光学谐振腔

合集下载

第3章光学谐振腔理论

第3章光学谐振腔理论



凹面向着腔内, R>0,相当于凸薄透镜 f>0;
凸面向着腔内时,R<0,相当于凹薄透镜 f<0。
2、对于同样的光线传播次序,往返矩阵T、Tn与初始坐 标(r0,0)无关;
3、当光线传播次序不同时,往返矩阵不同,但(A+D)/2 相同。
23
例:环形腔中的像散-对于“傍轴”光线 对于平行于x,z平面传输的光线(子午光线),其焦距
k0 2 L'
2
0
2 L' q 2
q为整数
(2.1.1)
0—真空中的波长;L’—腔的光学长度
0 q 2 L' q
L' q
0q
q
L' L
q q
c
c
2
0q
2L
c q 2 L
( 2.1.4)
为腔内介
质折射率
Lq
q
2
定义无源腔内,初始光强I0往返一次后光腔衰减为I1,则
I1 I 0e
2
I0
I1
9
1 I0 ln 2 I1
对于由多种因素引起的损耗,总的损耗因子可由各损耗因子相 加得到
i 1 2 3
损耗因子也可以用 来定义, 当损耗很小时,两种定义方式是一致的
20
A B 1 T 1 C D f 1
L A 1 f2
0 1 L 1 1 1 0 1 f2
L B L 2 f2 L D f1
0 1 L 1 0 1
3
二、腔的模式
腔的模式:光学谐振腔内可能存在的电磁场的本征态 谐振腔所约束的一定空间内存在的电磁场,只能存在于一 系列分立的本征态 腔内电磁场的本征态 因此: 腔的具体结构 腔内可能存在的模式(电磁场本征态) 麦克斯韦方程组

光学谐振腔基本概念

光学谐振腔基本概念
T = T4T T2T 3 1
1 L T = T3 = 1 0 1
1 T2 = 2 − R 2 0 1
1 T4 = 2 − R 1
0 1
R1 ④
① ③
② R2
L
1 T = 2 − R 1
01 L 1 2 0 1 − R 1 2
2、实例 (1)单程传播L (1)单程传播L距离 单程传播 证
θ1 r1 θ2 r2 L
1 ∴T = 0 L 1 1 T = 0 L 1
r2=r1+Lθ1 +Lθ θ2= θ1
(2)球面反射镜 (2)球面反射镜
1 0 T = 2 − 1 R
θ2 = i
r α≈ F r r =2 F R
o i F α F
R
θ2 r
R = 2F
1 0 T = 0 1 →
r2 r = 1 θ θ 2 1

R=∞ 或 F =∞
即平面镜的反射定律
θ1
θ2 θ1
2、非稳定腔
(1)g >1(2) (2)g <0(3) =0或 =0(4) (3)g (4)g (1)g1g2>1(2)g1g2<0(3)g1=0或g2=0(4)g1g2=1 =∞,平行平面腔, 如g1=g2=1, 即R1=R2=∞,平行平面腔,则
F
讨论 (1)若r =0,θ 任意 (1)若 1=0,θ1
r2 1 = 1 θ − 2 F 0 0 0 = 1θ1 θ1
θ2 θ1
过光心的 光线不改 变方向
-θ2 θ2
(2)若 任意, (2)若r1任意, θ1=0

光学谐振腔精细度计算公式

光学谐振腔精细度计算公式

光学谐振腔精细度计算公式光学谐振腔在激光技术中可是个相当重要的角色,而其中的精细度计算公式更是关键中的关键。

咱先来说说啥是光学谐振腔。

简单讲,它就像是一个能让光在里面来回跑,不断增强的“跑道”。

想象一下,光在这个“跑道”里跑啊跑,不断积累能量,直到变得强大到能从谐振腔里冲出来,形成咱们需要的激光。

那这精细度又是什么呢?其实它反映的是谐振腔对光的“筛选”能力。

精细度越高,说明谐振腔对光的“要求”越严格,能通过的光就越“纯正”。

光学谐振腔的精细度计算公式呢,是这样的:F = π√(R1R2)/(1 -R1R2) 。

这里的 R1 和 R2 分别是谐振腔两个反射面的反射率。

我记得有一次在实验室里,我带着学生们研究光学谐振腔。

有个学生就特别好奇地问我:“老师,这精细度到底有啥用啊?”我笑着跟他说:“这就好比你选朋友,精细度高,就像是你只交那些和你特别合拍,能跟你一起进步的好朋友;精细度低呢,就像是来者不拒,啥朋友都交。

”学生一听,眼睛都亮了,好像一下子就明白了。

咱们再深入聊聊这个公式。

这个公式里的反射率可重要了。

反射率越高,精细度往往也越高。

比如说,如果 R1 和 R2 都接近 1 ,那精细度就会变得很大。

这意味着谐振腔对光的“挑选”极其严格,只有那些满足特定条件的光才能在里面稳定存在并且不断增强。

在实际应用中,我们得根据具体的需求来调整谐振腔的参数,从而得到我们想要的精细度。

比如说,在一些高精度的测量仪器中,就需要高精细度的谐振腔,以保证测量的准确性和稳定性。

学习这个公式的时候,可别死记硬背,得理解它背后的物理意义。

就像我刚才说的交朋友的例子,把抽象的公式和生活中的实际情况联系起来,这样学起来就轻松多啦。

而且啊,这个公式在很多领域都有大用处。

比如在通信领域,为了保证信号的稳定传输,就需要对光学谐振腔的精细度进行精确计算和控制。

总之,光学谐振腔精细度计算公式虽然看起来有点复杂,但只要咱们用心去理解,多联系实际,就能掌握它的奥秘,为咱们的科学研究和实际应用提供有力的支持。

光学谐振腔的模式

光学谐振腔的模式

空间模式匹配
通过调整入射光场与谐振腔本征模式的空 间分布和频率,使得光场能量能够高效地 耦合进谐振腔,进而实现模式匹配。
通过调整入射光场的波前形状,使其与谐 振腔的模式空间分布相匹配。
频率模式匹配
相位模式匹配
通过调谐入射光场的频率,使其与谐振腔 的共振频率相一致。
通过控制入射光场的相位分布,实现与谐 振腔模式的相位匹配。
色散特性
不同模式在谐振腔内的色散特性不同。基模的色散较小,而高阶模的色散较大。 这是因为高阶模在谐振腔内的光程更长,导致光波在传播过程中的相位延迟更 大。
稳定性及调谐范围比较
稳定性
基模在谐振腔内的稳定性较高,而高阶模的稳定性较低。这 是因为高阶模容易受到腔内扰动(如热效应、机械振动等) 的影响,导致模式跳变或失稳。
实现特定波长输出
通过选择特定的光学材料和结构,可以设计出具 有特定波长输出的光学谐振腔,满足不同应用需 求。
非线性光学现象研究应用
频率转换
利用非线性光学效应,可以实现 激光频率的转换,获得不同波长 的激光输出,扩展了激光器的应 用范围。
光参量振荡
在光学谐振腔中引入非线性介质, 可以实现光参量振荡,产生宽带 可调谐的相干光输出,应用于光 谱分析等领域。
优化入射光场设计
通过精确控制入射光场的空间分布、频率和相位,提高模式匹配精度。
采用自适应光学技术
利用自适应光学元件(如变形镜、空间光调制器等)实时调整入射光 场,以补偿由于环境扰动或系统误差引起的模式失配。
控制非线性效应
通过降低入射光功率密度、优化谐振腔设计等方式,减小非线性效应 对模式匹配的影响。
作用
谐振腔是激光器、光放大器、光调制 器等光学器件的核心组成部分,对于 提高器件性能、优化光束质量、实现 特定功能等具有重要意义。

《光学谐振腔》课件

《光学谐振腔》课件

挑战与机遇:新型光 学谐振腔在提高性能 、降低成本等方面面 临挑战,同时也带来 了新的机遇
未来展望:新型光学 谐振腔将在光学、光 电子学等领域发挥更 加重要的作用,具有 广阔的应用前景
面临的技术挑战和解决方案
挑战:光学谐振腔的尺寸和 重量
解决方案:采用先进的材料 和工艺,提高光学谐振腔的 稳定性和可靠性
添加标题
添加标题
添加标题
添加标题
光学测量:光学谐振腔可以用于 光学测量,如光谱分析、干涉测 量等
光学成像:光学谐振腔可以用于 光学成像,如显微镜、望远镜等
05
光学谐振腔的发展趋势和挑战
新型光学谐振腔的研究进展
研究背景:光学谐振 腔在光学、光电子学 等领域具有广泛应用
研究进展:新型光学 谐振腔的设计、制造 和测试技术不断取得 突破
在光通信中的应用
光通信:利用光波进行信息传输的技术 光学谐振腔:在光通信中用于提高光信号的传输效率和稳定性 应用领域:光纤通信、光缆传输、光网络等 应用效果:提高光信号的传输距离和传输速率,降低传输损耗和噪声干扰
在其他领域的应用
激光器:光学谐振腔是激光器的 核心部件,用于产生和放大激光
光学通信:光学谐振腔可以用于 光学通信,如光纤通信、自由空 间光通信等
实验结果与分析
实验目的:验 证光学谐振腔 的振腔、探 测器等设备进
行实验
实验结果:观 察到光学谐振 腔的共振现象, 验证了其特性
分析与讨论: 对实验结果进 行深入分析, 探讨光学谐振 腔的应用前景
和局限性
演示视频与教学素材
演示视频:提供 光学谐振腔的实 验演示视频,包 括实验步骤、实 验现象和实验结
优化目标:提高光学谐振腔 的性能和效率

光学谐振腔的设计

光学谐振腔的设计

光学谐振腔的设计
光学谐振腔是一种利用反射和干涉的光学元件,它可用于放大和调制激光光束,并在激光器、激光放大器和光学振荡器中广泛应用。

下面将从谐振腔的构成、特点和设计等方面进行解释。

光学谐振腔由两个反射镜构成,它们之间的距离称为谐振腔长度。

当光线进入谐振腔并在两个反射镜之间反射时,它们会相互干涉,从而形成一个稳定的光场,这被称为谐振模式。

谐振模式的频率与谐振腔的长度和反射镜的反射率有关。

一个典型的光学谐振腔由曲率半径为R1 和R2 的两个反射镜组成,它们之间的距离为L。

反射镜的反射率为R1 和R2,分别对应入射和反射光线的反射率。

通过调整反射镜的曲率半径和距离,可以改变谐振模式的频率和增益。

在设计谐振腔时,需要考虑一些重要的参数,包括谐振腔长度、反射镜的曲率半径和反射率、谐振腔的损耗和色散等。

谐振腔的长度应该被精确控制,以确保所需的谐振模式可以得到支持。

反射镜的曲率半径应该被选择为使反射光线汇聚在焦点上,从而减少光学损耗。

反射率也应该被仔细确定,以最大限度地提高谐振场的增益。

谐振腔的损耗和色散也是重要的参数,需要在设计中加以考虑。

总之,光学谐振腔是一种重要的光学元件,能够实现光学放大和调制。

在设计过程中,需要仔细考虑一些重要的参数,以确保所需的谐振模式可以得到支持,并
最大限度地提高谐振场的增益。

光学谐振腔

光学谐振腔
4
Emax 2E0
E0
(b) 驻波频率等于原平面波的频率,都是 ,可以连续取值
2.平平腔中的驻波
镜面为驻波节点,其面上有一个相位的突变
et
,
z


2E0
s
in
2z
c
os2
t
当 sin 2z 0
2L q
Lq
2
q

c 2nL
q
驻波频率
q

c 2nL
开腔模的一般物理概念
在经过足够多次的渡越以后,能形成这样一种稳态场:其 分布不再受衍射的影响,它在腔内往返一次后能够再现出 发时的场分布。
将在开腔镜面上的,经一次往返能再现的稳态场分布称为 开腔的自再现模或横模。其特点是: 场的形状再现(一次渡越后分布状态相同) 振幅相差一固定因子 有一固定的相位差
4. 激光纵模的频率漂移问题
频率漂移:振荡频率随外界环境变化而发生缓慢变化的现象
q

q
c 2nL
dq


qc 2

1 L
dn n2

1 n
dL
L2

dq dL dn
q
Ln
§3.3 平行平面腔模的迭代法
衍射对开腔场分布的影响
在决定开腔中激光振荡能量的空间分布方面,衍射 将起主要作用。衍射效应是决定开腔模式形成的主 要因素。
ch03 光学谐振腔-1
光学谐振腔的模式理论
1、几何理论 2、波动光学理论 3、菲涅尔-基尔霍夫衍共轴球面腔的稳定性条件
一 、稳定性条件
双周期透镜波导
0

1
L 2 f1
1

光学谐振腔理论

光学谐振腔理论
光学谐振腔理论
目录
• 光学谐振腔的基本概念 • 光学谐振腔的原理 • 光学谐振腔的设计与优化 • 光学谐振腔的实验研究 • 光学谐振腔的发展趋势与展望
01 光学谐振腔的基本概念
定义与特性
定义
光学谐振腔是由两个反射镜或一个反 射镜和一个半透镜构成的封闭空间, 用于限制光波的传播方向和模式。
特性
具有高反射率和低损耗的特性,能够 使光波在腔内多次反射并形成共振, 从而增强光波的强度和相干性。
光的衍射是指光波在传播过程中遇到 障碍物时,光波发生弯曲绕过障碍物 的现象。
光学谐振腔的共振条件
光学谐振腔是一种具有特定边界条件的封闭空间,光波在其中传播时会形成共振 现象。
光学谐振腔的共振条件是光波在腔内传播的相位差为2π的整数倍,即光波在腔内来 回反射的相位相同。
光学谐振腔的品质因数
品质因数(Q值)是衡量光学谐振腔性能的重要参数,表示 光波在腔内振荡的次数与能量损耗的比值。
振动稳定性分析
分析谐振腔在振动情况下的稳定性,确保其性能不受 振动影响。
老化稳定性分析
评估光学谐振腔在使用过程中的性能变化,确保其长 期稳定性。
04 光学谐振腔的实验研究
实验设备与环境
高精度光学元件
如反射镜、透镜、分束器等,用于构建光学谐振腔。
激光器
作为光源,提供单色光束。
光谱仪和探测器
用于测量光束的波长和强度。
实验得到的共振光谱与理论预测相符, 验证了理论模型的正确性。
品质因子
通过实验测量了光学谐振腔的品质因 子,与理论计算值进行比较。
腔损耗
实验分析了光学谐振腔的腔损耗,包 括反射镜的反射率、透镜的透射率等 因素。
稳定性分析
实验研究了光学谐振腔在不同环境条 件下的稳定性,如温度、振动等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
29
2009
湖北工大理学院
例:相邻纵模的波长差异
已知:He-Ne激光器谐振腔长50 [cm],若模式m的波长 为 632.8 [nm];计算:纵模 m+1 的波长; 解答: 纵模的频率间隔为:
由:m = 0.6328000*10-6 [m] 可以得到:
2009
湖北工大理学院
30
例:相邻纵模的波长差异
示波器的锯齿波扫描电压,对激光允许通过的频率作周期性的扫描
光电探测器:接收扫描到的激光频率
双凸薄透镜:待测的激光光束变换为无源腔的高斯光束。使待测激 光束的全部能量耦合到无源腔的基模中去。
偏振器和1/4波片组成光学隔离器,防止光重新回到待测激光器中去
2009 湖北工大理学院 27
小结:光学谐振腔的构成、分类、作用和模式
u1 u3

u2 u4

横模(自再现模): 在腔反射镜面上经过一次往返传播 后能“自再现”的稳定场分布 实际情况下,谐振腔的截面是受腔中的其他光阑限制的, 67页的图2-2-5给出了孔阑传输线的自再现模的形成
2009 湖北工大理学院 24
激光模式的测量方法
横模的测量方法:在光路中放置一个光屏;拍照;
基模(横向单模): m=n=0, 其它的横模称为高阶 横模 方形反射镜和圆形反射镜的横模图形
2009 湖北工大理学院 17
2009
湖北工大理学院
18
(a) TEM00
(b) TEM10
(c) TEM02
2009 湖北工大理学院
(d) TEM03
19
横模电场分布及强度示意图
(a) TEM00
(b) TEM10
气体波导腔
另一类光腔为气体波导激光谐 振腔,其典型结构是一段空心 介质波导管两端适当位置放置 反射镜。这样,在空心介质波 导管内,场服从波导中的传播 规律,而在波导管与腔镜之间 的空间中,场按与开腔中类似 的规律传播。 4
开腔
湖北工大理学院
稳定腔和非稳定腔
看在腔内是否存在稳定振荡的高斯光束
2009
7
2009
湖北工大理学院
研究光学谐振腔的目的

通过了解谐振腔的特性,来正确设计和使用激 光器的谐振腔,使激光器的输出光束特性达到 应用的要求
2009
湖北工大理学院
8
第二节 光学谐振腔的模式(波型)

在具有一定边界条件的腔内,电磁场只能存在于一系列分 立的本征态之中,场的每种本征态将具有一定的振荡频率 和空间分布。
C q阶纵模频率可以表达为: q q 2L C 基纵模的频率可以表达为: 1 2L
谐振腔内q阶纵模的频率为基纵模频率的整数倍(q倍) 纵模的频率间隔:
2009
q q 1 q
湖北工大理学院
C 2L
11
腔的纵模在频率尺度上是等距离排列的
激光器谐振腔内可能存在的纵模示意图
湖北工大理学院 1
2009
第一节 光学谐振腔的构成
最简单的光学谐振腔是在激活介质两端恰当地放置两个镀有高反射率的反射 镜构成。
常用的基本概念: 光轴:光学谐振腔中间垂直与镜面的轴线 孔径:光学谐振腔中起着限制光束大小、形状的元件,大多数情况下,孔径是激活物质的两个 端面,但一些激光器中会另外放置元件以限制光束为理想的形状。
2009
湖北工大理学院
14
激光谐振腔内低阶纵模分布示意图
2009
湖北工大理学院
15
激光纵模分布示意图
2009
湖北工大理学院
16
横模-横向X-Y面内的稳定场分布
激光的模式用符号: TEMmnq
q为纵模的序数(纵向驻波波节数),m,n (p,l)为横模的序数。 对于方形镜,M表示X方向的节线数, N表示Y方向的节线数; 对于圆形镜, p 表示径向节线数,即暗环数,l表示角向节线数,即暗直径数
2
平行平面腔中平面波的往返传播

q 驻波条件(光波波长和平行平面腔腔长): L q 2 q 2
谐振频率(频率和平行平面腔腔长):
2009 湖北工大理学院

2L q 2
光腔中的驻波
C q q 2L
10
纵模-纵向的稳定场分布

激光的纵模(轴模):由整数q所表征的腔内纵向稳定场分布 整数q称为纵模的序数,驻波系统在腔的轴线上零场强度的数目
由:
则有:
故:m = 632.8000 [nm] , m+1 = 632.7996 [nm]
相邻纵模的波长差:m - m+1 =4*10-13 [m]
2009 湖北工大理学院 31
(c) TEM20
2009
湖北工大理学院
20
激光谐振腔内电场横模分布示意图
TEM00
2009 湖北工大理学院 21
激光谐振腔内电场横模分布示意图
TEM11
2009 湖北工大理学院 22
激光多横模振荡示意图
2009
湖北工大理学院
23
横模(自再现模)的形成
理想开腔:两块反射镜的 直径为2a,间距为L
解:
c 3 108 m sec 8 3 10 Hz 0.3GHz 1 2nL 2 5 10 m
2 5 101 m 6 q 1 . 5803 10 q 6.328107 m 2L
q 1.5 109 Hz 5 8 3 10 Hz
小孔或刀口扫描方法获得激光束的强度分布,确定激 光横模的分布形状


纵模的测量方法:法卜里-珀洛F-P扫描干涉仪
测量,实验中利用球面扫描干涉仪
2009
湖北工大理学院
25
纵模的测量方法:球面扫描干涉仪测量
测量原理:通过测量激光输出的频率谱来判定模式
2009 湖北工大理学院 26
球面扫描干涉仪
两球面镜:组成无源腔 小孔光阑:增加高次横模的衍射损耗 压电陶瓷:通过改变电压而改变腔长因而导致改无源腔所允许通过激光频率改变
q阶纵模频率可以表达为:
C q q 2L
纵模的频率间隔:
C q q 1 q 2L
2009
湖北工大理学院
28

1
He-Ne 激光器谐振腔长50 cm,激射波长 632.8nm,荧光光谱线宽为: q 1.5 109 Hz 求:纵模频率间隔,谐振腔内的纵模序数及形成激 光振荡的纵模数;
湖北工大理学院
5
双凹球面镜腔:由两 块相距为L,曲率半 径分别为R1和R2的凹 球面反射镜构成
R1+R2=L R1=R2=L
由两块相距为L、 平行放置的平面反 射镜构成
2009
由两个以上的 反射镜构成 平凹腔和凹凸 与双凸腔图22-1书中58页
湖北工大理学院
一般球面腔 R<L<2R
6
第一节 光学谐振腔的作用
2009 湖北工大理学院 2
光学谐振腔的构成
光学谐振腔的种类



谐振腔的开放程度,闭腔、开腔、气体波导腔 开放式光学谐振腔(开腔)通常可以分为稳定腔、 非稳定腔 反射镜形状,球面腔与非球面腔,端面反射腔 与分布反馈腔 反射镜的多少,两镜腔与多镜腔,简单腔与复 合腔
2009
湖北工大理学院
3
闭腔、开腔、气体波导腔
1.
影响谐振腔的光学反馈 作用的两个因素:
组成腔的两个反射镜面的反射 率;反射镜的几何形状以及它 们之间的组制腔内实际振荡的模式数 目,获得单色性好、方向性强的相 干光 可以直接控制激光束的横向分布特 性、光斑大小、谐振频率及光束发 散角 可以控制腔内光束的损耗,在增益 一定的情况下能控制激光束的输出 功率
2009 湖北工大理学院 12
q 0.5 109 Hz
单频激光器和多模激光器

L=10厘米和L=30厘米的He-Ne气体激光器
q 1.5109 Hz
L=10厘米的He-Ne气体激光器
L=30厘米的He-Ne气体激光器 Ne原子的中心频率: Ne原子的中心波长: 荧光光谱线宽:
q 0.5109 Hz
4.74 1014 / s
6328À
q 1.5 109 Hz
湖北工大理学院 13
2009
激光器中出现的纵模数


工作原子自发辐射 的荧光线宽越大, 可能出现的纵模数 越多。 激光器腔长越大, 相邻纵模的频率间 隔越小,同样的荧 光谱线线宽内可以 容纳的纵模数越多。

光学谐振腔的模式: 谐振腔内可能存在的电磁场本征态。
模式与腔的结构之间具有依赖关系 光学谐振腔的模式分为:纵模和横模
2009 湖北工大理学院 9


谐振条件和驻波条件

驻波的定义:二振幅相同的相干波,在同一 直线上反向传播时迭加的结果称为驻波。
相位差:
光学长度:
q 2 / 2L 2L
这是激光技术历史上最早提 出的平行平面腔(F-P腔)。 后来又广泛采用了由两块具 有公共轴线的球面镜构成的 谐振腔。从理论上分析这些 腔时,通常认为侧面没有光 学边界,因此将这类谐振腔 称为开放式光学谐振腔,简 称开腔
闭腔
固体激光器的工作物质通 常具有比较高的折射率, 因此在侧壁上将发生大量 的全反射。如果腔的反射 镜紧贴激光棒的两端,则 在理论上分析这类腔时, 应作为介质腔来处理。半 导体激光器是一种真正的 介质波导腔。这类光学谐 振腔称为闭腔 2009
1. 提供光学正反馈作用 :
使得振荡光束在腔内行进一次 时,除了由腔内损耗和通过反 射镜输出激光束等因素引起的 光束能量减少外,还能保证有 足够能量的光束在腔内多次往 返经受激活介质的受激辐射放 大而维持继续振荡。
相关文档
最新文档