用混合法测固体的比热容

合集下载

混合法测量固体比热容

混合法测量固体比热容

实验报告姓名:叶洪波学号:PB05000622固体比热容的测量*实验原理1.混合法测比热容设一个热力学孤立体系中有n 种物质,其质量分别为m i ,比热容为c i (i=1,2,…,n )。

开始时体系处于平衡态,温度为CT 1,与外界发生热量交换后又达到新的平衡态,温度为T 2。

若体系中无化学反应或相变发生,则该体系获得(或放出)的热量为))(...(122211T T c m c m c m Q n n -+++= (1)假设量热器和搅拌器的质量为m 1,比热容为c 1,开始时量热器与其内质量为m 的水具有共同温度T 1,把质量为m x 的待测物加热到T ’后放入量热器内,最后这一系统达到热平衡,终温为T 2。

如果忽略实验过程中对外界的散热或吸热,则有))(0.2()'(1231112T T cm K VJ c m mc T T c m x x -⋅⋅++=--- (2) 式中c 为水的比热容。

310.2--⋅⋅cm K VJ 代表温度计的热容量,其中V 是温度计浸入到水中的体积。

2.系统误差的修正在量热学实验中,由于无法避免系统与外界的热交换,实验结果总是存在系统误差,有时甚至很大,以至无法得到正确结果。

所以,校正系统误差是量热学实验中很突出的问题。

为此可采取如下措施:(1) 要尽量减少与外界的热量交换,使系统近似孤立体系。

此外,量热器不要放在电炉旁和太阳光下,实验也不要在空气流通太快的地方进行。

(2) 采取补偿措施,就是在被测物体放入量热器之前,先使量热器与水的初始温度低于室温,但避免在量热器外生成凝结水滴。

先估算,使初始温度与室温的温差与混合后末温高出室温的温度大体相等。

这样混和前量热器从外界吸热与混合后向外界放热大体相等,极大地降低了系统误差。

(3) 缩短操作时间,将被测物体从沸水中取出,然后倒入量热器筒中并盖好的整个过程,动作要快而不乱,减少热量的损失。

(4) 严防有水附着在量热筒外面,以免水蒸发时带走过多的热量。

用混合法测定金属块比热的实验方法

用混合法测定金属块比热的实验方法

用混合法测定金属块比热的实验方法
嘿,你知道不?混合法测金属块比热超有趣!先准备好一个量热器,就像个魔法盒子。

把已知温度的水倒进量热器里,这水就是小魔法师。

再把加热到一定温度的金属块迅速放进量热器,哇塞,这就像一场激烈的魔法碰撞。

然后赶紧盖上盖子,防止热量跑掉,就像给魔法加个盖子。

这时候开始记录水温的变化,通过公式就能算出金属块的比热啦。

测量的时候一定要小心哦!那滚烫的金属块可不是好惹的,万一不小心碰到,那可就惨啦!所以得戴手套,像个超级英雄一样保护好自己。

量热器也得放稳喽,不然打翻了可就糟糕啦。

这方法能在好多场景用呢!比如在物理实验室里,同学们都可以用这个方法探索神秘的比热世界。

它的优势可不少呢,操作相对简单,成本也不高,就像个实惠又好用的小工具。

我给你讲个实际案例哈。

有一次在实验室,大家用混合法测金属块比热,那场面可热闹啦。

看着水温一点点变化,大家都紧张得不行,最后算出结果的时候,那叫一个兴奋。

这方法真的超棒,让我们对物理知识有了更深刻的理解。

混合法测金属块比热就是这么厉害,你还不赶紧试试?。

固体比热容

固体比热容

c0
4.取出量热器的内筒,称其总质量并减去 m+ m ,即为 1 水的质量 m ; 0 5.小量筒测出温度计浸入水中的体积V;另换温水,重 复上述实验一次。 6.实验时应注意 (1)本实验的误差主要来自温度的测量,因此在测量温 度时要特别注意,读数迅速且要准确(准确到0.1℃); (2)倒入量热器中的温水不要太少,必须使投入的金属 块悬挂浸没在其中。 水的比热容 c0 为 4.187×103 J ⋅ kg−1⋅oC−1
实验结果分析和处理
1.将实验中测出的各个数值填入下表:
前8分钟 t(℃) 次 1 2 3 4 t 次 (℃) 5 6 7 8 次 1 2 3 4 中间2分钟 t(℃) 次 5 6 7 8 t(℃) 次 1 2 3 4 后8分钟 t(℃) 次 5 6 7 8 t(℃)
t2(℃) m 0(kg) m (kg) m1(kg) C(J·k—1·℃—1)
在上述混合过程中,实际上系统总要与外界交换热量, 这就破坏了(1)式的成立条件。为消除影响,需要采用散 热修正。本实验中热量散失的途径主要有三个方面。第一, 若用先加热金属块投入量热器的混合法,则投入前有热量损 失,且这部分热量不易修正,只能用尽量缩短投放时间来解 决;第二,将室温的金属块投入盛有热水的量热器中,混合 过程中量热器向外界散失热量,由此造成混合前水的温度与 混合后水的温度不易测准。为此,绘制水的温~时曲线,
实验仪器
电子温度计;量热器;天平
实验步骤
测环境温度 测内桶和搅拌器质量 加水,测总质量 备冰 投冰,搅拌,测温 测至系统温度有上升为止 测内桶及水总质量 测环境温度 绘制温度时间曲线,求冰的溶解热
注意事项
投冰前应将其拭干,且不得直接用手触摸;其质量 不能直接放在天平盘上称衡,而应由投冰前、后量 热器连同水的质量差求得。 为使温度计示值确实代表系统的真实温度,整个实 验过程中(包括读取前)要不断轻轻地进行搅拌 (搅拌的方式应因搅拌器的形状而异)。

比热容的测定方法

比热容的测定方法

比热容的测定方法
1. 混合法呀,就像你调鸡尾酒一样。

把不同温度的东西放一块儿,然后通过测量温度变化来算出比热容呢!比如说把热水和冷水混在一起,你想想看这多有意思呀!
2. 量热计法,这就像是给物体做个专门的体检。

把东西放进去,仔细测量各种数据,最后找到它的比热容,哇,是不是感觉很专业呢!
3. 冷却法呀,你可以联想一下给发烧的人降温的过程。

我们让热的物体慢慢冷却,通过观察冷却的情况来确定比热容,这很神奇吧!
4. 绝热法,这不就像是给物体包上一层温暖的毛毯嘛!看看它在绝热的情况下温度怎么变化,然后就能算出比热容啦,是不是很妙?
5. 电加热法,就好像给物体通上电流来取暖一样。

通过电的作用和温度的变化来搞清楚比热容,是不是很独特呀!
6. 我们还可以用热线法,想象一下有根热线在探测物体呢。

靠它来获取信息从而得到比热容,多好玩呀!
7. 辐射法,这如同太阳光照在物体上一样。

研究这种辐射带来的影响来测定比热容,很新奇吧!
8. 声波法呢,就像是用声音去和物体交流。

通过声波的传播和反应来找出比热容,哇塞,这也太独特了吧!
9. 还有相变法,就好比水变成冰的过程。

关注这个过程里的各种变化来确定比热容,太有意思啦!
我觉得这些测定比热容的方法都各有各的奇妙之处,都值得我们去深入了解和探索呀!。

金属比热容测量实验中误差的来源探讨和修正

金属比热容测量实验中误差的来源探讨和修正

金属比热容测量实验中误差的来源探讨和修正Prepared on 24 November 2020天津师范大学本科毕业论文(设计)题目:金属比热容测量实验中误差的来源探讨和修正学院:物理与电子信息学院学生姓名:于永洋学号:07506015专业:物理学年级:2007级完成日期:2011年5月指导教师:曹猛测量金属比热容实验中误差的来源探讨和修正于永洋(天津师范大学物理与电子信息学院)摘要:金属比热容的测量是大学物理中的一个经典实验,但由于在实验过程中受外界环境影响因素较大,造成测量结果往往有一定偏差。

本研究分析了混合法测量金属比热容实验中可能产生实验误差的各种因素,对误差对结果的影响进行分析,并提出改进的实验方法用以减小误差的影响。

关键词:误差、比热容、混合法Error to explore and fixed in metal specific heat capacitymeasurementYU YONGYANG(College of Physics and Electronic Information Science, Tianjin Normal University) Abstract:Specific Heat capacity measuring in metal is the classic college physics experiment.Certain deiation often measurement results because of the experimental process by external environment factors. This study analyzes various factors of the error by the cooling method and hybrid method.Analysing the influence of the error of the results and some improvements to the experimental method to lower the error influence.Keywords:error, specific heat capacity, hybrid method目录引言 (1)一、研究背景 (1)二、实验仪器与原理 (2)(一)混合法测量物体比热容 (3)三、实验结果与误差讨论 (4)(一)混合法测量结果与误差分析 (7)1.测量数据与结果 (7)2.产生的误差及影响分析 (8)3.散热修正 (8)四、结论 (9)致谢 (10)参考文献 (10)引言:物理实验过程就是对各种物理量进行测量的过程。

实验六 固体比热容的测量(混合法)

实验六 固体比热容的测量(混合法)

实验六固体比热容的测量(混合法)固体比热容指单位质量的热容量,也是特定粒子电子、原子、分子等结构及其运动特性的宏观表现。

测量固体物质比热容对于了解固体物质性质,物质内部结构等都具有重要的意义,常用于测量固体物质比热容的方法有动态法、混合法、冷却法等。

【实验目的】1、掌握基本的量热方法——混合法。

2、测固体的比热容。

【实验仪器】热学综合实验平台、量热器、加热井装置【实验原理】金属是重要的固态物质,本书对固体物质比热容的测量重点介绍了金属比热容的测量,金属比热容是金属物质的重要特性,本实验重点介绍混合法测量金属比热容。

温度不同的物体混合后,热量将由高温物体传递给低温物体。

如果在混合过程中和外界没有热交换,最后将达到均匀稳定的平衡温度,在这过程中,高温物体放出的热量等于低温物体所吸收的热量,此称为热平衡原理。

本实验即根据热平衡原理用混合法测定固体的比热。

将质量为m、温度为T1 的金属块投入量热器的水中。

设金属块、水、量热器内筒、搅拌器和温度计的比热分别为c、c0、c1和c2,质量分别为m、m0、m1和m2,待测物投入水中之前的水温为T2 。

在待测物投入水中以后,其混合温度为θ,则在不计量热器与外界的热交换的情况下,将存在下列关系:mc (T1 −θ ) = ( m0c0 + m1c1 + m2c2 ) (θ−T2 )即:)-()-)(++(=112 2211θTmT θcmcmcmc上述讨论是在假定量热器与外界没有热交换时的结论。

实际上,只要有温度差异就必然会有热交换存在,因此,必须防止或进行修正热散失的影响。

热散失的途径主要有三:第一是加热后的物体在投入量热器水中之前散失的热量,这部分热量不易修正,应尽量缩短投放时间。

第二是在投下待测物后,在混合由外部吸热和高于室温后向外散失的热量。

在本实验中,由于测量的是导热良好的金属,从投下物体到达混合温度所需时间较短,可以采用热量。

固体比热测定

固体比热测定

固体比热容的测定指导老师:王亚辉小组成员:李彦辉张燚杨朋波胡宏明电热法测固体比热容实验的改进1引言在传统的混合法测固体比热容实验中, 量热器等的吸热和散热一直是制约实验结果准确度的一个关键因素. 为了消除此类热量传递对测量结果的影响, 在一定的实验条件下, 可以近似地用作图法消除热交换的影响, 其次还要考虑量热器、搅拌器等的等效比热容和质量, 处理过程相当麻烦. 本实验采用电热法, 通过控制放试件和不放试件两种情况下的初末温度和液面高度, 将上述种种热散失抵消掉, 使测量较准确, 操作较简单. 另外, 本实验采用传感器加模拟电路来测量温度, 使温度的测量更准确; 用不锈钢杜瓦瓶代替传统的量热器筒和保温套筒,减少了向外界的热量散失, 且使用方便2实验改进方法实验装置如图1所示. 待测样品及水放在杜瓦瓶中, 并设置了AD590温度传感器和电加热器、搅拌器. 水面高度为杜瓦瓶的3/ 5左右;样品不宜太大或太小; AD590和样品大致位于水深的中部; 电加热器置于偏下部.设加热电压为U, 电流为I, 则电加热器在时间T内放出的热量为UIS. 此热量使量热器的整体温度由t1 升至t2. 根据能量守恒定律, 可得如下方程UIT= (mc+ m0c0+ C1 + C2 + C3) (t2 - t1) + ΔQ ( 1)式中, m, c为待测物的质量和比热容; m0, c0 为水的质量和比热容; C1, C2, C3 分别为在此实验状况下量热器( 包括搅拌器) 、电加热器、温度传感器的等效热容量; ΔQ为其它因素散失的热量.本实验测量的困难在于C1, C2, C3 及ΔQ均为未知的参量. 为解决这一问题, 采用同等实验条件下的系统误差差值消去法.实验分两步进行: 第一步不加待测试件, 加热T1时间后, 系统从t1 升温至t2; 第二步放入t1温度的水和试件, 且要求水位和第一步等高, 加热T2 时间后, 同样使温度升高到t2. 据( 1) 式有UIT1 = (m01c0+ C1+ C2 + C3)(t2 - t1) + Δ Q1 ( 2)UIT2= (m02c0 + C1+ C2+ C3+ mc)(t2- t1) + ΔQ2( 3)( 2) 式减去( 3) 式得UI ( T1 - T2) =- mc( t2- t1) + ( m01 - m02) c0( t2 - t1) +ΔQ1 -ΔQ2故\( m01- m02) c0( t 2- t 1) - UI( T1- T2) +Q1 -Q2∆∆( 4) c=m( t2- t1)考虑到在前后两步测量中, 初末温度相同,水的高度相同, 环境条件也相同, 因此量热器热量交换情况基本相同, 其差别仅在于电加热的时间T1 与T2 略有差别, 造成ΔQ1 与ΔQ2 略有不同. 由于用了高真空杜瓦瓶作为量热器, ΔQ1与ΔQ2 均很小, 而其差值将更小. 测试结果也表明平衡后系统的温度随时间的变化极缓慢, 如图2所示. 因此, 可以忽略该项差别, 认为ΔQ1- ΔQ2= 0, 则( 4) 式化得为( m01- m02) c0( t 2- t 1) - UI( T1- T2)c=m( t2- t1)本实验应该注意的几个问题:1) 本实验的关键之一在于两步实验初末温度的控制, 最好相同, 稍有差别也是可以的, 但一定要保证t2-t1 相同.2) 加热过程中要充分地、不断地搅拌, 否则传感器即数字毫伏表反映的温度与实际平衡温度会有差别.3) 计时器的开关要迅速及时, 必要时可两人配合. 关闭加热器和计时器后应继续搅拌片刻, t2 应取最大读数值.4) 要选择恰当的电加热功率. 功率太大, 会使计时器的控制难度加大, 且增加量热器内温度的不均匀性; 太小会使实验时间延长, 增大散热引起的误差.数据记录:烧杯:m1=66.3 筒:m2=66.6 筒+水:m3=212.1g筒+水+珠:m4=298.7g 烧杯+铜珠:m5=166.4g只加水: U=11.99v I=1.026A稍加热停止时末温T0 T1 T221.2℃21.8℃22.2℃继续加热停止时末温时间T3 T4 T132℃32.4℃599.1s水+珠:稍加热停止时 末温 '0T '1T '2T21.0℃ 21.7℃ 22.2℃继续加热停止时 末温 时间'3T '4T '5T31.8℃ 32.4℃ 590.1s数据处理:m=m5-m1=100.1g m10=m3-m2=145.5gm20=m4-m-m2=132gC 测珠=m m m 2010-*Co 水-)24()21(T T m t t VI -- =1.1001325.145-×4.2×103J/g ℃-)2.224.32(**1.100)1.5901.599(_*026.1*99.11103---J/(g ℃) =566.4 J/g ℃-108.4 J/g ℃=458 J/g ℃误差分析:因为数字毫伏表容许误差为0.1℃,电压表,电流表准确度分别为0.1V,0.01A,启停数字计数器的误差之和为0.4s,天枰的感量为0.02g.u( t1) = u( t2) = 0. 1/ 3 = 0. 06℃u( U) = 0. 1/ 3 = 0. 06Vu( I) = 0. 01/ 3 = 0. 006Au( Ʈ1) = u(Ʈ 2) = 0. 4/ 3 = 0. 23su( m01) = u( m02) = u( m) =0. 02/ 3= 0. 016g则故u( c) = u2( c1) + u2( c2) = 5J/ ( g *℃)取公认值480J/(g*℃)测量值与真实值之差与标准值取百分比 η=480458480 *100%=4.6% 在允许百分误差(5%)以内,故该实验测量比热容是可行的。

4 固体比热容的测量

4 固体比热容的测量

实验18 固体比热容的测量(一)混合法测量固体比热容[实验目的]1.学习量热的基本方法——混合法2.学习一种修正散热的方法——温度的修正3.测定金属的比热容[实验仪器]量热器、双壁加热器、蒸汽锅、电炉、水银温度计(0-50.0℃, 0-100℃)各一支、物理天平、停表、量筒。

[仪器介绍]1.量热器为了使实验系统(包括待测系统与已知其热容的系统)成为一个孤立系统, 我们采用量热器。

传递热量的方式有三种: 传导、对流和辐射。

因此必须使实验系统与环境之间的传导、对流和辐射都尽量减少, 量热2.外筒是双层结构, 空气封闭其中, 因为空气是热的不良导体, 故可避免空气传导而引起热量的损失;外筒上端的木盖可严密地盖着, 避免空气对对流所引起的热量损失;外筒的内壁和内筒的外壁均电镀得十分光亮, 可减少热辐射, 外筒的底部放上一个隔外筒的外表再包一层绒布, 这样就能使整个系统尽可能根据上述测量的T-t数据, 以T为纵坐标, 以t为横坐标, 即得如图(2—3—18—4)的T-t曲线。

A点对应的时刻就是测水温开始的时间 , B点对应的时刻就是, 而不是5分钟末的时间。

然后作图即得混合前后冷水的初温和末温T。

把各个物理量的测量值代入式(2-3-18-1)即可算出金属样品的比热容。

图(2—3—18—4)中的G点所对应的温度应为室温所在的位置, 这样才不影响温度的修正。

[实验内容和要求]1. 混合法测定铜块的比热容2.混合过程中散热的温度修正法3.混合前量热器(含水)系统温度低于室温(加冰块), 测量系统随时间吸热变化的温度。

4. 混合过程快速测量变化的温度5. 数据处理:Cx与标准值求百分误差[注意事项]1. 作温度值修正法曲线图, FE垂直于t轴, 满足S1=S2, 图中G点对应的温度接近室温为佳。

2. 从曲线图中定出初温T2和末温T。

[实验思考]请分析本实验主要的误差来源。

(二)冷却法测量金属的比热容[实验目的]学习冷却法测量金属比热容的方法[实验仪器]FB312型冷却法金属比热容测量仪[实验原理]根据牛顿冷却定律, 用冷却法测定金属的比热容是量热学常用方法之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验八 混合法测定固体比热容
一 实 验 目 的
1、掌握基本的量热方法——混合法。

2、测定金属的比热容。

二 实 验 仪 器
量热器,温度计,物理天平,停表,加热器,小量筒,待测物(金属块)。

量热器如图1所示,C为量热器筒(铜制),T为曲管温度计,P为搅拌器,J为套铜,G为保温用玻璃棉。

加热器如图2所示,待测物由细线吊在其中间的圆筒中,由蒸汽锅发出的蒸汽通过加热器的套筒中给待测物加热。

加热厚后将其下侧的活门K打开,就可将物体投入置于其下面的量热器中。

为了减少加热器排出的水蒸汽,可将排汽管插入冰和水的盆中,使蒸汽凝结成水。

三 实 验 原 理
温度不同的物体混合之后,热量将由高温物体传给低温物体。

如果在混合过程中和外界没有热交换,最后将达到均匀稳定的平衡温度,在这过程中,高温物体放出的热量等于低温物体所吸收的热量,此称为热平衡原理。

本实验即根据热平衡原理用混合法测定固体的比热。

将质量为m、温度为t2的金属块投入量热器的水中。

设量热器(包括搅拌器和温度计插入水中部分)的热容为q,其中水的质量为
m0,比热容为c0,待测物投入水中之前的水温为t1。

在待测物投入水中以后,其混合温度为θ,则在不计量热器与外界的热交换的情况下,将存在下列关系
(1)
图2
即 (2)
量热器的q可以根据其质量和比热容算出。

设量热器筒和搅拌器由相同的物质(铜)制成,其质量为m1,比热容为c1,温度计插入水中部分的体积为V,则
(3)
为温度计插入水中部分的热容,但V的单位为cm3。

也可以用混合法
测量量热器的热容q。

即先将量热器中加入水,它和量热器的温度为 ,其次将温度为的温水迅速倒入量热器中,搅拌后的混合温度为,则根据式(1),的
图3
即 (4)
但是用混合法测量热器热容q时,要注意使水的总质量和实际测比热容时水的质量m0大体相等,混合后的温度也应和实测时的混合温度尽量接近才好。

上述讨论是在假定量热器与外界没有热交换时的结论。

实际上只要由温度差异就必然会由热交换存在,因此,必须考虑如何防止或进行修正热散失的影响。

热散失的途径主要有三:第一是加热后的物体在投入量热器水中之前散失的热量,这部分热量不易修正,应尽量缩短投放时间。

第二是在投下待测物后,在混合过程中量热器由外部吸热和高于室温后向外散失的热量。

在本实验中由于测量的是导热良好的金属,从投下物体到达混合温度所需时间较短,可以采用热量出入相互抵消的方法,消除散热的影响。

即控制量热器的初温,使低于环境温度,混合后的末温则高于,并使。

第三要注意量热器外部不要有水附着(可用干布擦干净),以免由于水的蒸发损失较多的热量。

由于混合过程中量热与环境有热交换,先是吸热,后是放热,至使由温度计读出的初温和混合温度都与无热交换时的初温度和混合温度不同。

因此,必须对和进行校正。

可用图解法进行,如图3所示。

实验时,从投物前5,6分钟开始测水温,每30s测一次,记下投物的时刻与温度,记下达到室温的时刻作一竖直线MN,过作一水平线,二者
交于O点。

然后描出投物前的吸热线AB,与MN交于B点,混合后的放热线CD与MN交于C点。

混合过程中的温升线EF,分别与AB、CD交于E和F。


水温达室温前,量热器一直在吸热,故混合过程的初温应是与B点对应的,此值高于投物时记下的温度。

同理,水温高于室温后,量热器向环境散热,故混合后的最高温度是C点对应的温度,此值也高于温度计显
示的最高温度。

在图3中,吸热用面积BOE表示,散热用面积COF表示,当两面积相等时,说明实验过程中,对环境的吸热与放热相消。

否则,实验将受环境影响。

实验中,力求两面积相等。

此外,要注意温度计本身的系统误差。

高温度计在冰点时读数为,
温度计刻度值1℃对应的真实值为a,则温度计读数为时,其真实温度 (5)
每支温度计的和a值都标在仪器卡片上。

四 实 验 内 容
1、将蒸汽锅中加入半锅水,并和加热器连接好之后就开始加热。

2、用物理天平称衡被测金属块的质量m,然后将其吊在加热器当中
的筒中加热,筒中插入的温度计要靠近待测物。

3、按式3或4支确定量热器的热容q。

4、用烧杯盛低于室温的冷水,称得其质量为,将冷水倒入量热器(约为其容积的)后再称得烧杯的质量为,则量热器中水的质量。

开始测水温并记时间,每30s测一次,接连测下去。

5、当加热器中温度计指示值稳定不变后,再过几分钟测出其温度,就可将被测物体投放入量热器中。

投放时,将量热器置于加热器的下面,打开量热器上部的投入口和加热器下侧的活门,敏捷地将物体放(不是投)入量热器中。

记下物体放入量热器的时间和温度。

进行搅拌并观察温度计示值,每30s测一次,继续5分钟。

6、按图3绘制图,求出混合前的初温和混合温度。

7、将上述各测定值代入式(2)求出被测物的比热容及其标准偏差。

比热容的单位为。

水的比热容为。

量热器(包括搅拌器)是铜制的,其比热容为。

五 注 意 事 项
1、量热器中温度计位置要适中,不要使它靠近放入的高温物体,因为未混合好的局部温度可能很高。

2、的数值不宜于比室温低的过多(控制在2~3℃左右即可),因为温
度过低可能使量热器附近的温度降到露点,致使量热器外侧出现凝结水,而在温度升高后这凝结水蒸发时将散失较多的热量。

3、搅拦时不要过快,以防止有水溅出。

回答问题:如果用混合法测液体的比热,说明实验应如何安排。

附记:温度计插入水中部分的热容可如下求出。

已知水银的密度为,比热容为,其1的热容为。

而制造温度计的耶那玻璃的密度为,比热容为,其1的热容为,它和水银的很相近,因为温度计插入水中部分的体积不大,其热容在测量中占次要地位,因此可认为它们1的热容是相同的。

高温度计插入水中部分的体积为V(),则该部分的热容可取为1.9V(J.℃-1)。

V可用盛水的小量筒去测量。

相关文档
最新文档