小学奥数之平面图形的计算(一)

合集下载

五年级奥数培优《平面图形面积》(含答案)

五年级奥数培优《平面图形面积》(含答案)

平面图形的面积一(例题精讲)例1. 一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?例2. 正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。

求中间长方形的面积。

例3.图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积。

例4.如图所示,一大一小两个正方形中,已知阴影部分的面积是7平方厘米。

甲的面积是多少平方厘米?例5.下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。

(单位:厘米)例6. 图中ABCD 是长方形,S 1比S 2的面积大6平方厘米,求EC 的长。

平面图形的面积一(课堂小测)7.求四边形ABCD 的面积。

(单位:厘米)8. 如下图长方形ABCD 的面积是16平方厘米,E 、F 都是所在边的中点,求三角形AEF 的面积。

9.右图中,正方形的边长4厘米,求长方形的面积。

10.如图,平行四边形BCEF 中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比甲的面积小8平方厘米。

平行四边形的高是多少厘米?A BCD 345°CD F CB DS 1A 4 6 S 2EE11.一个正方形的对角线长5厘米,这个正方形的面积是多少平方厘米?12.已知大正方形的边长是12厘米,求中间最小正方形的面积。

13.下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?14.如图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积。

15.如图所示,长方形的长12厘米,宽8厘米,A 、B 两点是长方形长和宽的中点,那么阴影部分的面积是多少?AB94 3 84 6乙甲5平面图形的面积二(例题精讲)例1. 一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?12×12=144(平方厘米) 144÷4=36(平方厘米)例2. 正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。

奥数——平面图形的面积一

奥数——平面图形的面积一

平面图形的面积(一)——图形的等分例1 有一个三角形花坛,要把它平均分成两个相等的三角形,可以怎样分?练习将任一三角形分成面积相等的六个三角形,应怎么分?例2 三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC的面积。

练习已知AE=3AB,BD=2BC,三角形ABC的面积是6,求三角形BDE的面积。

练习如图所示,找出梯形ABCD中有几组面积相等的三角形。

例3 已知三角形ABC的面积是12平方厘米,并且BE=2EC,F是CD的中点。

求阴影部分面积。

练习AC是CD的3倍,E是BC的中点,三角形CDE的面积为2平方厘米。

求三角形ABC的面积。

练习如图,正方形ABCD的边长是4厘米,CG=3厘米,长方形EFGD的长是5厘米,DE长几厘米?例4 在一块长方形的地里有一口长方形的水井,试画一条线把除井处的这块地平分成两块。

练习下图为5个面积为1的正方形拼成的。

试用一直线将此图形划分为面积相等的两块。

例5 将下图分成4个形状、大小完全相同的图形,且每个部分中都有一个小黑圈。

练习将下图分成4个形状相同、面积相等的小块。

作业1、三角形的面积公式:________________。

同底等高的三角形面积___________。

平行线间的距离处处___________。

2、甲、乙两个三角形的高相等,若甲的底是乙的底的5倍,则甲的面积就是乙面积的_____倍。

3、甲、乙两个三角形的底相等,若甲的高是乙的高的4倍,则甲的面积就是乙面积的______倍。

4、把一个等边三角形分成面积相等的三个三角形,有________种不同的方法。

5、如图1,该图是一个直角梯形,面积相等的三角形有_________组,请分别写出________________ __________________________________。

6、如图2,AD与BC平行,AD=5,BC=10,三角形ADC面积为10,则三角形ABC的面积是_______________。

2022年暑期奥数教案 五升六《6 平面图形的周长与面积(一)》教案(打印版)

2022年暑期奥数教案 五升六《6 平面图形的周长与面积(一)》教案(打印版)

《数学思维训练教程》教案第一课时复备内容及讨论记教学过程录一、导入〔课件播放导入,教师讲解〕师:图形大家庭里这些图形的周长,面积计算公式,我们一起回忆一下吧。

〔课件出示,一起回忆〕师:看来有关周长和面积的计算公式,大家已经掌握得非常扎实了。

但是从周长和面积的关系来看,它们之间还隐藏着许多秘密。

今天就让我们一起深入的学习一下平面图形的周长和面积。

二、教学新授〔一〕自主探究1例1:平行四边形的面积是48平方米,高为6米,求阴影局部的面积。

1.学生读题,观察图形。

2.师生互动,教师引导。

师:通过读题和观察图形,大家获取到了哪些信息?生1:平行四边形的面积是48平方米,高为6米;生2:阴影局部三角形的底等于平行四边形的底-6米。

师:看来大家已经很好的理解题意,下面请同学们自己思考,试着做一下。

3.学生独立解答。

4.全班集体汇报。

5.教师小结。

此题阴影局部是三角形,其中三角形的高是的,关键是求出三角形的底边长度,通过观察,我们可以看出,三角形的底边长度比平行四边形少6,通过先求平行四边形的底再减6得到三角形的底。

答案:平行四边形的底:48÷6=8〔米〕三角形底:8-6=2〔米〕阴影三角形面积:2×6÷2=6〔平方米〕答:阴影局部的面积是6平方米。

〔二〕自主探究2例2:如下列图,一个长方形被分成5个完全相同的小长方形,每个小长方形的长是7厘米,周长是18厘米,求这个大长方形的面积。

1.学生读题,明确题意。

2.师生互动,教师引导。

师:求这个大长方形的面积需要知道哪些条件?哪些条件是的,哪些条件是未知的?怎样求出来?生:要求大长方形的面积,需要知道大长方形的长和宽。

师:大长方形的长和宽和小长方形的长和宽之间,分别有什么关系呢?生:大长方形的宽是小长方形的长,是7厘米,大长方形的长是未知的,但大长方形的长=5个小长方形的宽。

师:那么你能求出小长方形的宽吗?大家尝试解答一下。

3.学生整理思路,尝试解答。

最新五年级奥数平面几何图形的面积计算

最新五年级奥数平面几何图形的面积计算
5、你认为一件DIY手工艺制品在什么价位可以接受?
3.五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了。经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?
加拿大beadworks公司就是根据年轻女性要充分展现自己个性的需求,将世界各地的珠类饰品汇集于“碧芝自制饰品店”内,由消费者自选、自组、自制,这样就能在每个消费者亲手制作、充分发挥她们的艺术想像力的基础上,创作出作品,达到展现个性的效果。
例5.下页左图是一块长方形草地,长方形的长是16,宽是10,中间有两条道路,一条是长方形,一条是平行四边形,那么,有草部分(阴影部分)的面积有多大?(单位:米)
练习与思考
1.求图中阴影部分的面积。
2.求图中阴影部分的面积。
3.下左图的长方形中,三角形ADE与四边形DEBF和三角形CDF的面积分别相等,求三角形DEF的面积。
我们从小学、中学到大学,学的知识总是限制在一定范围内,缺乏在商业统计、会计,理财税收等方面的知识;也无法把自己的创意准确而清晰地表达出来,缺少个性化的信息传递。对目标市场和竞争对手情况缺乏了解,分析时采用的数据经不起推敲,没有说服力等。这些都反映出我们大学生创业知识的缺乏;
4.四中平等四边形ABCD的边BC长10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米,求CF的长。
5.图中三角形的高为4,面积为16;长方形的宽为6,长方形的面积是三角形面积的多少倍?
6.如图,长方形的长是8,宽是6,A和B是宽的中点,求长方形内阴影部分的面积。
第17讲平面图形的计算(一)
例1.图中的甲和乙都是正方形,求阴影部分的面积。(单位:厘米)
例2.计算右图的面积。(单位:厘米)

小学奥数~平面图形计数-数长方形--不规则图形

小学奥数~平面图形计数-数长方形--不规则图形

下图中共有___1___个长方形.第1步中有长方形(4+3+2+1)×(3+2+1)=60(个),中有长方形(2+1)×(5+4+3+2+1)=45(个),重叠部分中有长方形(2+1)×(3+2+1)=18(个).所以共有长方形60+45-18=87(个).下图中共有___1___个长方形.中有长方形(3+2+1)×(4+3+2+1)=60(个),中有长方形(6+5+4+3+2+1)×(2+1)=6 3(个),重叠部分中有长方形(3+2+1)×(2+1)=18(个).所以共有长方形60+63-18=105(个).数一数,下面图形有___1___个长方形。

1、此长方形含有:6个长方形2、此长方形含有:3个长方形3、组合后增加:2个长方形长方形:6+3+2=11(个)故答案为:111、此长方形含有:10个长方2、此长方形含有:1个长方形3、组合后增加:1个长方形长方形:10+1+1=12(个)故答案为:12数一数,下面图形有___1___个长方形。

1、此长方形含有:10个长方形2、此长方形含有:1个长方形3、组合后增加:1个长方形长方形:10+1+1=12(个)故答案为:12数一数,下面图形有___1___个长方形。

1、中间长方形含有:9个长方形2、上下两个长方形含有:2个长方3、组合后没有增加长方形长方形:9+2=11(个)故答案为:11数一数,下面图形有___1___个长方形。

1、此长方形含有:15个长方形2、此长方形含有:6个长方形3、组合后增加:3个长方形长方形:15+6+3=24(个)故答案为:24数一数,下面图形有___1___个长方形。

1、此长方形含有:15个长方形2、此长方形含有:6个长方形3、组合后增加:6个长方形长方形:15+6+6=27(个)故答案为:27数一数,下面图形有___1___个长方形。

1、此长方形含有:6个长方形2、此长方形含有:1个长方形3、增加这条线:2个4、将小长方形加上去增加:2个6+1+2+2=11(个)故答案为:111、此长方形含有:9个长方形2、此长方形含有:1个长方形增加这个长方形:3个4、将小长方形加上去增加:2个9+1+3+2=15(个)故答案为:15数一数,下面图形有___1___个长方形。

六年级奥数培训 面积计算

六年级奥数培训 面积计算

六年级奥数面积专题 面积计算(一)一、知识要点计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。

这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。

有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。

二、精讲精练【例题1】已知如图,△ABC 的面积为8平方厘米,AE =ED ,BD=23BC ,求阴影部分的面积。

【思路导航】阴影部分为两个三角形,但△AEF 的面积无法直接计算。

由于AE=ED,连接DF ,可知AEF S ∆=EDF S ∆(等底等高),采用移补的方法,将所求阴影部分转化为求△BDF 的面积。

为AE =因为BD=23BC ,所以2BDF DCF S S ∆∆=。

又因ED ,所以ABF S ∆=BDF S ∆=2DCF S ∆。

因此,ABC S ∆=5DCF S ∆ 。

由于ABC S ∆=8平方厘米,所以DCF S ∆=8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。

练习1:1.如图,AE =ED ,BC=3BD ,ABC S ∆=30平方厘米。

求阴影部分的面积。

=21平方厘2.如图所示,AE=ED ,DC =13BD ,ABCS ∆米。

求阴影部分的面积。

【例题2】两条对角线把梯形ABCD 分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知BOC S ∆是DOC S ∆的2倍,且高相等,可知:BO =2DO ;从ABDS 与ACD S相等(等底等高)可知:6ABOS=,而△ABO 与△AOD 的高相等,底是△AOD 的2倍。

小学五年奥数-平面图形的面积

小学五年奥数-平面图形的面积

平面图形的面积【试金石】例1如右图,已知一个四边形ABCD的两条边的长度AD=7,BC=3,三个角的度数:角B和角D是直角,角A是45°,求这个四边形的面积。

(单位;厘米)【针对性训练】如右图,已知一个四边形ABCD的两条边的长度AD=14厘米,BC=6厘米,三个角的度数:角B和角D是直角,角A是45°,求这个四边形的面积。

【试金石】例2右图中长方形的长是20厘米,宽是12厘米,求它的内部阴影部分的面积。

答:阴影部分的面积是120平方厘米。

【针对性训练】图中长方形的长是8米,宽是6米,A和B是宽的中点,求长方形内部阴影部分的面积。

【试金石】例3右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?(单位:分米)【针对性训练】右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?【试金石】例4如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米,求阴影部分的面积。

【针对性训练】如右图,甲、乙两图形都是正方形,它们的边长分别是6厘米和8厘米,求阴影部分的面积。

【试金石】例5【针对性训练】【试金石】【针对性训练】【智能提速训练营】1、如图,已知BD长是2厘米,DC长是3厘米,E是AD的中点,如果三角形ABD的面积是5平方厘米,那么三角形DEC的面积是多少?2、如图,已知平行四边形ABCD的面积是60平方分米,E、F分别是AB、AD边上的中点,图中阴影部分的面积是多少平方分米?3、如图,在平行四边形ABCD中,AE=ED,BF=FC,CG=GD,平行四边形ABCD的面积是阴影三角形EFG的多少倍?4、如图,BD=6厘米,BC=15厘米,△ABD的面积是24平方厘米,△ADC 的面积是多少平方厘米?5、右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?(单位:厘米)6、如图,梯形的面积是70平方厘米,上底8厘米,下底12厘米,阴影部分的面积是多少平方厘米?7、如图,四边形ABCD是平行四边形,DC=CE,如果△BCE的面积是15平方厘米,那么梯形ABED的面积是多少平方厘米?8、如图,平行四边形的面积是60平方厘米,阴影三角形的面积是多少平方厘米?9、如图,正方形ABCD的边长是4厘米,CG=3厘米,长方形DEFG的长DG=5厘米,那么它的宽DE是多少厘米?10、如图,四边形ABCD内有一点O,O点到四条边的垂线长都是4厘米,已知四边形的周长是36厘米,四边形ABCD的面积是多少平方厘米?11、如图,已知ABFE是平行四边形,ABCD是长方形,且AD=6厘米,AB=3厘米,CO=2厘米,阴影部分的面积是多少平方厘米?12、一个长方形被两条直线分成四个长方形,其中三个的面积分别是20平方米、25平方米和30平方米,阴影部分的面积是多少平方米?13、如右图,已知正方形ABCD和正方形CEFG,且正方形ABCD每边长为10厘米,求图中阴影(三角形BFD)部分的面积。

完整版)五年级奥数平面图形面积计算

完整版)五年级奥数平面图形面积计算

完整版)五年级奥数平面图形面积计算五年级奥数第六讲——平面图形面积的计算一、知识要点1.基本平面图形特征及面积公式正方形:特征:四条边相等,四个角都是直角,有四条对称轴。

面积公式:S=边长的平方长方形:特征:对边相等,四个角都是直角,有二条对称轴。

面积公式:S=长×宽平行四边形:特征:两组对边平行且相等,对角相等,相邻的两个角之和为180°,容易变形。

面积公式:S=底边×高三角形:特征:两边之和大于第三条边,两边之差小于第三条边,三个角的内角和是180°,具有稳定性。

面积公式:S=底边×XXX÷2梯形:特征:只有一组对边平行,中位线等于上下底和的一半。

面积公式:S=(上底+下底)×高÷22.基本解题方法:由两个或多个简单的基本几何图形组合成的组合图形,要计算这样的组合图形面积,先根据图形的基本关系,再运用分解、组合、平移、割补、添辅助线等几种方法将图形变成基本图形分别计算。

典型例题】例1】已知平行四边形的面积是28平方厘米,求阴影部分的面积。

例2】求图中阴影部分的面积。

例3】如图所示,甲三角形的面积比乙三角形的面积大6平方厘米,求CE的长度。

例4】两条对角线把梯形ABCD分割成四个三角形。

已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?练与拓展】1.计算下面图形的面积。

2.下面的梯形中,阴影部分面积是150平方厘米,求梯形的面积。

3.正方形ABCD的边长是12厘米,已知DE是EC长度的2倍,求三角形DEF的面积和CF的长。

4.平行四边形ABCD的边长BC=10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米,求CF的长。

5.正方形ABCD的面积是100平方厘米,AE=8厘米,请计算以下图形的面积。

1.在一块长80米、宽30米的长方形地上,修了宽为2米和3米的两条小路,求草地的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数之平面图形的计算(一)1.图中的甲和乙都是正方形,求阴影部分的面积。

(单位:厘米)
2.计算右图的面积。

(单位:厘米)
3.如图,已知四条线段的长分别是:AB=2厘米,CE=6厘米,CD=5厘米,AF=4厘米,并且有两个直角。

求四边形
ABCD的面积。

4.右图是两面三刀个相同的直角三角形叠在一起,求阴影部分的面积。

(单位:分米)
5.下页左图是一块长方形草地,长方形的长是16,宽是10,中间有两条道路,一条是长方形,一条是平行四边形,那么,有草部分(阴影部分)的面积有多大?
(单位:米)
6.求图中阴影部分的面积。

7.求图中阴影部分的面积。

8.下左图的长方形中,三角形ADE与四边形DEBF和三角
形CDF的面积分别相等,求三角形DEF的面积。

9.四中平等四边形ABCD的边BC长10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米,求CF的长。

10.图中三角形的高为4,面积为16;长方形的宽为6,长方形的面积是三角形面积的多少倍?
11.如图,长方形的长是8,宽是6,A和B是宽的中点,求长方形内阴影部分的面积。

12.如图,BC长为5,求画斜线的两个三角形的面积之和。

13.上右图是两个一样的直角三角形重叠在一起,按照图上
标出的数,计算阴影部分的面积。

14.右图是一块长方形草地,长方形长为16,宽为12,中间有一条宽为2的道路,求草地(阴影部分)的面积。

相关文档
最新文档