第3章 进排气系统中的热力过程计算.

合集下载

第四节 进排气系统热力过程

第四节 进排气系统热力过程

进排气系统热力过程计算第四节进、排气系统热力过程计算31 概述3-13-2 排气管内的热力过程计算(容积法)3-3 一维非定常流动方程3-4 特征线法3-5 特征线法计算的边界条件3-6 中冷器的计算3‐1 概述内燃机进、排气管系受其通道形状的影响,其内部具有明显的三维流动特征。

另外,由于通道的间断开启和活塞的周期运动,使进、排气系统内的流动具有非定常流动的性质。

根据进、排气管系统结构参数和运转参数的不同,这种非定常流动,将导致进、排气阀前后形成程度不同的压力波动,这种波动与缸内气体状态有很大关系,所以进、排气系统内的瞬时气体状态取决于缸内的气体状态和进、排气系统的分的瞬时气体状态取决于缸内的气体状态和进排气系统的分支情况;另一方面,进、排气阀处的压力波动对换气效果又有很大影响,反过来又将影响缸内热力过程。

若计算中考虑有很大影响反过来又将影响缸内热力过程若计算中考虑到进、排气系统的压力波动,就必须建立描述进、排气管系统中气体状态瞬时变化的微分方程式。

此外,在进行废气涡轮增压发动机的模拟计算时,还须将管路系统与废气涡轮增压器联系起来加以考虑。

因此,进、排气系统的热力过程计算既是复杂的又是非常重要的。

为了简化计算,对进、排气系统按不同的计算要求分别进行简化处理。

目前,管内流动的一般计算方法,大体分别进行简化处理目前管内流动的般计算方法大体可分为容积法、小扰动法、特征线法和差分法。

1.容积法:它把进、排气管系视为一个零维容器,忽略管内压力波动的传播,将实际的不稳定流动作为准稳定流动处理,内压力波动的传播将实际的不稳定流动作为准稳定流动处理认为状态参数只随时间变化.对中、低速柴油机或排气管相对来说较短的情况下,特别对中低速柴油机或排气管相对来说较短的情况下特别是为了求得整机综合热力参数或与涡轮增压器配合计算等,可以忽略管内压力波的传播,而用常微分方程对管内热力过程进行描述。

这样就避免使用复杂的运算,从而使计算大大简化,行描述这样就避免使用复杂的运算从而使计算大大简化运算时间亦可大大缩短。

(完整版)热力计算

(完整版)热力计算

(完整版)热力计算1. 水冷壁、锅炉管束、省煤器、过热器、再热器、凝渣管、空气预热器的作用是什么?水冷壁:(1)吸收炉膛内火焰的热量,是主要蒸发受热面,将烟气冷却到合适的炉膛出口温度。

(2)保护炉墙。

(3)悬吊敷设炉墙、防止炉壁结渣。

凝渣管:是蒸发受热面,进一步降低烟气温度,保护烟气下游密集的过热受热面不结渣堵塞。

锅炉管束:是蒸发受热面。

过热器:是过热受热面。

将锅炉的饱和蒸汽进一步加热到所需过热蒸汽的温度。

省煤器:(1)降低排烟温度,提高锅炉效率,节省燃料。

(2)充当部分加热受热面或蒸发受热面。

空气预热器:(1)降低排烟温度提高锅炉效率。

(2)改善燃料着火条件和燃烧过程,降低燃烧不完全损失,进一步提高锅炉效率。

(3)提高理论燃烧温度,强化炉膛的辐射传热。

(4)热空气用作煤粉锅炉制粉系统的干燥剂和输粉介质。

2. 水冷壁、省煤器、过热器、空气预热器可分为哪几类?各有什么优缺点?水冷壁可分为光管水冷壁和膜式水冷壁。

光管水冷壁优点:制造、安装简单。

缺点:保护炉墙的作用小,炉膛漏风严重。

膜式水冷壁:优点:对炉墙的保护好,炉墙的重量、厚度大为减少。

炉墙只需要保温材料,不用耐火材料,可采用轻型炉墙。

水冷壁的金属耗量增加不多。

气密性好,大大减少了炉膛漏风,甚至也可采用微正压燃烧,提高锅炉热效率。

蓄热能力小,炉膛燃烧室升温快,冷却亦快,可缩短启动和停炉时间。

厂内预先组装好才出厂,可缩短安装周期,保证质量。

缺点:制造工艺复杂。

不允许两相邻管子的金属温度差超过50 度,因要把水冷壁系统制成整体焊接的悬吊框式结构,设计膜式水冷壁时必须保证有足够的膨胀延伸自由,还应保证人孔、检查孔、看火孔以及管子横穿水冷壁等处有绝对的密封性。

省煤器:铸铁式省煤器:优点:耐腐蚀、耐磨损。

耐内部氧腐蚀、耐外部酸腐蚀。

缺点:承压能力低,铸铁省煤器的强度不高,即承压能力低。

不能做成沸腾式,否则易发生水击,损坏省煤器;易积灰,表面粗糙,胁制片间易积灰、堵灰;易渗漏,弯头多,法兰连接,易渗水漏水。

进排气系统及冷却系统计算

进排气系统及冷却系统计算

计算公式单位P发动机额定功率kWg发动机额定功率时的燃油消耗率g/kW.hα额定功率时的过量空气系数 1.2-2A燃烧1kg燃油所学的理论空气量kgγ空气密度(标准状态下)kg/m³Q额定空气体积流量m³/h 计算公式单位Q修正系数,Q=5-6,消声器级别越高,Q越大n发动机额定功率下的转速r/mini缸数τ冲程数Vst发动机排量LKt增压比V消声器理论所需容积L 计算公式单位n发动机额定功率下的转速r/minZv充量系数Vst发动机排量m³f冲程数Qi=n×Zv×Vst/60/f Qi内燃机进气流量m³/sTs内燃机进气温度KTe内燃机排气温度或者涡轮增压器出口温度Kv消声器前插入管的气流速度m/s Qo=Q×Te/Ts Qo内燃机排气流量m³/s F=Qo/v=πd1²/4F流通面积㎡d1=sqrt(4F/π)d1消声器进气管直径m 计算公式单位V=πab×L V消声器理论所需容积LL消声器长度mma消声器长半轴mmb消声器短半轴mmm扩张比9~16 S=πab S筒体截面积mm²S0=πd1²/4S0排气管截面积mm²d1排气管内径mmL/D纵横比消声器规格(mm)L/D排气管规格(mm)消声器理论容积(L)进气系统计算参数排气系统计算(消声器容积确定)参数排气系统计算(消声器进气管径即排气管直径确定)参数排气系统计算(消声器及排气管尺寸确定)参数排气系统计算(实际消声器及排气管尺寸确定)。

第3章 内燃机的工作循环

第3章 内燃机的工作循环

(3)热量变换; 热量变换;
Tw 4 h dQ k T 4 b = A{a (Re) (T − T w ) + c[( ) −( ) ]} dθ D 100 100 6n
44
(4)放热规律; 放热规律;
dQ B dx m + 1 ϕ − ϕ0 = H u g bη u = H u g bη u 6.908 dϕ dϕ ϕz ϕz −e
28
l0 =
(c +
h − 2) × (32 + 3.773 × 28) 34.41 × (4c + h − 2o) 4 = c × 12 + h × 1 + o × 16 12c + h + 16o
柴油:14.3,汽油: 柴油:14.3,汽油:14.7 燃空比
(二)燃料的热值 在101.3kPa、298.15K条件下,每千克燃料完 101.3kPa、298.15K条件下, 条件下 全燃烧所放出的热量称为燃料的热值。 全燃烧所放出的热量称为燃料的热值。 定容燃烧弹法 高热值、低热值 高热值、
(二)柴油的理化性质 含碳85%-88%,含氢12%-13.6%; 含碳85%-88%,含氢12%-13.6%; 85%-88%,含氢12%-13.6% 自燃性:无外源点火的情况下, 自燃性:无外源点火的情况下,柴油自行着 火的性质。自燃温度。 火的性质。自燃温度。 十六烷值:正十六烷,100;α-甲基萘,0。 十六烷值:正十六烷,100; 甲基萘, 按比例。 按比例。 低温流动性:浊点, 低温流动性:浊点,凝点 柴油牌号: 柴油牌号:0号,-20号 ,-20号 20
需要补充的方程: 需要补充的方程: (1)气缸工作容积; 气缸工作容积;

压缩机的热力性能和计算

压缩机的热力性能和计算

压缩机的热⼒性能和计算§2.2.1压缩机的热⼒性能和计算⼀、排⽓压⼒和进、排⽓系统(1)排⽓压⼒①压缩机的排⽓压⼒可变,压缩机铭牌上的排⽓压⼒是指额定值,压缩机可以在额定排⽓压⼒以内的任意压⼒下⼯作,如果条件允许,也可超过额定排⽓压⼒⼯作。

②压缩机的排⽓压⼒是由排⽓系统的压⼒(也称背压)所决定,⽽排⽓系统的压⼒⼜取决于进⼊排⽓系统的压⼒与系统输⾛的压⼒是否平衡,如图2-20所⽰。

③多级压缩机级间压⼒变化也服从上述规律。

⾸先是第⼀级开始建⽴背压,然后是其后的各级依次建⽴背压。

(2)进、排⽓系统如图所⽰。

①图a的进⽓系统有⽓体连续、稳定产⽣,进⽓压⼒近似恒定;排⽓压⼒也近似恒定,运⾏参数基本恒定。

②图b的进⽓系统有⽓体连续、稳定产⽣,进⽓压⼒近似恒定;排⽓系统为有限容积,排⽓压⼒由低到⾼逐渐增加,⼀旦达到额定值,压缩机停⽌⼯作。

③图c的进⽓系统为有限容积,进⽓压⼒逐渐降低;排⽓系统压⼒恒定,⼀旦低于某⼀值,压缩机停⽌⼯作。

④图d的进、排⽓系统均为有限容积,压缩机⼯作后,进⽓压⼒逐渐降低;排⽓系统压⼒不断升⾼,当进⽓系统低于某⼀值或排⽓系统⾼于某⼀值,压缩机停⽌⼯作。

⼆、排⽓温度和压缩终了温度(1)定义和计算压缩机级的排⽓温度是在该级⼯作腔排⽓法兰接管处测得的温度,计算公式如下:压缩终了温度是⼯作腔内⽓体完成压缩机过程,开始排⽓时的温度,计算公式如下:排⽓温度要⽐压缩终了温度稍低⼀些。

(2)关于排⽓温度的限制①汽缸⽤润滑油时,排⽓温度过⾼会使润滑油黏度降低及润滑性能恶化;另外,空⽓压缩机中如果排⽓温度过⾼,会导致⽓体中含油增加,形成积炭现象,因此,⼀般空⽓压缩机的排⽓温度限制在160°C以内,移动式空⽓压缩机限制在180°C以内。

②氮、氨⽓压缩机考虑到润滑油的性能,排⽓温度⼀般限制在160°C以内。

③压缩氯⽓时,对湿氯⽓的排⽓温度限制在100°C,⼲氯⽓的排⽓温度限制在130°C。

工程热力学第三章热力学第一定律作业

工程热力学第三章热力学第一定律作业

第3章 热力学第一定律3-1 一辆汽车 1 小时消耗汽油 34.1 升,已知汽油发热量为 44000kJ/kg ,汽油密度 0.75g/cm3 。

测得该车通过车轮出的功率为 64kW ,试求汽车通过排气,水箱散热等各种途径所放出的热量。

解: 汽油总发热量Q = 34.1×10-3m3 ×750kg/m3 ×44000kJ/kg =1125300kJ汽车散发热量Qout = Q-W ×3600 = (1125300-64×3600)kJ/h = 894900kJ/h3-2 气体某一过程中吸收了 50J 的热量,同时,热力学能增加 84J ,问此过程是膨胀过程还是压缩过程?对外作功是多少 J ?解 取气体为系统,据闭口系能量方程式 Q = ΔU +WW = Q -ΔU = 50J -84J = -34J所以过程是压缩过程,外界对气体作功 34J 。

3-3 1kg 氧气置于图 3-1 所示气缸内,缸壁能充分导热,且活塞与缸壁无磨擦。

初始时氧气压力为 0.5MPa ,温度为 27℃,若气缸长度 2l ,活塞质量为 10kg 。

试计算拔除钉后,活塞可能达到最大速度。

解:由于可逆过程对外界作功最大,故按可逆定温膨胀计算:w = RgT ln V2/ V1 = 0.26kJ/(kg •K)×(273.15+ 27)K图3-1 图3-2×ln(A×2h)/ (A×h)= 54.09kJ/kgW =W0 + m'/2*Δc 2 = p0(V2 -V1)+ m'/2*Δc 2 (a )V1 =m1RgT1/ p1=1kg×260J/(kg•K)×300.15K /0.5×106Pa = 0.1561m3 V2 = 2V1 = 0.3122m3代入(a)c2 = (2×(54.09J/kg×1kg×103-0.1×106Pa×0.1561m3)/10kg)1/2= 87.7m/s3-4 有一飞机的弹射装置,如图 3-2,在气缸内装有压缩空气,初始体积为 0.28m3 ,终了体积为0.99m3,飞机的发射速度为61m/s ,活塞、连 杆和飞机的总质量为 2722kg 。

气体主要热力过程的基本公式

气体主要热力过程的基本公式

气体主要热力过程的基本公式1.等容过程(isochoric process)在等容过程中,气体体积保持不变。

根据理想气体状态方程PV=nRT,结合理想气体的内能U=C_vT(其中C_v表示摩尔定容热容量),可以得到气体的内能和温度的关系为U2-U1=C_v(T2-T1)2.等压过程(isobaric process)在等压过程中,气体的压强保持不变。

根据理想气体状态方程PV=nRT,结合理想气体的焓H=U+PV(其中H表示焓),可以得到气体的焓和温度的关系为H2-H1=C_p(T2-T1)其中C_p表示摩尔定压热容量。

3. 绝热过程(adiabatic process)在绝热过程中,气体在没有与外界交换热量的情况下发生压缩、膨胀等过程。

根据绝热条件PV^γ=常数,可以得到气体压强和体积的关系为P2V2^γ=P1V1^γ其中γ=C_p/C_v表示绝热指数。

4.等温过程(isothermal process)在等温过程中,气体的温度保持不变。

根据理想气体状态方程PV=nRT,可以得到气体的压强和体积的关系为P1V1=P2V2综合以上各种过程,可以得到气体的理想热力方程为C_p(T2 - T1) - R(ln(V2/V1)) = 0其中 R 表示气体常数,对于摩尔气体,R = 8.314 J/(mol·K)。

另外,对于理想气体的内能和焓,还可以利用摩尔定热容量和摩尔焓的定义进行计算:U=nC_vTH=nC_pT其中C_v和C_p分别为摩尔定容热容量和摩尔定压热容量,n表示气体的物质量。

需要注意的是,以上公式都是在理想气体的情况下推导得到的,在实际情况下可能需要考虑相对论效应、分子间相互作用等因素。

此外,还有其他一些非常特殊的热力过程,如绝热绝热过程、多孔气体的热力过程等,其公式推导及应用较为复杂,对于一般的热力学应用来说已经足够。

涡轮增压的热力过程计算

涡轮增压的热力过程计算

contents
热力过程 热力过程计算 增压系统
涡轮增压的好处
离心式压气机Leabharlann • 结构紧凑,质量轻,在较宽的流量范围内能保持较好的效率。小尺寸压气机, 效率优于轴流式。
1-进气道 2-工作轮 3-扩压器 4-蜗壳
压气机工作过程
空气沿压气机通道的参数变化
焓熵图
等熵过程 实际过程
等熵 压缩 功 实际 压缩 功
压气机前后气体状态焓熵图
径流式涡轮机
涡轮机的工作原理与压气机刚好 相反。
温度
压力 速度 蜗壳
喷嘴 环
工作 轮
出气 道
焓熵图
等熵过程 实际过程
等熵 膨胀 功
实际 膨胀 功
涡轮机前后气体状态焓熵图
废气涡轮增压器热力系统划分
• 废气涡轮增压器是利用发动机排出的废气 能量驱动增压器涡轮,带动 同轴上的压气机叶轮 旋转,实现进气增压。废气涡轮增压器和发动机彼此 没有机械联系,它们通过空气流或燃气流来 传递能量。压气机与涡轮机都 是开口系统,对于发动机处于稳定工况时,可将工 质(空气或燃气) 的流 动视为稳态稳流过程,即为一维定常流动.
可变压缩比高增压系统 • 可变压缩比活塞高增压系统
可变压缩比活塞工作原理如下:柴油 机润滑油从曲轴主油道通过连杆小头进入 弹簧集油器3,然后由通道7及进油阀6和止 回阀8进入上油腔5及下油腔9,上油腔有弹 簧泄油阀4,泄油压力由弹簧预紧力事先设 定,从而控制内、外活塞相对位移。
• 带膨胀室的变压缩比高增压系统
工作原理:膨胀室和燃烧室用菌形阀 间隔开,在膨胀室内充满了一定压力的 压缩空气,一般为气缸压缩终压。在进、 排气过程中,膨胀室不工作。在燃烧过 程中,当压力超过膨胀室压力时,阀开 始上升,其上升速率与缸内压力升高率 密切相关。发动机负荷越大,增压压力 越大,阀上升的距离也越大,缸内余隙 容积增加量也越大,相对压缩比越小, 并以此控制最大爆发压力。在阀上升过 程中消耗能量,气缸压力下降后,膨胀 室阀下降.同时对气体作功。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dT 1 dE dm u d m u m d mcv d d m d
dT2 dmE dm2 K dQ2W dm2 u2 d m 1 n u2 m2 hE h2 K d m2 cv 2 i 1 d i d d d m d dT2 dmE dm2 K dQ2W dm2 1 n u2 hE h2 K d m2cv 2 i 1 d i d d d
dm2 dm2 K n dmE d d d i 1 i
2)状态方程
p2 V2 m2 R2 T2
3)能量守恒方程
d m2 u2 dm2 K n dmE dQ2W h2 K hE d d d i d i 1
p f t, x
3.2排气系统内的热力过程计算(容积法) 3.2.1容积法基本假设:
1.排气管容积V3不变, V3=排气道容积+排气歧管容积+排气总管容积+涡
轮进气涡壳容积
2.排气管中的状态参数值随时间t(或曲轴转角φ)变化,在足够小的时 间步长内,把排气管的不稳定流动简化为准稳定流动,把排气过程视为 排气对容积为V3的容器准稳定流入和排出的过程。 3.排气从气缸经排气阀流入排气管,总是有n个气缸依次流入同一根排气 管。 d m 4.实际排气成分变化很小,假定排气过程排气成分不变。 d 0 5.排气的气体常数变化很小,故去R3=常数。 6.排气管内,排气不对外做功。
dm3 A 1 若为非增压柴油机: u3 F3 p3 3 d dm3 A 1 若为增压柴油机: uT FT p3 3 d
3.ቤተ መጻሕፍቲ ባይዱ.3排气系统中的散热
dQ3W dQWAK dQWA dQWT d d d d dQWAK 1 dmA c pm T TAK d 6n d
第3章 进排气系统中的热力 过程计算
3.1概述
3.2排气管中的热力过程
3.3进气管中的热力过程
3.4中冷器的计算
3.1概述
进气管子系统:
(进气总管、进气歧管、进气道)
1.压气机,2.进气管,3.气缸, 4.排气管,5.涡轮,6.中冷器
排气管子系统: (排气道、排气歧管、排气总管、 涡轮进气涡壳)
实际的进排气过程:不稳定的流动过程。
3.2.4排气平均温度 柴油机重要参数之一。
非增压柴油机:反应热负荷的大小。
增压柴油机:根据排气温度计算排 气能量。 1)时间平均值
T3t
2)能量平均值
T d 1 720 d
cyc 3 cyc
cyc 3
T d
dm3 cyc c pm T3 d d T3h dm3 cyc c pm d d
3)热电偶平均值
T3a

cyc
a T3 d ad

cyc
T3t T3a T3h
3.3进气管中的热力过程
稳定工况下,进气管中压力一般是为常数。
增压柴油机要考虑进气压力波的影响。 过渡工况,进气容积对发动机瞬态特性有延迟作用, 因此要考虑进气系统中状态随时间变化。
1)质量守恒方程
3)状态方程
p3 V3 m3 R3 T3
dT 1 dE dm u d m u m d mcv d d m d
dT3 dm3 A dQWB dm3 dmA 1 n u d m u3 m hA h3 A d m3cv 3 i 1 d i d d d m d dT3 dm3 A dQ3W dm3 dmA 1 n u3 hA h3 A d m3cv 3 i 1 d i d d d
AK dmA dT dA AK T TWAK dA c pm dT dmA T TWAK d c pm TAK d AK dT T T TWAK A dmA dA c pm d A AK AK AK A TWAK T T T exp AK AK WAK ln TAK TWAK ln T TWAK dmA c dmA d pm c pm d
dmA d i 1 i
n
排气系统的进气, 排气系统的散热,
dQ3W d dm3 A d
流出排气系统的质量变化率。
k3 1 2 2k3 p0 k3 p0 k3 ( ) ( ) k3 1 p3 p3 k3 1 2 2k3 p4 k3 p4 k3 ( ) ( ) k3 1 p3 p3
定压增压系统 脉冲增压系统
进排气系统的计算通常采用的计算模型:
1.充满-排空法(或称容积法) 将不稳定流动过程简化为准稳定流动,只考虑状态参数随时间的变化
p f t
2.特征线法(目前已不常用) 将不稳定流动过程简化为非定常一维流动,状态参数随时间和地点变化
p f t, x
3.有限体积法(GT-POWER采用) 将不稳定流动过程简化为非定常一维流动,状态参数随时间和地点变化
3.2.2排气管内的基本微分方程
1)能量守恒方程
d m3 u3 n dm3 A dQ3W dmA hA h3 A d d i d d i 1
2)质量守恒方程
n dm3 dmA dm3 A d i 1 d i d
相关文档
最新文档