这个定点O称为旋转中心.
2.转动的角称为旋转角. 3.如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点. 4.转动的方向分为顺时针与逆时针.
B
A C
O
F
D
E
二、旋转的性质
活动:如图,在硬纸板上,挖出一 个△ABC,再挖一个小洞O作为旋转 中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形图案 (△ABC),然后围绕旋转中心转动 硬纸板,再描出这个挖掉的三角形 (△DEF),移开硬纸板.
A
B C
D O
F
E
问题1 在图形的旋转过程中,线段OA A
归纳总结
确定一次图形的旋转时, 必须明确 旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度” 称之为旋转的三要素;②旋转变换同样属于全等变换.

九年级数学 23.1图形的旋转 课件

九年级数学 23.1图形的旋转 课件

(4)AO与DO的长有什么关系?BO与EO呢? AO=DO,BO=EO
(5)∠AOD与∠BOE有什么大小关系?
∠AOD=∠BOE
旋转的基本性质
旋转前、后的图形全等。
对应点到旋转中心的距离相等。
每一对对应点与旋转中心的连线所成 的角分. (1)指出它的旋转中心; (2)经过20分,分针旋转了多少度?
D F
G F D C
C
G A
E 图1
B
A E
B
2) 若将正方形AEFG绕点A按顺时针方向旋转, 连结DG,在旋转 的过程中,你能否找到一条线段的长与线段DG的长始终相等.并 以图2为例说明理由.
D G F A E 图2
C
B
解:
(2)分针匀速旋转一周需要60 分,因此旋转20分,分针 360 旋转的角度为 20 120
60
(1)它的旋转中心是钟表的轴心;
思考题:香港区徽可以看作是什么“基本图案” 通过怎样的旋转而得到的?
可以看作是一个花瓣连续4次旋转 所形成的,每次旋转分别等于720 , 1440 , 2160 , 2880
E
B F
C
练习、
3、如图∠C=30°,△ABC绕A点逆时 针旋转30°后得到△AB’C’,则图中 度数是30°的角有__________
A
1
B
2
4
3
C' C
B'
课堂回顾:这节课,主要学习了什么?
旋转的概念:
在平面内,将一个图形绕着一个定点沿某个方 向转动一个角度,这样的图形运动称为旋转
旋转的性质:
方法规律:作旋转后的图形可以转化为作旋转后的对 应点
练习、
1、如图正方形CDEF旋转后能与正方形 ABCD重合,若O是CD的中点那么图形上 可以作为旋转中心的点是_________

图形的旋转ppt课件

图形的旋转ppt课件

钟表的指针在不停地转动,从3 时到5时,时针转动了多少度?
风车风轮的每个叶片在风的吹 动下转动到新的位置。
O
O
60°
图23.1-1
图23.1-2
以上这些现象有什么共同特点呢?
以上这些现象有什么不同特点呢?
旋转中心
O
O
60°
旋转 三要素
图23.1-1
图23.1-2
旋转方向
旋转角
像这样,把一个平面图形绕着平面内某一点O转动一个角度,
(2)旋转了60°
(3)AC中点M
2.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转45° 而成的。
(1) 若AB=4,则S正方形A′B′C′D′=

(2) ∠BAB ′= ,
∠B′AD= 。
(3) 若连接BB′,
则∠ABB′=

3. 如图,已知正方形 ABCD 的边长为 3,E、F 分别是 AB、BC 边上
的点,且∠EDF = 45°,将△DAE 绕点 D 按逆时针方向旋转 9;
证明:∵△DAE 绕点 D 逆时针旋转 90° 得到△DCM,
∴DE = DM,∠EDM = 90°.
A
D
∵∠EDF = 45°,∴∠FDM = 45°.
∴∠EDF =∠FDM.
B
实践操作,再探新知
探究二
平面中三角形的旋转
改变旋转中心的位置旋转的性质是否仍然成立?
O
C
O
A
B
三角形边上
C
O
A
B
三角形内部
C
A
B
三角形外部
1组和2组
3组和4组
5组和6组
小组合作探究(时间5分钟)

《图形的旋转》旋转PPT优质课件(第1课时)

《图形的旋转》旋转PPT优质课件(第1课时)
问题.
1.掌握旋转的有关概念及基本性质.
探究新知
知识点 1
旋转的概念
【观察】观察下列图形的运动,它有什么特点?
O
45°
B
A
探究新知
【思考】怎样
来定义这种图
形变换?
把时针当成一个图形,那么它可以绕着中心
固定点转动一定角度.
钟表的指针在不停地转动,从12时到4时,时
120°
针转动了______度.
探究新知
(3)△BPQ是什么三角形?
解:(1)旋转中心是点B.
(2)因为△ABC为等边三角形,当边AB旋转到边BC的位置
时,正好转过了60°,所以旋转角的度数是60°.
(3)BP=BQ,而旋转角又等于60°,所以∠PBQ=60°,这样
△BPQ就是一个等边三角形.
探究新知
【想一想】图形在旋转时,旋转的方向有几种?
解:(1)由题意可知:CD=CE,∠DCE=90°,
∵∠ACB=90°,
∴∠ACD=∠ACB﹣∠DCB,
∠BCE=∠DCE﹣∠DCB,
∴∠ACD=∠BCE,
AC=BC
在△ACD与△BCED≌△BCE(SAS).
链接中考
(2)当AD=BF时,求∠BEF的度数.
将△ABP旋转后能与△CBQ重合.
(1)旋转中心是哪一点?
(2)旋转角是多少度?
(3)△BPQ是什么三角形?
分析: (1)根据对应点到旋转中心的距离相等来确定旋转中
心的位置.(2)对应点与旋转中心连线的夹角都等于旋转角.(3)
由旋转角和对应边的关系可以得到答案.
探究新知
(1)旋转中心是哪一点?
(2)旋转角是多少度?
∴∠BE′C=∠BE′E+∠EE′C=135°.

23.1图形的旋转第2课时.ppt

23.1图形的旋转第2课时.ppt

B′ A
C
B
O1
绕 O1 顺时针旋转 30°
B 绕 O2 顺时针旋转 30°
2.探究新知
问题4 画出下图所示的四边形 ABCD 分别以 O1, O2 为中心,旋转角都为 30°的旋转图形.
D
O2
A
C
D
D′
C′
A′ B
A
D′ C C′
O1 B A′
B′
B′
绕 O1 逆时针旋转 30°
绕 O2 逆时针旋转 30°
2.探究新知
问题4 画出下图所示的四边形 ABCD 分别以 O1, O2 为中心,旋转角都为 30°的旋转图形.
D A
O2 C
B
O1
2.探究新知
问题4 画出下图所示的四边形 ABCD 分别以 O1, O2 为中心,旋转角都为 30°的旋转图形.
A′ D A B′
D′
C′ C
D′ A′
O2
D C′
A′ D′
A′ D′
D B′ C′
A
C
B′
C′
D
A
C
B
O
B
O
顺时针旋转 30°
顺时针旋转 60°
2.探究新知
问题3 画出下图所示的四边形 ABCD 以 O 点为中 心,旋转角分别为 30°,60°的旋转图形.
D
D
A
C
A
C
D′ B C′
B
O
C′
O
A′ B′
逆时针旋转 30°
D′
A′
B′
逆时针旋转 60°
课件说明
• 学生在上节课已经学习了旋转概念、旋转的性质.这 为本节学习奠定了一定的基础.这节课就来具体应用 一下.选择不同的旋转中心,不同的旋转角度,旋转 同一个图形,观察出现的不同效果.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档