泡沫金属的介绍及制备 36页PPT文档共36页
泡沫铜 制造方法

泡沫铜制造方法
泡沫铜是一种经过特殊加工制造而成的材料,具有良好的导电性、导热性和耐蚀性。
下面我们来介绍一下泡沫铜的制造方法。
泡沫铜的制造方法主要有三种:化学法、物理法和电解法。
下面我们将逐一介绍这三种制造方法。
化学法制造泡沫铜是通过化学反应产生泡沫状的铜,然后使用高温的氢气来将泡沫坚固化。
该方法具有生产成本低,可生产粗糙度较大的泡沫铜等优点。
物理法制造泡沫铜是通过高速旋转的轮子制造气泡,然后再通过冷却加固来形成坚固的泡沫铜。
该方法具有生产速度快,精度高的优点,但是成本较高。
电解法是制造泡沫铜的另一种方法,该方法是通过电化学反应将铜离子化合成泡沫铜。
该方法可以生产高精度的泡沫铜,并且可以精确地控制泡孔的大小和分布。
但由于加工复杂,生产成本较高。
无论哪种制造方法,泡沫铜的制造过程都需要对生产环境和工艺流程进行严格的控制,以确保产品的质量和性能。
总的来说,泡沫铜的制造方法多种多样,每种制造方法都有其适用的
场景和优劣势。
在实际生产中,应根据具体情况选择合适的制造方法,以确保生产效益和产品质量。
泡沫金属的介绍及制备3.1

密度 :150 kg /m3 ~ 300 kg /m3。
常见的泡沫金属?
1.泡沫铝及其合金质轻,具有吸音、隔热、减振、 吸收冲击能和电磁波等特性,适用于导弹、飞行器和 其回收部件的冲击保护层,汽车缓冲器,电子机械减 振装置,电磁波屏蔽罩等。
2.泡沫铜的导电性和延展性好,可将其用于制备电 池(载体)负极材料、催化剂载体和电磁屏蔽材料。
泡 沫 铝 电 极 电 池
6.泡沫铝有很强的电磁屏蔽性能。 与其它电磁屏蔽材料相比有以下优点:
( 1 ) 、超轻质量,低密度 ( 300 kg /m3 ~ 1 000 kg /m3) ; ( 2) 耐高温、低热导率、良好的阻尼性等; ( 3) 、可以成形为复杂的形状,是实体金属所不能比拟的。
泡沫铝板材属于优等级的电磁屏蔽材料,对频率200MHz以下电磁 波,屏蔽效能达到90dB。厚度20mm的铁板,附带泡沫塑料,其屏蔽 电磁波为50dB。单独20mm泡沫铝,屏蔽电磁波为90dB,重量是铁板 的1/50。
可以应用在一些需要屏蔽电磁波信号的设备上。如移动的坦克指战车 、歼20隐身飞机
7、隔声降噪 高速公路和高铁安装泡沫铝声屏障,经测量,泡沫铝声屏障 可以降噪10~20dB。是铝板声屏障降噪的两倍。
8、军事装备 笨重且防护性能低的钢筋混凝土导弹发射井盖用轻质防护性能高的泡沫铝 井盖所代替,每个井盖由120吨降低到20吨。 运20大飞机空军列装,用以空降20吨左右的重型装备,用泡沫铝板材缓冲 垫保障空降安全,舰船甲板、大桥防撞及制造应急支援大桥都可以应用泡沫铝 板材。
七、市场
人类发现金属有9000年历史,制造铝合金有200年历 史,研发泡沫材料不到100年历史,相比之下,泡沫铝 从50年代后期问世,到现在不到60年,是一个充满活力 的新型材料,产业为朝阳产业。他的发展势必促进军民 融合产业发展,有利于一带一路战略的快速发展。目前 行业的年发展速度超过50%,正处于爆发式发展的前夕 , 具有1000亿以上市场的巨大发展空间。随着新材料 战略的正确引领,通过科技研发领域的不断扩大,泡沫 铝行业正在进入一个健康的的高速发展期。
泡沫金属的制备,力学性能及其应用ppt课件

最新版整理ppt
16
三、泡沫金属的力学性能
3.阻尼能力
泡沫金属的阻尼能力一般为制备其所用金属材质的5-10倍。虽然其耗散系数仍远远低于聚合 物泡沫材料,但这种金属泡沫化后带来的阻尼能力的提高还是可以很好地加以利用的。
4.疲劳损坏
在泡沫金属的结构应用中,结构的强度会随时间和交变次数的增加而衰减。这种强度的衰减 主要是由于泡沫金属的内部裂纹的萌生和发展。在闭孔泡沫金属内,当孔缘沿着某一方向弯曲变 形时,孔胞面将会经受表层压力作用。在泡沫结构的交变变形中,存在一定的塑性变形累积,从 而使结构强度逐渐衰减。
电屏蔽 催化剂载体
良好的导电性,机械强度和低密度等特性使金属泡沫在电屏 蔽方面具有有人的前景
体积比表面积高,可赋予小型电极以很高的反应表面积
平台应力段过后是密实应变点,该点之后,泡沫金属完全被压缩而应力突然上升,失去吸能作用。
最新版整理ppt
15
三、泡沫金属的力学性能
2.拉伸性能
泡沫金属的拉伸应力-应变性能不同于压缩性能。如下图所示为一个泡沫制品的示例,泡沫金 属的整体屈服之前,其应力应变曲线斜率低于弹性模量,意味着很小的应变情形之下仍然有显著 的微塑性出现。超过屈服点之后,泡沫金属发生硬化,直至极限拉伸强度产生破坏为止。
最新版整理ppt
10
二、泡沫金属的制备
7. 中空金属球结构(开孔+闭孔)
制备出尺寸合乎要求的中空金属球颗粒并进行烧结等工艺进行密实处理。
最新版整理ppt
11
二、泡沫金属的制备
8.两种材料共密实或共铸造而其中一种材料可滤除(开孔)
将各自体积分数均不低于25%的两种粉末混合、密实,形成两相各自连续且 相互联结的双联结构。混合体压实后,在合适的溶剂中滤出其中另一种粉末。
泡沫金属的介绍及制备

制备方法
电沉积法
原理
泡沫镍(发泡镍)是一种孔隙率高、比表面积大,质轻,具有三维网状结构 的金属材料,可做为镍-氢电池和镍-镉电池的电极基板,是二次电池的主要材料 之一。
步骤: 聚氨酯泡沫塑料为基体——预处理加导电层——电化学沉积——热处理,去聚 合物——多孔金属
当圆锥形凹坑非常狭小时, 会产生较大的附加压力,气泡很难形核;
当圆锥形凹坑非常平坦时,气泡与基 体的附着面小。 都 不能成为有效的异质形核位置
胚胎气泡体积越 小,越容易形核
胚胎体积与圆锥顶角的关系
三种形核机制对比
Gasar凝固的金属 - 气体共晶生长区
共生生长:两相协同生长,具有共同的生长界面,依靠溶质原 子在界面处沿两相的横向交互扩散,彼此为相邻对方提供生长 所需的组元使两相等速前行,耦合生长,形成共生共晶组织。
结果分析
不同电流密度下沉积层的XRD图谱
结果分析
不同电流密度下镍沉积层的磁滞回线
每条回线所围面积均很小,损耗低 ,其剩磁、矫顽力几乎为零,表现出 超顺磁性。磁滞回线显示的磁导率 与饱和磁化强度随着晶粒尺寸的增 加而变大。这是因为晶粒平均粒径 越小,存在于晶粒之间的晶界相对越 多,对磁畴壁移动产生阻碍作用越大 ,磁导率越低。
难题
方案 在配置镀液时所选用的添加剂或络合剂应尽量不参与阴极电极反应,
同时要创造条件,尽量使金属离子析出时不析出或少析出氢气。 镍在阴极析出的电极反应(M 代表阴极非惰性杂质):
方程式1越易进行,方程式2、3进行的越少,则阴极析出的 镍越纯,发泡镍质量越好,电流效率及设备效率也越高。
某一离子在阴极上开始析出的难易,可以用平衡电位来判断:
泡沫金属的制备力学性能及其应用

泡沫金属的制备力学性能及其应用泡沫金属是指金属材料在冶金过程中通过特殊方法制得的具有开放孔隙结构的材料。
泡沫金属具有低密度、高比强度、优异的吸能性能、良好的导热性能等特点,因此被广泛应用于汽车、航空航天、建筑、能源储存等领域。
泡沫金属的制备方法多种多样,常见的有聚合物模板法、发泡剂法、自发性发泡法等。
其中,聚合物模板法是最常见的制备方法之一、首先,将金属粉末与粘结剂混合,然后将混合物填充到聚合物模板中,通过高温处理使粘结剂烧结,最后将聚合物模板去除,得到具有孔隙结构的泡沫金属。
泡沫金属具有优异的力学性能。
它具有高比强度和高吸能性能,可以有效地吸收能量和缓解冲击。
由于其孔隙结构的存在,泡沫金属具有优异的吸震性能,减小了任何外部力对机械结构的影响,因此泡沫金属常被用作冲击吸收材料、振动控制材料等。
此外,泡沫金属还具有良好的导热性能,可以作为热传导材料在热管理领域得到应用。
泡沫金属在汽车领域有广泛的应用。
它可以用来制作汽车碰撞保护材料,能够有效地吸收碰撞能量,保护车辆内部的人员安全。
此外,泡沫金属还可以应用于汽车排放系统中,用于减轻噪音和振动。
同样,在航空航天领域,泡沫金属也有重要的应用。
它可以用于制作航空航天器的结构材料、燃料储存材料等。
另外,泡沫金属还可以用于建筑领域。
其低密度和高比强度使其成为一种理想的建筑材料,可以用于制作轻质墙板、隔音材料、隔热材料等。
此外,由于泡沫金属具有优异的导热性能,它还可以用于太阳能热能储存系统以及建筑物的能源效率改善。
总之,泡沫金属作为一种具有开放孔隙结构的材料,具有低密度、高比强度、良好的吸能性能和导热性能等特点,因而在各个领域都有广泛的应用。
随着科技的进步,泡沫金属的制备方法将会更加多样化,其应用领域也将进一步扩展。
泡沫铝的制备技术

泡沫铝的制备技术泡沫铝是一种具有轻质、高强度和良好吸能特性的新型材料。
它由铝合金制备而成,通过控制气体发泡剂在融化的铝合金中释放气体,形成气孔结构。
在本文中,我将详细介绍泡沫铝的制备技术。
1.铝合金材料准备:选择适合的铝合金材料作为原料。
常用的铝合金包括铝硅合金、铝镁合金和铝锰合金等。
合金中的铝含量通常在80%以上。
2.铝合金材料预处理:将铝合金材料进行破碎、筛分和清洁处理。
破碎可以增加原料的表面积,有利于气体发泡剂的扩散和释放。
筛分可以控制原料的粒径范围,使气体发泡剂均匀地分布在铝合金中。
清洁处理可以去除杂质,提高泡沫铝的质量。
3.铝合金材料熔化:将预处理后的铝合金材料放入特定的熔炉中进行高温熔化。
铝合金的熔点通常在600-900摄氏度之间,熔化温度根据具体合金的种类和要求进行控制。
4.气体发泡剂注入:在铝合金熔融状态下,将气体发泡剂注入熔融金属中。
常用的气体发泡剂包括钠硼酸、钠铝酸盐和钠氢杂酸等。
气体发泡剂的选择和注入量可以根据要求进行调整,以得到所需的气孔结构。
5.发泡:在气体发泡剂注入后,通过搅拌或其他搅动方式,将气体发泡剂均匀地分散在铝合金中。
随着气体的释放,铝合金中形成大量的气孔结构。
气孔的大小和分布可以通过调整气体发泡剂的类型和用量来控制。
6.冷却和固化:在发泡过程中,由于气孔的形成,铝合金会逐渐冷却固化。
冷却过程中,泡沫铝的形状和结构会逐渐稳定。
7.切割和后处理:冷却固化后的泡沫铝可以进行切割和后处理。
切割可以根据具体需要,制作出不同形状和尺寸的泡沫铝制品。
后处理可以包括表面处理、热处理和物理性能测试等。
以上是泡沫铝的基本制备技术。
不同的制备方法和工艺参数会对泡沫铝的性能和结构产生不同的影响。
因此,在实际制备过程中需要根据具体要求进行优化和调整。
随着科学技术的不断进步,泡沫铝的制备技术也将得到更多的改进和发展,为泡沫铝的应用提供更广阔的空间。
泡沫金属的制备,力学性能及其应用

在制备过程中,控制好温度和时间,可以提 高泡沫金属的性能。
优化发泡剂的类型和浓度
通过调整发泡剂的类型和浓度,可以控制泡 沫金属的孔径和孔隙率。
控制压力和气氛
在某些制备方法中,控制好压力和气氛,可 以提高泡沫金属的性能。
02 泡沫金属的力学性能
抗压性能
总结词
泡沫金属具有优异的抗压性能, 能够承受较大的压力而不会发生 变形或破裂。
复合技术
通过与其他材料的复合,可以发 挥泡沫金属和复合材料各自的优 点,制备出具有优异性能的复合
材料。
未来发展方向和挑战
拓展应用领域
泡沫金属作为一种功能材料,应积极探索其在新能源、生物医学、 航空航天等新兴领域的应用。
提高性能
继续优化制备工艺,提高泡沫金属的各项性能指标,以满足更广泛 的应用需求。
详细描述
由于其独特的结构和孔隙率,泡 沫金属在压缩载荷下展现出良好 的塑性和稳定性,可以有效地分 散压力,防止局部应力集中。
抗拉性能
总结词
泡沫金属的抗拉性能较弱,容易在拉 伸载荷下发生断裂。
详细描述
泡沫金属的抗拉强度较低,主要原因 是其孔隙结构在拉伸过程中容易产生 应力集中,导致材料断裂。
抗冲击性能
不同类型的发泡剂和浓度对泡 沫金属的孔径和孔隙率有显著 影响。
制备温度和时间
温度和时间是影响泡沫金属性 能的重要因素,温度和时间的 控制对制备高质量的泡沫金属 至关重要。
压力和气氛
在某些制备方法中,压力和气 氛也是重要的影响因素。
制备过程的优化策略
优化原料的粒度和纯度
选择合适的粒度和纯度的原料,可以提高泡 沫金属的性能。
渗流法
通过控制金属基体的孔径和孔隙率,使液体或气体渗入到基体中,然 后通过加热或加压使渗入的物质释放出气体,形成泡沫金属。
泡沫金属材料制备技术

泡沫金属材料制备技术1.引言金属泡沫或金属多孔材料是80年代后期国际上迅速发展起来的一种具有优异的物理特性和良好的机械性能的新型工程材料。
它具备的优异物理性能,如比重小、刚度大、比表面大、减震性能好、消声效果好、电磁屏蔽性能高等,使其在一些高技术领域获得了广泛应用[1-3]。
泡沫铝合金材料是一种在铝合金基体中分布有大量微小气孔结构的超轻型铝合金材料。
其开发研究始于20世纪40年代,最早的泡沫铝制备工艺是Sosnick于1948年提出的在铝熔体中以气化汞为气体来源制备泡沫铝合金的做法,该工艺还申请了美国专利[2]。
1956年,美国科学家Elliot完善了泡沫铝制备理论,并提出以可热分解气体的发泡剂来代替汞,从而给泡沫金属材料的工艺发展指明了方向,同年他采用熔体发泡法成功制造出泡沫铝。
随后人们开发使用了多种发泡剂如TiH2、ZrH2、ErH2、MgH2等。
到了20世纪80年代末90年代初,泡沫铝材料的研究取得重大突破,日本九州工业研究所于1991年开发出泡沫铝工业化生产的工业路线。
1992年M. F. Ashby第一次系统总结了泡沫金属的制备、性能和应用。
90年代以来,国外科研机构和大学推出了多种制备高性能泡沫铝的工艺方法,如德国不来梅德夫雷霍夫实用材料研究所研制的粉末发泡法,德国的连续喷吹气体制备泡沫铝法(DE4139020),日本日立造船技术研究所的发泡法等。
目前已经实现了采用金属发泡法和渗流铸造法来生产各种尺寸规模的泡沫铝部件,从高速列车到航天飞机的一系列领域都可以找到泡沫铝的身影[1]。
国内研究机构对泡沫铝的研究起步于20世纪80年代中期,目前国内主要的研究机构有东南大学、东北大学、昆明理工大学、大连理工大学等。
我国学者研制了一些具有独创性的生产工艺,并进行了大量的理论和实验研究。
其中东南大学材料系开展研究的时间最早,尤其在粉末冶金法制备泡沫铝工艺方面的成就较突出。
金属泡沫材料既可作为许多场合的功能材料,也可作为某些场合的结构材料,而一般情况下它兼有功能和结构双重作用,是一种性能优异的多用途工程材料。