Ni的电子结合能
Ni和Y影响Al-Ni-Y金属玻璃形成能力的本征机理

Ni和Y影响Al-Ni-Y金属玻璃形成能力的本征机理蒋东阳;吴念初;连景宝;王蕤;杨雪峰【摘要】为了揭示Ni和Y元素对Al-Ni-Y三元金属玻璃的玻璃形成能力影响的本征机理,且基于费米面和伪布里渊区理论,提出了Ni和Y元素对Al-Ni-Y三元金属玻璃的玻璃形成能力的影响分为两种情况:Ni原子通过Al和Ni原子之间的电子轨道杂化效应,改变费米面直径(2KF),从而影响Al基金属玻璃的玻璃形成能力;Y原子通过整体原子的静态结构,改变伪布里渊区(KP),最终影响Al基金属玻璃的玻璃形成能力.费米面和伪布里渊区尺寸通过电子能量损失谱(EELS)、X射线衍射(XRD)和X 射线光电子能谱(XPS)获得.研究表明,当两者相互作用机制满足2KF=KP,条件时,费米能级处电子态密度最低,金属玻璃整体结构的稳定性达到最佳.在此基础上,提出了δ=|KP-2KF|判据用于衡量Al-Ni-Y三元金属玻璃的玻璃形成能力,该判据在实验上得到验证.【期刊名称】《材料科学与工艺》【年(卷),期】2018(026)004【总页数】7页(P1-7)【关键词】Al基金属玻璃;玻璃形成能力;电子结构;伪布里渊区;费米面【作者】蒋东阳;吴念初;连景宝;王蕤;杨雪峰【作者单位】辽宁石油化工大学机械工程学院,辽宁抚顺113001;辽宁石油化工大学机械工程学院,辽宁抚顺113001;中国科学院金属研究所,沈阳110016;辽宁石油化工大学机械工程学院,辽宁抚顺113001;辽宁石油化工大学机械工程学院,辽宁抚顺113001;辽宁石油化工大学机械工程学院,辽宁抚顺113001【正文语种】中文【中图分类】TG139+.8由于Al基金属玻璃具有超高的强度和优异的耐蚀性,有望在工程材料上获得广泛应用.然而,截止目前,最大的铝基金属玻璃直径仅有2.5 mm[1-3],这是目前能够形成非晶体系中形成能力最差的体系,如此低的玻璃形成能力极大地制约其应用,因此,提高铝基金属玻璃的形成能力,获得大尺寸块体金属玻璃,是实现其工程化应用的前提条件.最近,研究人员已经提出许多有关玻璃形成能力的热力学判据[4]和理论模型[5-6],目的都是解决玻璃形成能力这一难题.众所周知,著名的热力学判据—约化玻璃转变温度(Trg),它与玻璃形成能力密切相关,但是,对于Al-TM-RE三元合金体系,其玻璃形成能力却背离Trg判据.玻璃形成能力从本质上是由原子结构决定的,为此,Miracle等人提出了有效密排团簇模型 (ECP) model[5],可有效地预测大部分的强玻璃形成能力体系,但是用于Al基金属玻璃合金设计,其成分预测偏差较大,其根本原因是ECP模型仅仅考虑了原子之间的拓扑结构特点,忽略了原子之间化学作用对整个非晶结构稳定性的影响,而对于Al基金属玻璃,其原子之间的化学作用(例如:Al和TM)对结构稳定性起到很大作用,所以该模型失效.在此之后,在ECP模型的基础上,针对Al基金属玻璃的特殊性,提出了有效原子密排化学耦合模型[7-8].此外,利用第一性原理和反蒙特卡洛分子动力学的模拟[9], Sheng和Shi系统研究了Al-Ni-La、Al-Y-La和Al-Ni-Y-La金属玻璃中原子排列结构的差异[10-11].然而,以上这些原子结构模型和计算机模拟都是从原子角度研究玻璃形成能力与合金成分的强烈相关性,却不能揭示RE元素和TM元素对影响Al-TM-RE三元合金体系玻璃形成能力的本质.我们假想是否可以从原子结构角度深入到电子结构角度去揭示RE元素和TM元素对影响Al-TM-RE三元合金体系玻璃形成能力的本质,也就是说,是否可以从电子结构变化角度去解释玻璃形成能力对元素敏感性影响的本质.有关金属玻璃电子结构对结构稳定性的影响很早就有研究者研究.对于没有含TM元素的金属玻璃,从头计算方法的赝势方法用于计算原子之间的相互作用.Hafner [12]建立了金属间化合物拓扑紧密排列的形成和玻璃形成之间的关系,而对于含有TM原子的金属玻璃(例如:Al-TM-RE),由于Al原子和TM原子之间强烈轨道杂化效应的影响,Hafner提出的方法失效.此外, Nagel和Tauc [13] 在费米面和伪布里渊区作用机制的基础上体提出了金属玻璃的Hume-Rothery 稳定机制,其基本思想是:在倒易空间中,费米面的直径为2KF ,伪布里渊区的直径是KP ,当两者相切的时候,也就是2KF=KP ,金属玻璃结构稳定性增强,费米能级处的电子态密度达到最低,体系能量最低,结构最稳定.该理论用于Al-TM-RE合金体系,sp-d电子轨道杂化效应对费米面尺寸(2KF)有很大影响,这种作用的影响类似于上面所说的同时含有TM元素和非过渡族元素的化合物.也就是说,虽然Al和TM之间轨道杂化效应的存在,但这种费米面和伪布里渊区相互作用机制仍然适用.同时,伪布里渊区的尺寸(KP) 主要是由Al和RE之间的静态原子结构决定.这表明在Al-TM-RE三元合金体系中TM原子和RE原子对玻璃形成能力的影响可以通过比较2KF 和KP 的大小定量表征.本文的研究目的就是从电子结构稳定性角度,探究Ni原子和Y原子对Al-Ni-Y三元金属玻璃的玻璃形成能力影响的本征机理.在Al基三元合金体系中,Al-Ni-Y合金是玻璃形成能力最强的体系[8,13-14].Ni元素作用是调节电子轨道杂化效应,改变费米面的大小;Y元素作用是改变静态结构,改变伪布里渊区的尺寸.KF 和KP通过电子能量损失谱(EELS)、X射线衍射(XRD)和X射线光电子能谱(XPS)间接得到.KP和2KF接近程度决定了Al-Ni-Y合金的玻璃形成能力的强弱.1 Al-Ni-Y三元合金体系中费米面和伪布里渊区相互作用机制非晶合金的形成和结构的稳定性都是由电子系统和静态原子系统相互耦合而产生的球周期共振所决定的.在电子系统中,产生的费米面,其大小(2KF)由近自由电子模型决定,具体表达式如下[16]:(1)其中,n0代表平均原子数密度,Z代表平均价电子数.对于Al-Ni-Y玻璃形成体系,Al-3p态和Ni-3d态之间存在强烈的电子轨道杂化效应,这将会降低体系的传导电子态密度,影响费米面和伪布里渊区相互作用.在这种情况下,真实的电子态密度将背离近自由电子模型(公式(1)不适用),此时,总的电子态密度可以分成两部分,一部分是自由电子(ZFEM)的贡献,另一部分是Al-3P 和 Ni-3d之间杂化电子(Zhyb)的贡献,2KF可以写成[17]:2KF=(2)式中:和分别是由自由电子模型和杂化模型计算得到的,ZFEM 是在自由电子模型中的平均价电子数,Zhyb是转移的价电子数.其中,原子数密度(n0)由下式决定:n0=ρNAv/M,ρ是金属玻璃的质量密度,M是摩尔质量,NAv是阿伏伽德罗常数.伪布里渊区尺寸(KP)表征静态原子结构特性, KP 值可以利用X射线衍射图像中伪布拉格峰的位置(非晶合金中的“馒头峰”)获得,其关系式为(3)其中,X射线的波长λ=0.1542 nm,θ是谱线中主峰(馒头峰)的峰位.在K空间(实空间)中,当满足KP= 2KF时,整体结构达到理想共振态,代表两个系统(电子系统和静态原子系统)相互耦合,达到平衡状态,最终导致费米能级初电子态密度达到最低[15].下面我们考虑在三元合金体系中,Ni原子和Y原子对费米面和伪布里渊区的影响.通常分为两种:一种是Al-Ni-Y中Ni原子的影响,Al-3p和Ni-3d之间电子轨道杂化,其改变了3d轨道的有效电子数,最终导致费米面尺寸(KF)变化;另一种是Al-Ni-Y中Y原子的影响,Y原子和Al原子之间不存在电子轨道杂化效应,而Y原子半径在体系中最大,且远大于Al主元的原子半径,因此,Y原子通过改变静态原子结构来改变伪布里渊区的大小(KP).综上所述,为了定量化Ni原子和Y原子对玻璃形成能力的影响,我们提出了电子结构判据,δ=|KP-2KF|.在下文中,我们从实验上确定KP 和 2KF 的值.利用公式(2)可以得出KF,公式中的各个参量可以用电子能量损失谱和X射线光电子能谱实现定性和定量化表征.KP 的值可以通过X射线衍射,利用公式(3)求得.为了进一步衡量费米能级出电子态密度的影响,利用综合物性测量系统(PPMS)和XPS价带谱测量不同合金成分的低温比热,获得低温电子比热系数(γ)的值,通过低温电子比热系数可以间接反映费米能级处电子态密度的大小.2 实验2.1 材料和样品的制备电弧熔炼法制备Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%)母合金.原始材料(Al、Ni、Y)的纯度高于99.9%,按照原子百分比配比,在Edmund Bühler(Compac t Arc Melter MAM-1)中真空电弧炉制备.电弧熔炼炉采用水冷铜坩埚,Ti球吸收气氛中的氧气及其他杂质,用来纯化保护气体.通过单辊熔体急冷法,在高纯氩气制备合金条带样品,条带的截面尺寸为(0.03-0.05)mm3 mm.楔形样品在真空单辊熔体急冷设备上制备,模具的楔倾角为5°,压差为400~800 MPa,样品质量大约3 g.2.2 样品的表征X射线衍射(XRD)分析是在Rigaku D/max2400衍射仪(日本东京生产)上进行,采用Cu K射线源(λ=0.154 2 nm).楔形样品取其尖端完全非晶部分,利用综合物性测量系统(PPMS-9000 Physical Property Measurement System)测量样品的低温比热(CP).X 射线光电子能谱(XPS)实验在ESCALAB250能谱仪上进行,采用Al靶作为X射线源,对应Al Kα激发能量为hν=1 486.6 eV,金属玻璃薄带样品经过一系列型号砂纸打磨后,然后用2000#砂纸精心打磨,表面再采用Ar离子进行短时间的溅射,溅射到C 1s 和O 1s信号的峰达到最小,溅射的电压是4 keV.由于离子溅射束的尺寸为 2 mm, 速率为 0.2 nm/min, 在室温下溅射时间仅仅几秒钟,因此在这种条件下不会使合金样品发生晶化.结合能用C 1s峰(284.6 eV)进行校准,采用阿基米德方法测量金属薄带样品的密度.使用带有GATAN附件的日本生产JEOL JEM-2010型透射电子显微镜(TEM)进行电子能量损失谱的测量,由于离子减薄样品容易发生晶化,TEM观察中所用的电镜样品采用双喷电解抛光法制得,电解液是20vol.%硝酸甲醇溶液.双喷的电流和电压分别是46 mA和8 V,双喷温度是-35 ℃.采集EELS谱时电镜处于衍射模式,能量发散度是0.2 eV/channel,相机长度是8 cm,接收光阑边长是3 mm,能量分辨率是1.4 eV,每个试样在相似的厚度随机采集Ni的EELS谱数量为10个,所有的谱扣除本底后都采用Fourier-ratio方法解卷积以去除多重散射的影响.3 结果和讨论3.1 Al86Ni14-xYx(x=4, 5, 6, 7, 8, 9 at.%)合金中的电子结构判据图1是Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%) 合金的楔形样品的X射线衍射结果,由图可以看出,随着Y元素含量的增加,主峰的峰位随之降低.利用公式(3)我们可以得出Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%) 合金中随着Y元素含量的增加,其KP值的变化,具体结果见表1.费米面尺寸(KF)与Al原子和Ni原子之间的电子杂化作用密切相关,对于Al86Ni14-xYx(x=4, 5, 6, 7, 8, 9 at.%)合金,不同的Ni含量影响电子轨道杂化作用的强弱.为了表征这种电子杂化效应,我们利用XPS测量了Al86Ni14-xYx(x=4, 5, 6, 7, 8, 9 at.%) 合金中Al、Ni、Y三种元素的化学位移,其结果见表1.表1给出了合金中Al、Ni、Y的结合能和单质态的Al、Ni、Y结合能的差值,很明显地看出,合金中Al2p1/2原子结合能比纯金属Al2p1/2的结合能要低,其化学位移大约0.3 eV, BEAl2p1/2=-0.3 eV,与之正好相反的是,合金中Ni2p3/2原子结合能比纯金属Ni2p3/2的结合能要高,BENi2p3/2=0.3 eV,其化学位移大约0.3 eV.由于高的静电能的存在,这种化学位移产生的本质不是真实地电荷的转移,而是Al-3p态上的电子“填加”到的Ni-3d空态.此外,我们还发现Y 3d不存在化学位移的变化,BEY 3d=0,这说明在Al86Ni14-xYx(x=4, 5, 6, 7, 8, 9 at.%)合金中,无论合金成分如何变化,Al原子和Y原子之间没有发生电荷的转移.以上电子之间转移效应其他研究者在同步辐射X射线实验中也得到证实.图2(a)展示了Al86Ni14-xYx(x=4, 5, 6, 7, 8, 9 at.%)合金中Ni2p3/2 主峰及其卫星峰的测量结果,由图可知,随着合金中Y元素含量的增加,其卫星峰的强度降低,并且卫星峰位置逐渐地偏离Ni2p3/2主峰,也就是卫星峰和主峰之间的距离(Esat)增大.表1给出了Ni2p3/2卫星峰强度和不对称指数的变化,在这里, Ni2p3/2卫星峰的强度是由费米能级以上的未占据态的3d轨道特征所决定.此外,Ni主峰的不对称指数的变化也密切反映了d态电子的变化情况,所以随着Y含量的增加,Ni2p3/2不对称指数与Al 原子和 Ni 原子之间转移的电荷数的减少有及其密切的关系.图1 Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%) 合金的楔形样品的XRD结果Fig.1 XRD patterns of the Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%) wedge-shaped sample表1 Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%)合金的Y 3d、Al 2p1/2和Ni 2p3/2结合能和纯Y、Al和Ni的化学位移,分别用BEY 3d、BEAl2p1/2和BENi2p3/2表示Table 1 Binding energy variations for Y 3d, Al2p1/2, and Ni2p3/2 between pure element and the Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%) alloys, referred to as BEY3d, BEAl2p1/2, and BENi2p3/2, respectivelySample進BEY 3d/eV進BEAl2p1/2/eV進BENi2p3/2/eV進Esat/eVIsatAsymme-try IndexNi——05.8029.001.00Al86Ni10Y40-0.290.298.108.791.30Al86Ni9Y50-0.300.308.168.751.32Al86Ni8Y60-0.310.298.638.591.34Al86Ni7Y70-0.280.308.688.551.38Al86Ni6Y80-0.300.318.708.531.41Al86Ni5Y90-0.290.318.758.481.45注:Esat代表Ni的主峰和卫星峰峰位之差,Isat代表Ni的主峰和卫星峰峰的强度之比.Notes:Esat represents the binding energy difference between the main line and the satellite, Isat represents the ratio of the main line intensity to the satellite intensity.为了定量地表征电子轨道杂化导致的电子转移信息,我们进一步地测量了Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%)合金中Ni L2 和L3的白线峰,结果如图3(a)所示.对于含有3d未占据的态密度的过渡族金属,白线峰将会反映过渡族金属的电子从2p态转移到3d态的信息.原子态为2p63d(m)2p,电子受激发一个电子后,变成 2p53d(m+1),其中m代表3d占据态密度的电子数,Ni L3 and L2 白线峰分别对应2p3/2转变成 3d3/23d5/2以及2p1/2转变成3d3/2,其峰强度与3d电子未占据态密度有关,因此,过渡族元素最外层d态电子的转移可以通过检测白线峰获得.Pearson等人推论出归一化白线峰的积分强度(L2和L3峰强度之和)和与d电子占据态密度存在线性关系,最终反映d态电子填充状态.因此,白线峰积分强度的变化能够直接关系到d态电子数(电荷转移).L2 和L3白线峰采用Pearson的双阶跃函数扣除本底的方法,见图3(b),其具体步骤如下:首先,对Ni L2峰后大图2 Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%)合金的(a)Ni2p3/2和Ni2p1/2,(b)XPS价电子能谱Fig.2 (a) Ni2p3/2 and Ni2p1/2 XPS spectra, (b) XPS valence band spectra for the Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%) alloys约50 eV范围内的谱线进行直线拟合, 再将拟合的直线延长至Ni L2峰的最高值位置, 之后,该直线再垂直下降的高度为h1, 再用相同斜率的直线延伸至L3峰的最高值位置,随后再垂直下降至0, 下降的高度为h2, 两次下降的高度h1和h2之比为1∶2.两条直线下面的面积就是本底, 对L2和L3峰进行本底的扣除, 得到白线强度;其次,以Ni L3峰最高值往后50 eV为起点, 向后50 eV这一段谱线的积分面积作为归一化窗口, 即图中所示阴影部分.将扣除本底后的白线的积分面积进行归一化处理,得到归一化的白线强度,得到的谱线才能用来定量分析.最后,利用归一化白线强度与d电子占据态密度的函数关系,得到合金中Ni的3d占据态密度[22]:I=1.06(1-0.094n).(4)其中I是归一化的白线峰强度,n是每个原子的Ni 3d 轨道的电子数.利用测量的归一化后的白线峰强度,根据公式(4)求得了n值, Ni 3d 轨道的电子数(n)计算结果见表2,测量得到的Ni原子中3d轨道电子数的变化证实了电子从Al原子转移到外层的Ni 3d轨道上,这和XPS测量的化学位移的结果相一致.图3 Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%)合金的(a)EELS 测量的Ni-L2,3白线峰,(b)对Al86Ni9Y5合金的Ni-L2,3白线峰进行处理的过程Fig.3 (a) Ni-L2,3 edge EELS spectra for Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%) amorphous alloys, (b) method for isolating and normalizing the white-line intensities for the Ni-L2,3 edge for the Al86Ni9Y5 alloy表2 由EELS测量得到的Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%)合金的电子轨道杂化信息Table 2 Electronic hybridization information obtained from the EELS for the Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%)all oysSampleIn2KFhyb(1/A)2KFFEM(1/A)2KF(1/A)KP(1/A)δ(1/A)Al86Ni10Y4 0.217 0±0.005 08.46±0.005 00.861 53.431 52.570 02.728 00.1580Al86Ni9Y50.225 0±0.008 08.38±0.008 00.780 03.432 02.652 02.671 00.019 0Al86Ni8Y60.226 0±0.010 08.37±0.010 00.743 83.432 12.688 32.668 00.020 3Al86Ni7Y70.227 0±0.007 08.36±0.007 00.704 93.432 12.727 22.664 00.063 2Al86Ni6Y80.228 0±0.009 08.35±0.009 00.663 33.432 22.768 92.660 00.108 9Al86Ni5Y90.229 0±0.011 08.34±0.011 00.618 23.432 32.814 12.658 00.156 1下面计算Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%)非晶合金的KF 值.首先,我们知道Z(Ni)=2, 和值由式(2)求得.在公式(2)中,自由电子的价电子浓度,ZFEM 是所有合金元素(Al、Ni、Y)的自由电子共同贡献的结果,其关系式是:ZFEM=∑iCiZi,其中Ci 和Zi 分别表示i元素的原子百分比含量和自由电子浓度,Zhyb由以下公式得出:Zhyb=C(n-n3d), 其中,n和n3d分别代表每个Ni原子的Al-Ni-Y的3d 电子数和纯金属Y的3d电子数,n的值由公式(4)计算获得,其结果见表1.随着Ni含量的变化,KF值的变化也在表1中给出.最后,计算了Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%)合金成分的电子结构判据,δ=|Kp-2KF|,其结果见图4(a), 从图中可以看出,在所有合金成分中,Al86Ni9Y5 合金的δ 值最小,因此,预测该合金成分的玻璃形成能力最强.3.2 实验验证图1表示Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%) 合金的楔形样品尖端部分X射线衍射结果图,图中没有观察到晶体峰,其表现出典型的“馒头峰”的特征,这说明所有合金成分都是完全非晶.图4(a)和4(b)分别表示Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%)合金中δ值和临界玻璃形成能力(Dc)之间的关系,由图可以得出以下规律:δ值越小,合金的玻璃形成能力越强,这种玻璃形成能力的变化趋势和之前提出的模型预测的完全一致.在Al-Ni-Y三元体系中, Al86Ni9Y5 合金的玻璃形成能力最强,其成分对应的δ值最小.Al-Ni-Y三元金属玻璃体系中,这种玻璃形成能力和δ值的对应关系表明电子结构判据在预测玻璃形成能力的有效性.以上预测的Al-Ni-Y金属玻璃中玻璃形成能力最强的成分,其费米能级初的电子态密度最低,也就是说玻璃形成能力最强的合金成分,在费米面处具有最低的电子态密度.为了证明以上的推论,我们测量了Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%)合金的费米能级处电子态密度值(N(EF)),众所周知,低温电子比热系数()和N(EF)的直接关系式如下:(5)其中,kB是玻尔兹曼常数.从本质上说,低温电子比热系数()可以反映费米能级处电子态密度(N(EF))的大小.值达到最小,也就是N(EF)最低时,对应着非晶“能带结构”中的“伪能隙”.为了方便比较,图4(c)表示出不同Al86Ni14-xYx (x=4, 5,6, 7, 8, 9 at.%)合金成分中值的变化规律,明显地看出,玻璃形成能力最强的合金(Al86Ni9Y5),其低温电子比热系数值在所研究的合金成分中最小,此外,XPS价电子能谱的结果(图2(b))也间接反应了不同合金成分的费米能级处电子态密度(N(EF))大小.因此,玻璃形成能力和低温电子比热系数之间的关系直接验证了电子结构判据(费米面和伪布里渊区相互作用机制)在控制非晶结构方面的有效性,更重要的是,揭示了Al-Ni-Y 三元金属玻璃的玻璃形成能力受Ni原子和Y原子影响的本征机理.图4 Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%)的(a)δ=|Kp-2KF|,(b)临界玻璃形成尺寸(Dc),(c)低温电子比热系数(γ)Fig.4 (a)δ=|Kp-2KF|, (b) Critical thickness for glass formation, Dc , and (c) the electronic specific heat coefficient (γ) value for the Al86Ni14-xYx (x=4, 5, 6, 7, 8, 9 at.%) alloys4 结论根据金属玻璃的费米面和伪布里渊区理论,揭示了Ni原子和Y原子对Al-Ni-Y三元金属玻璃体系玻璃形成能力影响的本质.Al原子和Y原子之间的静态结构的改变影响伪布里渊区(KP)的尺寸;Al原子和Ni原子之间的电子轨道杂化效应的改变影响费米面(2KF)的大小.也就是说,当两者影响的相互作用机制满足2KF=KP,条件时,费米能级处电子态密度最低,金属玻璃整体结构的稳定性得到加强.其中,费米面(2KF)和伪布里渊区(KP)通过XPS、EELS、XRD和PPMS实验手段获得.并且在此基础上,提出了δ=|KP-2KF|判据来定量地表征Ni原子和Y原子对玻璃形成能力的影响.参考文献:【相关文献】[1] WU N C, ZUO L, WANG J Q, et al. Designing aluminum-rich bulk metallic glasses via electronic-structure-guided microalloying[J]. Acta Mater, 2016, 108:143-151.[2] SHEN Y, PEREPEZKO J H. Al-based amorphous alloys: glass-forming ability, crystallization behavior and effects of minor alloying additions[J]. J Alloys Compd, 2017,707:3-11.[3] YANG B J, LU W Y, ZHANG J L, et al. Melt fluxing to elevate the forming ability of Al-based bulk metallic glasses[J]. Scientific Reports, 2017,1: 1105301-110516.[4] TURNBULL D. Under what condition can a glass be formed[J]. Cont. Phys, 1969, 10(5): 473-488.[5] MIRACLE D B. A structural model for metallic glasses[J]. Nat Mater, 2004, 3: 697-702.[6] WU Z W, LI M Z, WANG W H, et al. Hidden topological order and its correlation with glass-forming ability in metallic glasses[J]. Nat Commun, 2015, 6: 60351-60357.[7] INOUE A, OHTERA K, ZHANG T, et al. Effect of intense rolling and folding on the phase stability of amorphous Al-Y-Fe alloys[J]. Jpn J Appl Phys, 1988, 27: 479(8)-482.[8] WU N C, KAN D, ZUO L, et al. Efficient atomic packing-chemistry coupled model and glass formation in ternary Al-based metallic glasses[J]. Intermetallics, 2013, 39: 1-4. [9] KIM W, OH H S, PARK E S. Manipulation of thermal and mechanical stability by addition of multiple equiatomic rare-earth elements in Al-TM-RE metallic glasses[J]. Intermetallics, 2017, 91: 8-15.[10] SHENG H W, CHENG Y Q, LEE P L, et al. Atomic packing in multicomponent aluminum-based metallic glasses[J]. Acta Mater., 2008, 56: 6264-6272.[11] SHI X M, WANG X D, YU Q, et al. Structure alterations in Al-Y-based metallic glasses with La and Ni addition[J]. J Appl Phys, 2016, 119: 1149041-1149049.[12] HAFNER J, HEIMENDAHL L V. Microscopic calculations of the stability of metallic glasses[J]. Phys. Rev. Lett., 1979, 42(6): 386-389.[13] WANG Q, LI J H, LIU J B, et al. Atomistic design of favored compositions for synthesizing the Al-Ni-Y metallic glasses[J].Sci Rep, 2015, 5:16218.[14] WU N C, LIAN J B, WANG R, LI R H, et al. Effect of element types on the glass forming ability of Al-TM-RE ternary metallic glasses using electron structure guiding[J]. J Alloys Compd, 2017, 723: 123-128.[15] NAGEL S R, TAUC J. Nearly-free-electron approach to the theory of metallic glass alloys[J]. Phys Rev Lett, 1975, 35(6): 380-383.[16] STIEHLER M, GIEGENGACK J, BARZOLA-QUIQUIA J, et al. Peculiarities in the plasma resonance of binary amorphous Al-TM alloys[J]. Journal of Physics Chemistry of Solids, 2007, 68(5-6): 1244-1248.。
现代材料分析方法——四大分析方法的应用论文

四大分析方法及应用摘要:本文论述材料的X射线粉末衍射分析(XRD)、电子显微分析、能谱分析(XPS,UPS,AES)和热分析(TG,DTA, DSC)等测试原理、制样技术、影响因素、图谱解析以及它们在材料研究中的具体应用。
以一些常见的化合物为基质的各类复合或是掺杂的材料为例,来重点介绍XRD、电镜、热分析等在研究材料物相组成、结构特征、形貌等方面的应用。
关键词:TiO2,XRD,SEM,XPS,TG,DTA前言由于铝等一些金属和无机物的优良的性质,如铝的密度很小,仅为2.7 g/cm3,虽然它比较软,但可制成各种铝合金,如硬铝、超硬铝、防锈铝、铸铝等。
.铝的导电性仅次于银、铜,虽然它的导电率只有铜的2/3,但密度只有铜的1/3,所以输送同量的电,铝线的质量只有铜线的一半铝是热的良导体,它的导热能力比铁大3倍,工业上可用铝制造各种热交换器、散热材料和炊具等。
铝有较好的延展性(它的延展性仅次于金和银),在100 ℃~150 ℃时可制成薄于0.01 mm 的铝箔。
铝的表面因有致密的氧化物保护膜,不易受到腐蚀,常被用来制造化学反应器、医疗器械、冷冻装置、石油精炼装置、石油和天然气管道等。
铝热剂常用来熔炼难熔金属和焊接钢轨等。
铝还用做炼钢过程中的脱氧剂。
铝粉和石墨、二氧化钛(或其他高熔点金属的氧化物)按一定比率均匀混合后,涂在金属上,经高温煅烧而制成耐高温的金属陶瓷,它在火箭及导弹技术上有重要应用。
所以工业上应用非常广泛。
1 X射线衍射分析(XRD)1.1 X射线衍射仪仪器核心部件:光源---高压发生器与X 光管、精度测角仪、光学系统、探测器、控测,数据采集与数据处理软件、X射线衍射应用软件。
定性相分析(物相鉴定):目的:分析试样属何物质,那种晶体结构,并确定其化学式。
原理:任何结晶物质均具有特定结晶结构(结晶类型,晶胞大小及质点种类,数目分布)和组成元素。
一种物质有自已独特衍射谱与之对应,多相物质的衍射谱为各个物相行对谱的叠加。
S的电子结合能

XPS_DatabaseS的电子结合能:Energy (eV) Element Chemical bonding Ref 2478.5S1s H2S243243 2483.7S1s SO2243 2490.1S1s SF6S的电子结合能:Energy (eV) Element Chemical bonding Ref 161.5S2p NiS, Ni foil polishing and Ar+ etching+H2S 400°C/1h 101 161.6S2p NiS, Ni foil polishing + in H2O/28h+H2S 400°C/1h 101 161.6S2p NiS, Ni foil Polish+Ar+,O2 oxydations/T°C+H2S 400°C/1h 101 161.8S2p(S)2- in Co foil polish- Ar+ etch, +H2S -400°C/2h 101 162.9S2p(S2)2- or SH -Co foil polish- Ar+ etch, +H2S -400°C/2h 101 163S2p(S2)2-, Ni Polish +Ar+O2 oxydations/T°C+H2S 400°C/1h 101 163.1S2p(S2)2-, Ni foil polishing and Ar+ etching+H2S 400°C/1h 101 163.1S2p(S2)2-, Ni foil polish+ in H2o/28h+H2S 400°C/1h 101S的电子结合能:Energy (eV) Element Chemical bonding Ref 107.3S2p3/2 PbS 89 160S2p3/2 sulphides 186-air3'- 89 160.3S2p3/2 PbS160.5S2p3/2 PbS 111 160.55S2p3/2PbS - H2O 19j- 89 160.55S2p3/2 PbS 89 160.7S2p3/2 p-NaSC6H4NO2 111 160.7S2p3/2vieillissement à l'air de la galène pdt 3mn 89 160.9S2p3/2PbS -air 220j- 89 160.95S2p3/2vieillissement à l'eau de la galène pdt 19j 89 161S2p3/2 FeS 111 161.2S2p3/2 KFeS2 111 161.2S2p3/2RSNa ou RSK 245 161.2S2p3/2 S(2-)monosulfide 2343'- 89-air 161.25S2p3/2 CuFeS2161.3S2p3/2 CuFeS2 89 161.3S2p3/2vieillissement à l'air de la galène pdt 220j 89 161.4S2p3/2 Na2SSO3 111 161.4S2p3/2 Ni(SPh)2(dppe) 235 161.5S2p3/2 ZnS 150 161.5S2p3/2 Na2S 111 161.5S2p3/2 CuFeS23j- 89-air 161.5S2p3/2S (ads) / Mo(110) - S strongly bound 103 161.6S2p3/2CuFeS2 - H2O 22j- 89 161.6S2p3/2 Mo(NO)(S2CN(C2H5)2)3 235161.65 S2p3/2 CuFeS2 89161.7 S2p3/2 PhNHCSNHPh 111161.7 S2p3/2 CuFeS2 -air 220j- 89161.7 S2p3/2 Pd(SPh)2(dppe) 235161.8 S2p3/2 WS2 111161.8 S2p3/2 S(-II) 58161.8 S2p3/2 Pt(SPh)2(dppe) 235161.85 S2p3/2 Cu2S 89161.9 S2p3/2 NaS*C(S)NR2 245161.9 S2p3/2 S*SO3(-) 245161.9 S2p3/2 Ni(SCH2CH2S)(dppe) 235161.95 S2p3/2 vieillissement à l'air de la spharelite pdt 3 mn 89162 S2p3/2 Thiourée 195162 S2p3/2 Rh2(O2CH)4(tu)2 195162 S2p3/2 Rh2(O2CCH3)4(tu)2 195162 S2p3/2 PhSCMe3 111162 S2p3/2 gpts (S2SO3)2- 2eme pic 89162 S2p3/2 S2- 245162.05 S2p3/2 vieillissement à l'eau de la spharelite pdt 19j 89162.1 S2p3/2 NiCl2(tu)4 195162.1 S2p3/2 AgCl(tu)2 195162.1 S2p3/2 MoS2 111162.1 S2p3/2 Ph3PS 111162.1 S2p3/2 S2(2-) disulfide 234162.1 S2p3/2 ZnS 89162.1 S2p3/2 Pt(SPh)2(CyNC)2 235162.15 S2p3/2 vieillissement à l'air de la spharelite pdt 220j 89162.2 S2p3/2 Rh2(O2CC6H5)4(tu)2 195162.2 S2p3/2 Fe2S 61162.2 S2p3/2 Fe(S2CN(C2H5)2)2 235162.2 S2p3/2 Fe(NO)I(S2CN(C2H5)2)2 235162.2 S2p3/2 Mo(NO)2(S2CN(C2H5)2)2 235162.25 S2p3/2 Cu2S 89162.3 S2p3/2 Na2 S2O3 (peripheral S) 150162.3 S2p3/2 CuCl(tu)3 195162.4 S2p3/2 CS2 150162.4 S2p3/2 [Pr4N]ReCl5(tu) 195162.4 S2p3/2 CoBr2(tu)2 195162.4 S2p3/2 Co(NCS)2(tu)2 195162.4 S2p3/2 Ni(NO3)2(tu)6 195162.4 S2p3/2 Soufre sur alliage 600 70162.4 S2p3/2 Fe(NO)(S2CN(CH3)2)2 235162.4 S2p3/2 NiWS2 243162.5 S2p3/2 CoCl2(tu)2 195162.5 S2p3/2 Co(NO3)2(tu)4 195162.5S2p3/2 Ni(NCS)2(tu)2 195162.5S2p3/2Na2S2O3 (peripheral S) 111 162.5S2p3/2 CuS 89 162.5S2p3/2FeS2 -air 220j - 89 162.5S2p3/2 sulphides 186 162.5S2p3/2S (élément naturel) 147 162.5S2p3/2 Co(S2CN(CH3)2)3 235 162.5S2p3/2 (Ni(SCH2CH2S))n 235 162.5S2p3/2 Ni(SCH2CH2S)(PMe2Ph)2 235 162.6S2p3/2 NiS 150 162.6S2p3/2 WS2 150 162.6S2p3/2 [Rh(tu)6]Cl(NO3)2 195 162.6S2p3/2 [Cu(BF4)(tu)3]2 195 162.6S2p3/2 NiWS2 111(S)2- 89 162.6S2p3/2 FeS2162.6S2p3/2FeS2 - H2O 22j- 89 162.6S2p3/2FeS2 disulfide (2-) 239 162.6S2p3/2 ((C6H5)4P)(Fe(NO)(S2C2(CN)2)2) 235 162.6S2p3/2 Pt(S2C2(CN)2)(PPh3)2 235 162.6S2p3/2 (NH4)(Fe4S3(NO)7) 235 162.6S2p3/2 WS2 243 162.65S2p3/2FeS2 -air 3'- 89 162.65S2p3/2 CuS 89 162.7S2p3/2 [Rh(tu)5Cl]Cl2 195 162.7S2p3/2 tetrahydrothiophene 111n°1- 163 162.7S2p3/2 FeS2-pyrite 162.7S2p3/2 Pt(S2C2(CN)2)(CNCH3)2 235 162.7S2p3/2 Ni(SPh)2(CyNC)2 235 162.8S2p3/2 RhCl3(tu)3 195 162.8S2p3/2 WS2 111 162.8S2p3/2 NiS 111 162.8S2p3/2FeS2 -air 30j- 89 162.8S2p3/2MoS3 - species S2(II) 103 162.8S2p3/2 (Ni(SPh)2)n 235 162.8S2p3/2 Ni(SPh)2(PMe2Ph)2 235 162.8S2p3/2 Pd(SPh)2(CyNC)2 235 162.9S2p3/2 PhSH 111n°2- 163 162.9S2p3/2 FeS2-pyritepolysulfide 234 162.9S2p3/2 S(2-)n162.9S2p3/2 Methionine 235 162.9S2p3/2 Co(Met)2 235 162.9S2p3/2 Ni(Met)2 235 162.9S2p3/2 Cu(Met)2 235 162.9S2p3/2 Zn(Met)2 235 163S2p3/2 Ph2S 111 163S2p3/2 Mo2O4(S2CN(C2H5)2)2 235 163.1S2p3/2 FeS2 89163.2S2p3/2 Ni(S2C2(C6H5)2)2 235 163.3S2p3/2 (Pd(SPh)2)n 235 163.4S2p3/2 Fe(S2C2(C6H5)2)2 235 163.4S2p3/2 (Pt(SPh)2)n 235 163.4S2p3/2 (Fe(SCH3)(CO)3)2 235 163.4S2p3/2 (Fe(SC2H5)(NO)2)2 235 163.6S2p3/2 CS2 111 163.6S2p3/2 (Ru(CS2)Cl(PPh3)3)Cl 235 163.7S2p3/2 PhSSPh 111 163.7S2p3/2 S8 111 163.7S2p3/2 RSSR 245Sulfur. 26 163.7S2p3/2 S-C,163.8S2p3/2 Sn 111 163.8S2p3/2 RSH 245 163.9S2p3/2 thiophene 111 163.9S2p3/2gpts (S4O6)2- 2eme pic 89 164S2p3/2 S=C=S 245 164S2p3/2 RS*SO3- 245 164.05S2p3/2 S 150 164.1S2p3/2 RS*S(O)R 245 164.1S2p3/2 RS*SO2R 245 164.1S2p3/2 R2NS*NR2 245 164.1S2p3/2 RSCl 245 164.1S2p3/2 Pt(MetH)Cl2 235 164.2S2p3/2 S2N2 111 164.2S2p3/2 S8 245élémentaire 61 164.2S2p3/2 S164.2S2p3/2 S6 186 164.25S2p3/2 S(s) 111thiophen 245 164.3S2p3/2 S164.3S2p3/2 S° 89 165S2p3/2 RSOR 245 165.3S2p3/2 Sn(CH3)2Cl2(dmso)2 195 165.3S2p3/2Sn -pyrite n°1- 163((CH3)2S=O) 195 165.5S2p3/2 DMSO165.5S2p3/2 Me3SI 111 165.5S2p3/2 O2NC6H4SO2Na 111 165.6S2p3/2 CuCl2(dmso)2 195 165.7S2p3/2 Ph2SO 111 165.7S2p3/2 BzMeSO 111 165.9S2p3/2 NiCl2(dmso)3 195 165.9S2p3/2 CoCl2(dmso)3 195 165.9S2p3/2Sn ? -pyrite n°2- 163 166S2p3/2 MnCl2(dmso)3 195 166S2p3/2 CdCl2(dmso) 195 166S2p3/2 [Pd(dmso)4](BF4)2 195166S2p3/2 PhSO2Na 111 166S2p3/2 RSO2- 245 166.1S2p3/2 Co(NH3)4(SO3)(CN) 195 166.1S2p3/2 NH4[Co(NH3)4(SO3)2] 195 166.1S2p3/2 Na2SO3 111 166.1S2p3/2 RS(O)R 245 166.1S2p3/2 RS*(O)SR 245 166.2S2p3/2 SnCl2(dmso)2 195 166.2S2p3/2 FeCl3(dmso)2 195 166.3S2p3/2 ZnCl2(dmso)2 195SO3 150 166.4S2p3/2 Na2166.4S2p3/2 NH4[Co(en)(NH3)2(SO3)2] 195 166.4S2p3/2 PdCl2(dmso)2 195 166.4S2p3/2 SnCl4(dmso)2 195 166.4S2p3/2S oxyde type sulfite 61 166.5S2p3/2 HgCl2(dmso) 195 166.5S2p3/2 PtCl2(dmso)2 195 166.6S2p3/2 AlCl3(dmso)6 195 166.6S2p3/2 Na2SO3 111 166.7S2p3/2 SO3(2-) 245 166.7S2p3/2 Ir(SO2)(CO)Cl(PPh3)2 235 166.8S2p3/2 [Pd(dmso)4](BF4)2 195 166.9S2p3/2NaRh(NH3)4(SO3)2 . H2O 195 166.9S2p3/2 RhCl3(dmso)3 195 167S2p3/2 RS(O)OR 245 167.2S2p3/2 SO2 150 167.2S2p3/2K3Rh(SO3)3 . 2 H2O 195 167.4S2p3/2 Na2SSO3 111 167.4S2p3/2 SO2 111 167.4S2p3/2 SO4(-II) 58 167.5S2p3/2 RSO2R 245 167.5S2p3/2 (-)S*O3S(-) 245 167.7S2p3/2 BzMeSO2 111 167.8S2p3/2 SO2 111 167.9S2p3/2 PhSO3Na 111 168S2p3/2 p-H2NC6H4SO2NH2 111 168S2p3/2 RSO3- 245 168.1S2p3/2 PhSO3Me 111 168.1S2p3/2gpts (S2SO3)2- 1er pic 89 168.1S2p3/2 RS*O2SR 245 168.1S2p3/2 RS*O2NR2 245 168.1S2p3/2 SO2 245 168.1S2p3/2 SOCl2 245 168.2S2p3/2Cu(bipy)SO4 . 2 H2O 195 168.2S2p3/2gpts ( S4O6)2- 1er pic 89 168.3S2p3/2 Na2SO4 111168.3S2p3/2 FeSO4 111 168.4S2p3/2Na2 S2O3 (central S) 150 168.5S2p3/2Cu(en)2SO4 . H2O 195 168.5S2p3/2 RSO2OR 245 168.5S2p3/2 RSO2Cl 245 168.5S2p3/2 sulphates 186 168.6S2p3/2Na2S2O3 (central S) 111(SO4)2- 89 168.7S2p3/2 gpts168.7S2p3/2SO4(2-) -pyrite n°1- 163 168.8S2p3/2 Fe2(SO4)3 111 168.9S2p3/2 CuSO4 150SO4 150 168.9S2p3/2 Na2168.9S2p3/2 (-)SO3SR 245 169S2p3/2 CoSO4 195 169S2p3/2Cu(bipy)3SO4 . 7 H2O 195 169S2p3/2 SO4(2-) 245 169S2p3/2S dans SO4(-II) 183 169.1S2p3/2 CuSO4 111 169.1S2p3/2SO4(2-) -pyrite n°2- 163 169.4S2p3/2Cu(en)SO4 . H2O 195 169.5S2p3/2CuSO4 . 5 H2O 195 169.5S2p3/2 sulphates 186 169.8S2p3/2 RSO2OR 245 170S2p3/2 CS2 243(g) 111170.03S2p3/2 CS2170.2S2p3/2 H2S 111 170.2S2p3/2 RSO2F 245 170.2S2p3/2 H2S 243 170.3S2p3/2 CuSO4 195 170.3S2p3/2satellites -pyrite n°1- 163(g) 111170.44S2p3/2 H2S170.6S2p3/2 Cr2(SO4)3 186 170.8S2p3/2 COS 111 170.8S2p3/2 COS 243 172.2S2p3/2satellite -pyrite n°2- 163 174.2S2p3/2 SF6 150 174.4S2p3/2 SF6 111(g) 111174.8S2p3/2 SO2174.8S2p3/2 SO2 243 180.3S2p3/2 SF6(g) 111 180.4S2p3/2 SF6 243S的电子结合能:Energy (eV) Element Chemical bonding Ref 224.7S2s PbS89 224.7S2s PbS -air 3'- 89224.9S2s PbS -air 220j- 89 225.1S2s vieillissement à l'air de la galène pdt 3mn 89 225.3S2s vieillissement à l'air de la galène pdt 220j 89 225.3S2s vieillissement à l'eau de la galène pdt 19j 89 227.5S2s S -Fe /19Cr /9Ni /2.5Mo- 138 232.4S2s SO4 (2-) -Fe /19Cr /9Ni /2.5Mo- 138。
电子结合能

XPS_DatabaseZn的电子结合能:Energy (eV) Element Chemical bonding Ref 1045Zn2p1/2Cu Zn alpha, béta 178178 1045.1Zn2p1/2 ZnO1045.9Zn2p1/2 ZnI2 621046.2Zn2p1/2 ZnCl2 621046.4Zn2p1/2 ZnBr2 62 Zn的电子结合能:Energy (eV) Element Chemical bonding Ref88.4Zn2p3/2Cu Zn alpha, béta 1781020.7Zn2p3/2 ZnP2 150 1021.2Zn2p3/2 Zn 111 1021.4Zn2p3/2 ZnTe 150 1021.4Zn2p3/2 ZnS 150acethylacetonate 111 1021.4Zn2p3/2 Zn1021.4Zn2p3/2 ZnO 157 1021.5Zn2p3/2 ZnAl2O4 150 1021.6Zn2p3/2 ZnF2 150 1021.6Zn2p3/2 ZnO 111 1021.6Zn2p3/2 ZnTe 111 1021.6Zn2p3/2ZnO ds P2O5 ZnO/P2O5 = 1.2 molar 252 1021.6Zn2p3/2 Zn(Met)2 235 1021.62Zn2p3/2 Zn 150 1021.8Zn2p3/2 ZnSe 150 1021.9Zn2p3/2 ZnO 150 1021.9Zn2p3/2 ZnS 111 1021.9Zn2p3/2 Zn 111 1021.9Zn2p3/2hemimorphite (Zn silicate) 111 1022Zn2p3/2 ZnSe 111 1022Zn2p3/2Cu Zn alpha, béta 178 1022Zn2p3/2élément naturel (liaison métallique) 147 1022.1Zn2p3/2 ZnO 178 1022.2Zn2p3/2 ZnF2 111 1022.2Zn2p3/2 ZnO 111 1022.2Zn2p3/2ZnO ds P2O5 ZnO/P2O5 = 0.4 molar 252 1022.3Zn2p3/2 ZnI2 150 1022.3Zn2p3/2ZnO ds P2O5 ZnO/P2O5 = 1 molar 252 1022.4Zn2p3/2ZnO ds P2O5 ZnO/P2O5 = 1,5 molar 252 1022.4Zn2p3/2ZnO ds P2O5 ZnO/P2O5 = 2 molar 252 1022.8Zn2p3/2 ZnSO4 150 1022.8Zn2p3/2 ZnI2 111 1023Zn2p3/2 ZnBr2 111 1023Zn2p3/2 ZnCl2 621023Zn2p3/2 ZnI2 62 1023.3Zn2p3/2 Zn(C24H27N7)(PF6)2 111 1023.3Zn2p3/2 ZnBr2 62 1023.4Zn2p3/2 ZnBr2 150Zn的电子结合能:Energy (eV) Element Chemical bonding Ref90.7Zn3p1/2Cu Zn alpha, béta 17817890.8Zn3p1/2 ZnOZn的电子结合能:Energy (eV) Element Chemical bonding Ref17888.6Zn3p3/2 ZnOXPS_DatabaseCu2p1/2的电子结合能Energy (eV) Element Chemical bonding Ref 951.2Cu2p1/2Pd50Cu50 alloy with respect to pure components 8 952Cu2p1/2Cu 8 952.3Cu2p1/2Cu2O 178 952.5Cu2p1/2Cu Zn alpha, béta 178 953.3Cu2p1/2NdCuSn 82 953.3Cu2p1/2NdCuGe 82 953.6Cu2p1/2CuO 178 962Cu2p1/2Y0,4 Pr0,6 Ba2 Cu4 O8 204Cu2p3/2的电子结合能Energy (eV) Element Chemical bonding Ref 923.5Cu2p3/2Cu 215 931.2Cu2p3/2Pd50Cu50 alloy with respect to pure components 8 931.6Cu2p3/2CuInSe2 150 931.7Cu2p3/2CuAgSe 150 931.7Cu2p3/2Cu2Se 150 931.8Cu2p3/2CuFeS2 150 931.8Cu2p3/2CuFeS2 89 932Cu2p3/2CuCl 111 932Cu2p3/2Cu2Mo3O10 111 932Cu2p3/2Cu 8 932Cu2p3/2CuS 89 932.1Cu2p3/2CuS 150 932.1Cu2p3/2Cu2O 111 932.2Cu2p3/2CuP2 150 932.2Cu2p3/2Cu2S 150 932.2Cu2p3/2Cu(CN)2 150 932.2Cu2p3/2Cu2O 150 932.2Cu2p3/2CuCl 150 932.2Cu2p3/2Ni90Cu10 215 932.3Cu2p3/2Cu2S 111 932.3Cu2p3/2Cu 111 932.3Cu2p3/2CuAgSe 111 932.3Cu2p3/2Cu2Se 111 932.4Cu2p3/2Cu3O2 125 932.4Cu2p3/2CuSe 111 932.4Cu2p3/2CuCl 111 932.4Cu2p3/2Cu2S 89 932.4Cu2p3/2Cu2O (?) 157 932.4Cu2p3/2Cu metal 13 932.47Cu2p3/2Cu 150 932.5Cu2p3/2CuS 111932.5Cu2p3/2Cu2O 178 932.5Cu2p3/2Cu métal 247 932.5Cu2p3/2Cu2O 247 932.5Cu2p3/2Cu2O 13 932.6Cu2p3/2Cu bulk 125 932.7Cu2p3/2Cu 175 932.7Cu2p3/2Cu 225 932.7Cu2p3/2élément naturel (liaison métallique) 147 932.8Cu2p3/2Cu 111 933.1Cu2p3/2CuCN 111 933.2Cu2p3/2CuC(CN)3 111 933.3Cu2p3/2CuBr2 111 933.3Cu2p3/2NdCuGe 82 933.4Cu2p3/2NdCuSn 82 933.4Cu2p3/2CuO 111 933.5Cu2p3/2Al2Cu 111 933.6Cu2p3/2CuFe2O4 150 933.6Cu2p3/2CuO 150 933.7Cu2p3/2Al2Cu 150 933.7Cu2p3/2CuO 178 933.7Cu2p3/2CuFe2O4 247 933.7Cu2p3/2CuO 155 933.7Cu2p3/2CuO 13 933.8Cu2p3/2Cu2+ in copper-erbium carbonate 181 933.8Cu2p3/2Cu2+ in copper-holmium carbonate 181 933.8Cu2p3/2CuO 125 933.8Cu2p3/2CuO 247 933.9Cu2p3/2CuO 157 934Cu2p3/2CuN in [CuEu(daaen)] 166 934Cu2p3/2Cu(C24H27N7)(PF6)2 111 934.1Cu2p3/2CuN in [Cu(H2daaen)] 166 934.1Cu2p3/2Cu(II)-Dy(III) in Cu2Dy2O5 151 934.2Cu2p3/2Cu(II)-Er(III) in Cu2Er2O5 151 934.2Cu2p3/2CuCl2 150 934.3Cu2p3/2Cu(II)-Gd(III) in CuGd2O4 151 934.4Cu2p3/2Cu(II)-Ho(III) in Cu2Ho2O5 151 934.4Cu2p3/2CuCr2O4 150 934.4Cu2p3/2CuCl2 111 934.4Cu2p3/2Cu(OH)2 247 934.5Cu2p3/2CuAl2O4 150 934.5Cu2p3/2CuMoO4 111 934.7Cu2p3/2CuCO3 111 934.7Cu2p3/2Cu(OH)2 155 934.7Cu2p3/2Cu(OH)2 13 934.7Cu2p3/2Cu(Met)2 235 934.9Cu2p3/2CuSiO3 111934.9Cu2p3/2CuSiO3 155 935.1Cu2p3/2Cu(OH)2 125 935.5Cu2p3/2CuSO4 111 935.5Cu2p3/2Cu(NO3)2 111 935.5Cu2p3/2CuSO4 155 935.9Cu2p3/2CuF2 150 936.7Cu2p3/2CuF2 111 937Cu2p3/2CuF2 111 939.4Cu2p3/2CuN in [Cu(H2daaen)] (satellite) 166 940.4Cu2p3/2CuN in [CuEu(daaen)] (satellite) 166 943.5Cu2p3/2CuN in [CuEu(daaen)] (satellite) 166 944.2Cu2p3/2CuN in [Cu(H2daaen)] (satellite) 166Cu3d的电子结合能Energy (eV) Element Chemical bonding Ref824.1Cu3d PrCuSn4.1Cu3d NdCuGe (1 of 2) 824.2Cu3d NdCuSn (1 of 2) 825.3Cu3d NdCuGe (2 of 2) 826Cu3d NdCuSn (2 of 2) 82Cu3d3/2的电子结合能Energy (eV) Element Chemical bonding Ref82 953.8Cu3d3/2 PrCuSn Cu3d53/2的电子结合能Energy (eV) Element Chemical bonding Ref82 933.6Cu3d5/2 PrCuSn Cu3p1/2的电子结合能Energy (eV) Element Chemical bonding Ref17877.2Cu3p1/2 Cu2O77.3Cu3p1/2Cu Zn alpha, béta 17817878.2Cu3p1/2 CuOCu3p31/2的电子结合能Energy (eV) Element Chemical bonding Ref8974.65Cu3p3/2 CuFeS28974.95Cu3p3/2 CuS75.1Cu3p3/2Cu Zn alpha, béta 17824775.1Cu3p3/2 Cumétal24775.1Cu3p3/2 Cu2O8975.15Cu3p3/2 Cu2S17875.2Cu3p3/2 Cu2O17876.2Cu3p3/2 CuO76.2Cu3p3/2 CuO24724776.4Cu3p3/2 CuFe2O4247 77Cu3p3/2 Cu(OH)2Cu3s的电子结合能Energy (eV) Element Chemical bonding Ref247métal 122.2Cu3s Cu247 122.2Cu3s Cu2O82 122.2Cu3s NdCuGe82 122.4Cu3s NdCuSn82 122.5Cu3s PrCuSn123Cu3s Y0,4 Pr0,6 Ba2 Cu4 O8 204123Cu3s Pr Ba2 Cu O7 204247 123.5Cu3s CuO247 124.1Cu3s Cu(OH)2XPS_DatabaseFe2p1/2的电子结合能:Energy (eV) Element Chemical bonding Ref 720.1Fe2p1/2 Fe° 4720.3Fe2p1/2 Fe2B 4720.4Fe2p1/2 FeB 4Fe2p3/2的电子结合能:Energy (eV) Element Chemical bonding Ref 706.3Fe2p3/2 FeS2 111 706.4Fe2p3/2 Fe° 73 706.5Fe2p3/2 FeS2 150iron 224 706.5Fe2p3/2 metallic706.54Fe2p3/2 Fe 150 706.6Fe2p3/2 Fe2B 111 706.6Fe2p3/2FeS, tail DSJ 234metal 13 706.6Fe2p3/2 Fe706.7Fe2p3/2 Fe 111 706.8Fe2p3/2 FeB 111 706.8Fe2p3/2FeS2 - H2O 22j 89 706.8Fe2p3/2 Fe 183métallique 1 706.8Fe2p3/2 Fe706.8Fe2p3/2ds le 304 ss avec N2 implanté 218 706.8Fe2p3/2N ds l'acier 304 (bulk) 55 706.8Fe2p3/2 Fe° 156 706.8Fe2p3/2 Fe° 2 706.8Fe2p3/2Fe° in a passive film on SUS316L 65 706.9Fe2p3/2 FeP 150 706.9Fe2p3/2 Fe 89n°1- 163-pyrite 706.9Fe2p3/2 FeS2n°2- 163-pyrite 706.9Fe2p3/2 FeS2706.9Fe2p3/2 Fe(m) 84 706.9Fe2p3/2 Fe 89 706.95Fe2p3/2FeS2 - air 11j- 89iron 224 707Fe2p3/2 metallic707Fe2p3/2pic XPS alliage Fe24Cr 124 707Fe2p3/2Fe metal in case of sample immersed in a 60°C solution 11 707Fe2p3/2Fe metal with a sample immersed in a room t° solution 11 707Fe2p3/2 Fe° 4 707.1Fe2p3/2FeS2 - air 3j- 89 707.1Fe2p3/2FeS2 - air 30j- 89 707.1Fe2p3/2FeS2 - air 220j - 89métal 182 707.1Fe2p3/2 pic707.1Fe2p3/2Fe ds 304 ss nitré 218 707.1Fe2p3/2N ds l'acier 304 (nitré) 55707.1Fe2p3/2 Fe(m) 84(pyrite) 89 707.15Fe2p3/2 FeS2707.2Fe2p3/2 FeB 150 707.2Fe2p3/2 Ni-21Cr-8Fe 183 707.2Fe2p3/2élément naturel (liaison métallique) 147 707.2Fe2p3/2 Fe2B 4 707.3Fe2p3/2 Fe3Si 150 707.3Fe2p3/2 FeB 4 707.4Fe2p3/2 FeS2 111 707.45Fe2p3/2 FeS2 89 707.6Fe2p3/2 Fe(C5H5)2 150 707.9Fe2p3/2 Fe3C 150 707.9Fe2p3/2metallic iron strongly interacting with the oxide 224 708.1Fe2p3/2 CuFeS2 89 708.2Fe2p3/2 Fe(C10H8N2)3(PF6)2 111 708.2Fe2p3/2Fe oxide in a passive film on SUS316L 65 708.3Fe2p3/2 Fe2P2S6 111 708.3Fe2p3/2 KFeS2 111 708.3Fe2p3/2 Fe3O4 89 708.5Fe2p3/2 K4Fe(CN)6 111 708.5Fe2p3/2 CuFeS2 89Fe2+ 13 708.5Fe2p3/2 Fe2O3,708.6Fe2p3/2 Fe2+ 73 708.7Fe2p3/2 (Fe(SCH3)(CO)3)2 235 709.1Fe2p3/2 Fe2+ 2 709.1Fe2p3/2 (Fe(SC2H5)(NO)2)2 235 709.2Fe2p3/2Fe(S?) , FeO -pyrite n°1- 163 709.2Fe2p3/2Fe(II) dans Fe3O4 183 709.2Fe2p3/2 Fe2+ 84 709.3Fe2p3/2Fe2+ ds FeO 1 709.4Fe2p3/2 FeO 150 709.4Fe2p3/2pic XPS (Fe2+) alliage Fe24Cr 124 709.5Fe2p3/2 Fe(II) 224 709.5Fe2p3/2Fe(S) , FeO -pyrite n°2- 163 709.5Fe2p3/2 Fe2+ 156 709.5Fe2p3/2 FeO 89 709.5Fe2p3/2 Fe(OH)2 118 709.6Fe2p3/2 Fe2+ 84 709.8Fe2p3/2 FeBr3 111 709.8Fe2p3/2 FeO 13 709.9Fe2p3/2 FeBr2 111 709.9Fe2p3/2 FeCl3 111 709.9Fe2p3/2 FeF2 111 709.9Fe2p3/2 K3Fe(CN)6 111 710Fe2p3/2 FeS 111 710Fe2p3/2 FeO 111710Fe2p3/2Fe2p3/2 (voir spectres dans la publication). 102 710.2Fe2p3/2 FeCl2 111 710.3Fe2p3/2 CoFe2O4 150 710.3Fe2p3/2 Fe(II) 224 710.3Fe2p3/2 Fe3+ 156 710.4Fe2p3/2 NiFeO4 111 710.4Fe2p3/2 Fe3+ 2 710.4Fe2p3/2Fe oxide in a passive film on SUS316L 65oxyde 89 710.5Fe2p3/2 FeS2710.5Fe2p3/2 Fe3+ 84 710.5Fe2p3/2 alpha-Fe2O3 118 710.6Fe2p3/2 Fe2O3 89-air3'- 89 710.6Fe2p3/2 CuFeS2710.6Fe2p3/2 Fe(III) 224 710.6Fe2p3/2Fe(OH)3 -pyrite n°1- 163 710.6Fe2p3/2 Fe3+ 73 710.6Fe2p3/2 Fe2O3 157 710.7Fe2p3/2 Fe2O3 150 710.7Fe2p3/2 FeOOH 111 710.7Fe2p3/2Fe(OH)3 -pyrite n°2- 163Fe3O4 183dans710.7Fe2p3/2 Fe(III)710.7Fe2p3/2pic XPS (Fe3+) alliage Fe24Cr 124 710.8Fe2p3/2pic large attribué principalement à Fe2O3 182 710.8Fe2p3/2pic du Fe2O3 après bombardement (5 min) 182 710.8Fe2p3/2 Fe2O3 13 710.85Fe2p3/2 FeSO4,7H2O 89 710.9Fe2p3/2 Fe2O3 111 710.9Fe2p3/2CuFeS2 -air 3j - 89 710.9Fe2p3/2Fe Ox, 316 L alloy fretted (30 min) in physio serum 207 710.9Fe2p3/2 Fe3+ 84Fe3+ 13 710.9Fe2p3/2 Fe3O4,710.95Fe2p3/2CuFeS2 - H2O 40' - 89 711Fe2p3/2 FeSO4.7H2O 111 711Fe2p3/2CuFeS2 - H2O 3h - 89 711Fe2p3/2CuFeS2 - H2O 8j - 89 711Fe2p3/2CuFeS2 - H2O 16j - 89 711Fe2p3/2Fe3+ ds Fe2O3 1 711Fe2p3/2 Fe3+ 228 711Fe2p3/2Fe2p exposé à l' oxygéne à 600K 173alpha 89 711Fe2p3/2 Fe2O3711Fe2p3/2vieillissement à l'air de la chalcopyrite pdt 3 mn 89 711Fe2p3/2Fe oxide with a sample immersed in a room t° solution 11 711.05Fe2p3/2CuFeS2 - H2O 34j - 89 711.05Fe2p3/2FeS2 - air 3'- 89 711.1Fe2p3/2 Fe3O4 111 711.1Fe2p3/2 Fe2(WO4) 111711.1Fe2p3/2CuFeS2 -air 11j - 89 711.15Fe2p3/2 FeOOH 89 711.2Fe2p3/2 FeF2 150 711.2Fe2p3/2CuFeS2 - H2O 1j - 89 711.2Fe2p3/2CuFeS2 - H2O 4j - 897H2O 89 711.25Fe2p3/2 FeSO4711.3Fe2p3/2 dithiodibutylcarbanate 111 711.35Fe2p3/2vieillissement à l'eau de la chalcopyrite pdt 40mn 89 711.4Fe2p3/2 NaFeO2 111 711.4Fe2p3/2CuFeS2 -air 30j - 89 711.4Fe2p3/2 Fe(III) 224 711.45Fe2p3/2 FeOOH 89 711.45Fe2p3/2vieillissement à l'eau de la chalcopyrite pdt 34j 89 711.5Fe2p3/2 FeWO4 111 711.5Fe2p3/2Fe (2) acethylacetonate 111 711.5Fe2p3/2FeOOH dans Inconel 600 (Publication riche en El) 246 711.5Fe2p3/2 FeO.OH 118 711.5Fe2p3/2Fe oxide in case of sample immersed in a 60°C solution 11 711.55Fe2p3/2CuFeS2 -air 220j - 89 711.6Fe2p3/2 FeOOH 13 711.75Fe2p3/2CuFeS2 - air 400j - 89 711.8Fe2p3/2Fe (3) acethylacetonate 111 711.8Fe2p3/2 KFe3(OH)6(SO4)2 89 712Fe2p3/2 cyclohexanebutyrate 111 712Fe2p3/2SO4(2-) -pyrite n°1- 163 712.1Fe2p3/2Fe2(SO4)3 -pyrite n°2- 163 712.15Fe2p3/2vieillissement à l'air de la chalcopyrite pdt 400j 89 713.1Fe2p3/2 Fe2(SO4)3 89 713.5Fe2p3/2 Fe2(SO4)3 89 713.9Fe2p3/2 FeF3 111 714Fe2p3/2 K3FeF6 111 714Fe2p3/2satellite -pyrite n°1- 163 714Fe2p3/2satellite -pyrite n°2- 163 715Fe2p3/2 satelliteFe(II) 224of 715Fe2p3/2pic XPS alliage Fe24Cr (Fe2+ satellite) 124 715.7Fe2p3/2 Fe2O3/Fe3O4 25satellite 1 715.7Fe2p3/2 Fe2+719.8Fe2p3/2 satelliteFe(III) 224of 720Fe2p3/2pic XPS alliage Fe24Cr (Fe3+ satellite) 124Fe2s的电子结合能:Energy (eV) Element Chemical bonding Ref 641.2Fe2s Fe2B44 641.6Fe2s Fe°4 641.6Fe2s FeBFe3p的电子结合能:Energy (eV) Element Chemical bonding Ref8952.6Fe3p Fe89 53Fe3p Fe53.2Fe3p Fe° 453.2Fe3p Fe2B 453.5Fe3p Fe3O48953.5Fe3p FeB 48953.65Fe3p FeS253.8Fe3p CuFeS2898953.9Fe3p Fe3O454.05Fe3p FeS289163n°1--pyrite54.1Fe3p FeS28954.2Fe3p CuFeS254.5Fe3p FeO89163n°2-54.5Fe3p FeS2-pyrite8954.9Fe3p FeO8955.4Fe3p Fe2O38955.6Fe3p FeSO4,7H2Oalpha8955.8Fe3p Fe2O38955.85Fe3p FeOOH897H2O 56Fe3p FeSO48956.25Fe3p FeOOH56.7Fe3p Fe(OH)3,Fe2(SO4)3 -pyrite n°1- 16357Fe3p Fe2(SO4)3 , FeOOH -pyrite n°2- 1638957.75Fe3p Fe2(SO4)38958.15Fe3p Fe2(SO4)359.4Fe3p satellites -pyrite n°1- 16359.7Fe3p satellite -pyrite n°2- 16362.4Fe3p satellites -pyrite n°1- 16362.5Fe3p satellite -pyrite n°2- 163 Fe3s的电子结合能:Energy (eV) Element Chemical bonding Ref491.3Fe3s Fe°491.7Fe3s FeB491.7Fe3s Fe2BXPS_DatabaseK的电子结合能:Energy (eV) Element Chemical bonding Ref 291.9K2p3/2K3Cr(CN)6 150 292K2p3/2K2MoCl6 111 292.1K2p3/2KF 111 292.1K2p3/2K2SnCl6 111 292.2K2p3/2KN2 111 292.3K2p3/2KCl 111 292.4K2p3/2K2PtCl6 111 292.5K2p3/2K2ReCl6 111 292.6K2p3/2KI 150 292.6K2p3/2KCl 150 292.6K2p3/2KF 150 292.6K2p3/2KBr 111 292.7K2p3/2KCl 111 292.7K2p3/2KNO3 111 292.7K2p3/2K2IrCl6 111 292.7K2p3/2K2TiF6 111 292.8K2p3/2K2OsCl6 150 292.8K2p3/2KBr 111 292.9K2p3/2KBr 150 292.9K2p3/2KNO2 111 292.9K2p3/2K2PtCl4 111 293K2p3/2K2Pt(CN)4 111 293.2K2p3/2KPtCl6 111 293.5K2p3/2KSbF6 150 294.2K2p3/2K in HOPG Intercalation Compounds (st1, vol peak) 143 294.5K2p3/2K 150 294.6K2p3/2élément naturel (liaison métallique) 147 294.6K2p3/2K metal 143 295.4K2p3/2K in HOPG Intercalation Compounds (st2, vol peak) 143 295.4K2p3/2K in HOPG Intercalation Compounds (st3, vol peak) 143 297.5K2p3/2KF 'washed-fume particules' 25 299.4K2p3/2KF 'fume particules' 25 300.7K2p3/2K (g) 111K的电子结合能:Energy (eV) Element Chemical bonding Ref 377.2K2s K2(PdBr4)144144 377.2K2s K2(Pd(CN)4)144 377.4K2s K2(PdCl4)144 377.4K2s K2(Pd(NO2)4)237 384.3K2s KSb2F7237 384.5K2s K2SbF5Li的电子结合能:Energy (eV) Element Chemical bonding Ref51.9Li1s Li métal après bombardement par l'argon 5151.9Li1s Li metal ds DEC(LiPF6) et bomb par argon 5153.3Li1s Li ds Li2O après bombardement par l'argon 5153.3Li1s Li2Oap immersion ds DEC(LiPF6) et bomb par argon 5153.6Li1s LiCO3 ou LiOH ds DEC contenant LiClO4 pdt 240 min 5153.8Li1s Lithium carbide (formed in graphene) 7154.6Li1s Li2CO3 pour surfaces des feuilles de Li métal 5111154.8Li1s Li54.8Li1sélément naturel (liaison métallique) 14711154.9Li1s LiN3150 55Li1s Li2CO3 55Li1s LiPO411111155.1Li1s LiCrO255.2Li1s LiF11115055.5Li1s LiF55.6Li1s Li in graphene, can't be deintercalated 7155.6Li1s LiFaprès immersion ds DEC(LiPF6) 5111155.8Li1s LiCl15055.9Li1s LiCl15056.6Li1s LiBr11156.6Li1s LiBr11156.9Li1s LiCrO457.37Li1s Li ds Li métal 8160.05Li1s Li ds LiC6 81Mn2p3/2的电子结合能:Energy (eV) Element Chemical bonding Ref 638.58Mn2p3/2 Mn 150 638.8Mn2p3/2 MnP 150 638.8Mn2p3/2 Mn 111 639.4Mn2p3/2élément naturel (liaison métallique) 147 639.9Mn2p3/2 MnS 111 640.4Mn2p3/2 MnS 111 640.8Mn2p3/2 Mn(C24H27N7)(PF6)2 111 640.9Mn2p3/2 MnN 150 641Mn2p3/2 MnO 111 641Mn2p3/2 MnO 224 641.1Mn2p3/2 Mn2O3 111 641.2Mn2p3/2 Mn3O4 150 641.4Mn2p3/2 Mn2O3 150 641.5Mn2p3/2 MnCl2 111 641.7Mn2p3/2 MnI2 111 641.7Mn2p3/2 MnBr2 111 641.7Mn2p3/2 K3Mn(CN)6 111 641.8Mn2p3/2 MnCl2 150 641.9Mn2p3/2 MnBr2 150 642Mn2p3/2 MnO2 111 642.1Mn2p3/2 MnSiO3 150 642.1Mn2p3/2 MnF2 111 642.3Mn2p3/2 MnSiO3 111 642.4Mn2p3/2 MnO2 150 642.4Mn2p3/2 MnO2 157 642.8Mn2p3/2 MnCl2 111 645.8Mn2p3/2MnO/MN2O3 'washed-fume particules' 25 646.4Mn2p3/2satellite of satellite of MnO 224 646.8Mn2p3/2 KMnO4 150Na的电子结合能:Energy (eV) Element Chemical bonding Ref 981.4Na1s NaF 'fume particules' 25 1070.3Na1s hydroxysodalite 150 1070.5Na1s hydroxysodalite 111 1070.6Na1s Na2C2O4 150SeO3150 1070.6Na1s Na2111 1070.6Na1s Na2SeO3150 1070.7Na1s NaAsO2MoO4 150 1070.7Na1s Na2111 1070.7Na1s NaAsO2 1070.8Na1s NaOAc 111 1070.8Na1s Na2C2O4 111 1070.8Na1sélément naturel (liaison métallique) 147 1070.8Na1s metal 159150H2PO2 1070.9Na1s NaPO4 150 1070.9Na1s Na3TeO4150 1070.9Na1s Na21070.9Na1s Na2 SnO3, 3 H2O 150150 1070.9Na1s NaOOCH 1070.9Na1s NaOAc 150 1070.9Na1s NaMoO4 111150S2O4 1071Na1s Na2SO4 150 1071Na1s Na21071Na1s Na2CrO4 150thioglycollate 150 1071Na1s Na150 1071Na1s NaF 1071.1Na1s Na2WO4 150150 1071.1Na1s NaBiO3benzene-sulphonate 150 1071.1Na1s Na111 1071.1Na1s Na2S2O4111 1071.1Na1s Na2SO4111 1071.1Na1s NaF111 1071.1Na1s NaTeO4 1071.1Na1s Na2SnO3.H2O 111111 1071.1Na1s Na3PO4 1071.1Na1s NaOAc 111111 1071.1Na1s NaOOCH 1071.2Na1s NaNO3 150 1071.2Na1s Na2SO3 150111 1071.2Na1s Na2CrO4thioglycollate 111 1071.2Na1s Na1071.2Na1s NaH2PO2 111150 1071.3Na1s Na2CO3150ZrF6 1071.3Na1s Na2111 1071.3Na1s Na2CO3 1071.3Na1s NaNO3 111111 1071.3Na1s NaBiO3111 1071.3Na1s NaSCN 1071.3Na1s Na2WO4 111 1071.3Na1s NaHCO3 111benzenesulphonate 111 1071.3Na1s Na1071.4Na1s NaNO2 150PO3 150 1071.4Na1s NaS2O3150 1071.4Na1s Na2150Cr2O7 1071.4Na1s Na2150 1071.4Na1s NaI150 1071.4Na1s NaClTiF6 150 1071.4Na1s Na2111 1071.4Na1s NaCl 1071.4Na1s Na2HPO4 111 1071.4Na1s Na2ZrF6 111111 1071.4Na1s Na2SO3 1071.45Na1s NaA 191 1071.45Na1s NaA 155150 1071.5Na1s NaBr 1071.5Na1s Na zeolite A (Na Al Si O4) 150150 1071.5Na1s NaBF4150 1071.5Na1s Na2GeF6SiF6150 1071.5Na1s Na2 1071.5Na1s Na 111111 1071.5Na1s Na2GeF6111 1071.5Na1s Na2SiF6 1071.6Na1s Na 150PdCl4 150 1071.6Na1s Na2 1071.6Na1s NaI 111 1071.6Na1s NaPO4 111 1071.6Na1s Na zeolite (NaAlsiO4) 111 1071.6Na1s Na2Cr2O7 111111 1071.6Na1s Na2S2O3 1071.6Na1s NaNO2 111 1071.6Na1s NaTiO6111 1071.7Na1s Na2 IrCl6, 6 H2O 150150 1071.7Na1s Na3AlF6111 1071.7Na1s NaBr111 1071.7Na1s Na3AlF6 1071.7Na1s NaPO3 111 1071.7Na1s Na zeolite A (NaAlSiO4) 111 1071.7Na1s metal 1591071.8Na1s Namétal 12 1071.8Na1s Na 111 1071.8Na1s Na2PdCl4 111 1071.9Na1s Na2IrCl6.6H2O 111 1072Na1s Albite (Na Al Si3 O8) 150 1072Na1s NaH2PO4 111 1072.2Na1s Natrolite (Na2 Al2 Si3 O10) 150 1072.2Na1s albite(NaAlSiO8) 111 1072.2Na1s Na in Zeolite 191 1072.2Na1s Na in Zeolite 155 1072.3Na1s Na2O 150(Na2Al2Si3O10.2H2O) 111 1072.4Na1s natrolite1072.5Na1s Na2O 12111 1072.5Na1s NaBF4 1072.5Na1s oxide 159111ox 1072.7Na1s Na159 1073.3Na1s NaOxCyPE-Ar(Na+) 48 1073.6Na1s ds1074Na1s PE-Ar-TFAA (Na+) av spectro PHI 548 48 1075.6Na1s PE-Ar-TFAA (Na+) av spectro DUPONT 650B 48150(g)1078.4Na1s Na(g)111 1078.4Na1s Na 1078.4Na1s NaF 'fume particles' 25Na的电子结合能:Energy (eV) Element Chemical bonding Ref30.5Na2p3/2 metal159métal1230.6Na2p3/2 Na1231.1Na2p3/2 Na2O15931.1Na2p3/2 oxide15931.8Na2p3/2 NaOxCyNa的电子结合能:Energy (eV) Element Chemical bonding Ref23753.4Na2s Na2SbF563Na2s Na in Zeolite 19163Na2s Na in Zeolite 15515963.4Na2s metal1263.55Na2s Namétal19163.55Na2s NaX15563.55Na2s NaX15963.7Na2s metal63.8Na2s Na in Zeolite 19163.8Na2s Na in Zeolite 15512 64Na2s Na2O64Na2s oxide159159 64.71Na2s NaOxCyXPS_DatabaseNi的电子结合能:Energy (eV) Element Chemical bonding Ref215 869.6Ni2p1/2 NiNi的电子结合能:Energy (eV) Element Chemical bonding Ref 851.4Ni2p3/2ds le 304 ss avec N2 implanté 218 851.4Ni2p3/2 Ni11 218 851.95Ni2p3/2 AuNi 150 852Ni2p3/2Ni (16 min)/Al2O3/Al 229 852.1Ni2p3/2 Ni 111métallique 118 852.3Ni2p3/2 Ni852.4Ni2p3/2 Ni 215 852.48Ni2p3/2 Ni 150 852.5Ni2p3/2 Ni 247 852.5Ni2p3/2Ni métal ( 10puis-6 torr) 78 852.5Ni2p3/2Ni métal ( 250°C -1h ) 78 852.5Ni2p3/2Ni, Ni foil polishing and Ar+ etching 101 852.6Ni2p3/2 NiS 150 852.6Ni2p3/2Ni, Ni foil polish and Ar+ etching, + O2 at 200°C/1h 101 852.6Ni2p3/2Ni, Ni foil polishing + water immersion/28h 101Ni 229 852.7Ni2p3/2 bulkmetal 13 852.7Ni2p3/2 Ni852.8Ni2p3/2 Ni2Si 150 852.8Ni2p3/2 Ni-21Cr-8Fe 183 852.8Ni2p3/2 Ni 183 852.8Ni2p3/2Ni° in a passive film on SUS316L 65 852.9Ni2p3/2 Ni2P 150 852.9Ni2p3/2 2 min Ni deposit : Ni dispersed on Al2O3 229 852.9Ni2p3/2Ni, Ni foil polishing and Ar+ etching+H2S 400°C/1h 101 853Ni2p3/2 NiB 150 853Ni2p3/2Ni (7 min)/Al2O3/Al annealed to 800K for 30 min 229 853Ni2p3/2Ni metal with a sample immersed in a 60°C solution 11 853Ni2p3/2Ni metal with a sample immersed in a room t° solution 11 853Ni2p3/2NiS/Ni3S2 -Ni foil polish in H2O/28h+H2S 400°C/1h 101 853Ni2p3/2Ni Polish +Ar+,+O2 -200°C/1h+400°C/2h30mn+H2S 400°C/1h 101 853.1Ni2p3/2NiOads ( 10puis-6 torr) 78 853.1Ni2p3/2NiOads ( air 15min ) 78 853.3Ni2p3/2élément naturel (liaison métallique) 147 853.5Ni2p3/2 NiO 111 853.55Ni2p3/2 Al3Ni 150 853.6Ni2p3/2 NiI2 111 853.9Ni2p3/2 Ni(C5H5)2 111 853.9Ni2p3/2 Ni(PPh3)2 111853.9Ni2p3/2abrasé sur dry 600 grit sandpaper qq sec 207 853.9Ni2p3/2 NiO 118 854Ni2p3/2 Ni2S3 111 854Ni2p3/2 NiO 247 854Ni2p3/2NiO (1er pic) ( 800°C - 10min ) 78 854Ni2p3/2NiO ( 1er pic) ( 800°C-air ) 78 854Ni2p3/2NiO (1er pic ) ( 800°C-air+ O2-10min ) 78 854Ni2p3/2Ni (1 min)/Al2O3/Al : NiO 229 854.2Ni2p3/2 NiO 150 854.2Ni2p3/2 Ni(Co)4 150 854.2Ni2p3/2 NiO 157 854.4Ni2p3/2Ni(II) dans NiO 183 854.4Ni2p3/2 (Ni(SCH2CH2S))n 235 854.4Ni2p3/2 Ni(SCH2CH2S)(PMe2Ph)2 235 854.5Ni2p3/2 Ni(Co)4 111 854.5Ni2p3/2Ni (16 min)/Al2O3/Al annealed to 800K for 10 min :NiAl 229 854.5Ni2p3/2Ni oxide with a sample immersed in a room t° solution 11 854.5Ni2p3/2 Ni(SPh)2(CyNC)2 235 854.6Ni2p3/2 Ni-(dimethyl-glyoxime)2 150 854.6Ni2p3/2 NiO 155 854.6Ni2p3/2 NiO 13 854.6Ni2p3/2 Ni(SPh)2(dppe) 235 854.6Ni2p3/2 Ni(SPh)2(PMe2Ph)2 235 854.7Ni2p3/2 Ni(CN)2 111 854.7Ni2p3/2 Ni(SCH2CH2S)(dppe) 235 854.7Ni2p3/2 (Ni(SPh)2)n 235 854.8Ni2p3/2 NiCl2(NBu3)2 111 854.9Ni2p3/2 NiS 111 854.9Ni2p3/2 NiBr2 111 854.9Ni2p3/2 Ni(dimethylglyoxime) 111 854.9Ni2p3/2 NiFe2O4 111 855Ni2p3/2voir spectres dans la publication 102 855Ni2p3/2Ni oxide with a sample immersed in a 60°C solution 11 855.3Ni2p3/2 NiCO3 111 855.3Ni2p3/2 USY-A-6 44 855.3Ni2p3/2 LaHY 44 855.3Ni2p3/2 Ni(Met)2 235 855.4Ni2p3/2 Ni(C24H27N7)(PF6)2 111 855.4Ni2p3/2 K2Ni(CN)4 111 855.4Ni2p3/2 NiFe2O4 247 855.4Ni2p3/2 USY-A-8 44 855.5Ni2p3/2 Ni(acac)2 150 855.5Ni2p3/2 Me4NNiCl3 111 855.5Ni2p3/2NiO Oads ( 800°C-air+ O2-10min ) 78 855.5Ni2p3/2 USY-B-8 44 855.6Ni2p3/2 Ni(OH)2 247855.6Ni2p3/2 Ni(OH)2 118 855.6Ni2p3/2NiOx, Ni foil polishing + water immersion/28h 101 855.7Ni2p3/2 Ni(OH)2 150acethylacetonate 111 855.7Ni2p3/2 Ni855.7Ni2p3/2 Ni2O3 13 855.8Ni2p3/2 Ni2O3 150 855.8Ni2p3/2NiO (2nd pic) ( 800°C - 10min ) 78 855.8Ni2p3/2NiO (2ème pic) ( 800°C-air ) 78 855.8Ni2p3/2NiO ( 2ème pic) ( 800°C-air+ O2-10min ) 78 855.8Ni2p3/2Ni(OH)2 dans Inconnel 600 (Publication riche en El) 246 855.8Ni2p3/2NiOx, Ni foil polish and Ar+ etching, + O2 at 200°C/1h 101 855.9Ni2p3/2Ni2O3 ( 10puis-6 torr) 78 855.9Ni2p3/2Ni2O3 (1er pic) ( air 15min ) 78 855.9Ni2p3/2Ni2O3 ( 800°C-air ) 78 855.9Ni2p3/2Ni2O3 ( 800°C-air+ O2-10min ) 78 855.9Ni2p3/2 USY-B-8H 44 856Ni2p3/2 NiAl2O4 150 856Ni2p3/2 Ni(OH)2 111 856Ni2p3/2 Ni2O3 111 856Ni2p3/2NiOx, Ni foil polish-Ar+etch+O2, 200°C/1h+400°C/2h30mn 101 856.1Ni2p3/2 NiCl2 111 856.1Ni2p3/2Ni2O3 (1er pic) ( 250°C -1h ) 78 856.1Ni2p3/2 USY-2 44cyclohexanebutyrate 111 856.3Ni2p3/2 Ni856.3Ni2p3/2 USY-D 44 856.4Ni2p3/2 (NH4)2NiF4 111 856.4Ni2p3/2 Ni(OH)2 13 856.5Ni2p3/2 NiCl2 150 856.6Ni2p3/2 NiSiO4 150 856.7Ni2p3/2 NiSiO3 150 856.8Ni2p3/2 Ni(NO3)2 111biuret 111 856.8Ni2p3/2 KNitrifluoroacetate 111 856.9Ni2p3/2 Ni856.9Ni2p3/2 LaHY-H2O 44 856.9Ni2p3/2 NiSiO3 155 857Ni2p3/2 NiSO4 111 857.1Ni2p3/2 NiAl2O4 111 857.2Ni2p3/2 NiF2 150 857.2Ni2p3/2 NiWO4 111 857.3Ni2p3/2Metal salt NiCl2 in 316 L alloy 207 857.8Ni2p3/2 NiF2 111 858.5Ni2p3/2Ni métal (10puis-6 torr) 78 858.7Ni2p3/2 NiSiF6 111 860.9Ni2p3/2 K2NiF6 111 861.2Ni2p3/2NiO (3eme pic) ( 800°C - 10min ) 78 861.2Ni2p3/2NiO ( 3ème pic) ( 800°C-air ) 78861.2Ni2p3/2NiO (3ème pic) ( 800°C-air+ O2-10min ) 78 861.4Ni2p3/2Ni2O3 ( 2eme pic) ( air 15min ) 78 861.4Ni2p3/2Ni2O3 ( 2ème pic ) ( 250°C -1h ) 78Ni的电子结合能:Energy (eV) Element Chemical bonding Ref21567.4Ni3p1/2 NiNi的电子结合能:Energy (eV) Element Chemical bonding Ref21565.7Ni3p3/2 Ni247métal66.3Ni3p3/2 Ni24767.3Ni3p3/2 NiO247 68Ni3p3/2 Ni(OH)224768.1Ni3p3/2 NiFe2O4Ni的电子结合能:Energy (eV) Element Chemical bonding Ref215 110.2Ni3s Ni247 110.7Ni3s Ni247 111.8Ni3s NiO247 112.7Ni3s Ni(OH)2247 113Ni3s NiFe2O4XPS_Database575Cr2p3/2Cr métallique,satellite (20 at% de Cr) 212 575Cr2p3/2Cr2p3/2 (voir spectres dans la publication). 102 575.5Cr2p3/2 CrN 111 575.5Cr2p3/2CrN du SS304 traité au N3- 17 575.5Cr2p3/2 CrN11 218 575.6Cr2p3/2 Cr2O3 186 575.7Cr2p3/2 CrN 225 575.7Cr2p3/2Cr ds CrN 55 575.7Cr2p3/2 Cr2O3 157oxyde 186 575.8Cr2p3/2 Cr(III)575.8Cr2p3/2Cr ds Cr2O3 198 575.9Cr2p3/2 CrO2 111 575.9Cr2p3/2 CrBr3 111 576Cr2p3/2 Cr2O3 186 576Cr2p3/2Cr oxide with a sample immersed in a 60°C solution 11 576Cr2p3/2Cr oxide with a sample immersed in a room t° solution 11 576.04Cr2p3/2élément naturel (liaison métallique) 147 576.1Cr2p3/2 CuCrO2 111 576.1Cr2p3/2 CrO2 186 576.1Cr2p3/2Cr ds Cr2N 55 576.2Cr2p3/2 Cr2O3 186-304SS- 138 576.3Cr2p3/2 Cr2O3576.3Cr2p3/2Cr2O3 -Fe /19Cr /9Ni- 138 576.3Cr2p3/2Cr2O3 in 316L before sputtering the passive film 116 576.3Cr2p3/2Cr2O3 in 316L after sputtering the passive film 116 576.3Cr2p3/2Cr3+ ds Cr2O3 1 576.3Cr2p3/2Cr2O3 in alloy 33 before sputtering the passive film 116 576.3Cr2p3/2Cr2O3 in alloy 24 before sputtering the passive film 116 576.3Cr2p3/2Cr2O3 in alloy 33 after sputtering the passive film 116 576.3Cr2p3/2Cr2O3 in alloy 24 after sputtering the passive film 116 576.4Cr2p3/2 Cr2O3 150 576.4Cr2p3/2Cr3+ ds Cr2O3 73 576.4Cr2p3/2Cr2O3 in a passive film on SUS316L 65 576.5Cr2p3/2 Cr2O3 111 576.5Cr2p3/2 CrI3 111oxyde 186 576.5Cr2p3/2 Cr(III)576.5Cr2p3/2 Cr3+ 216 576.5Cr2p3/2 Cr2O3 118 576.6Cr2p3/2Cr à l'état oxydé 176 576.6Cr2p3/2 CrOx 2 576.6Cr2p3/2 CrOx 84 576.7Cr2p3/2 Cr2O3 186 576.7Cr2p3/2Cr(IV) dans sel de sodium 186 576.7Cr2p3/2Cr3+ ds Cr2O3 156 576.7Cr2p3/2CrOOH in alloy 33 before sputtering the passive film 116 576.7Cr2p3/2CrOOH in alloy 24 before sputtering the passive film 116576.8Cr2p3/2 CrOOH 111 576.8Cr2p3/2 LiCrO2 111 576.8Cr2p3/2 NaCrO2 111 576.8Cr2p3/2 Cr2N 225 576.8Cr2p3/2Cr2O3 in Co-Cr alloy 65 576.8Cr2p3/2 CrOOH 186 576.8Cr2p3/2 CrOx 84 576.9Cr2p3/2Cr(III) dans Cr2O3 183 577Cr2p3/2 CrCl3 111 577Cr2p3/2CrOOH / Cr(OH)3 -304 SS- 138 577Cr2p3/2CrOOH -Fe /19Cr /9Ni- 138 577Cr2p3/2 Cr2O3 186 577Cr2p3/2 CrOOH 186 577Cr2p3/2pic XPS (Cr3+) alliage Fe24Cr 124 577Cr2p3/2Cr3+ ds Cr(OH)3 ou CrOOH 1 577Cr2p3/2 Cr3+ 228 577Cr2p3/2 Cr(OH)3 118 577.1Cr2p3/2Cr2O3 dans Inconel 600 (Publication riche en El) 246 577.1Cr2p3/2Cr hydroxide with a sample immersed in a 60°C solution 11 577.2Cr2p3/2Cr(III) dans Cr2O3 183 577.2Cr2p3/2Cr3+ ds Cr(OH)3 156 577.2Cr2p3/2Cr hydrox with a sample immersed in a room t° solution 11 577.3Cr2p3/2 Cr(OH)3 186 577.4Cr2p3/2hydroxyde de chrome 225 577.4Cr2p3/2Cr-O (20 at% de Cr) surface non bombardée 212 577.5Cr2p3/2Cr(III) hydroxyde et formes hydratées ou Cr(IV) 186 577.6Cr2p3/2 CrCl3 150 577.6Cr2p3/2abrasé sur dry 600 grit sandpaper qq sec 207 577.9Cr2p3/2 CrO3 111 578Cr2p3/2 CrO3* 118 578.1Cr2p3/2CrO3 -304 SS- 138 578.1Cr2p3/2CrO3 -Fe /19Cr /9Ni- 138 578.1Cr2p3/2 CrO3 186 578.1Cr2p3/2CrO3 in 316L before sputtering the passive film 116 578.1Cr2p3/2Cr6+ ds CrO3 1 578.1Cr2p3/2CrO3 in 316L after sputtering the passive film 116 578.1Cr2p3/2CrO3 in alloy 33 before sputtering the passive film 116 578.1Cr2p3/2CrO3 in alloy 24 before sputtering the passive film 116 578.1Cr2p3/2Cr2O3 in alloy 33 after sputtering the passive film 116 578.1Cr2p3/2Cr2O3 in alloy 24 after sputtering the passive film 116 578.2Cr2p3/2Cr et Cr(III) dans Cr2O3 ou Cr(III) dans Cr(OH)3 183 578.2Cr2p3/2Cr Ox in 316 L alloy dipped in physiological serum 207 578.2Cr2p3/2Cr Ox in 316 L pot anod (5V for 5 min) in physio serum 207 578.5Cr2p3/2Cr-Cl with a sample immersed in a room t° solution 11 578.6Cr2p3/2Cr Ox, 316 L alloy fretted (30 min) in physio serum 207 578.6Cr2p3/2Metal salt CrCl3 in 316 L alloy 207。
xps电子结合能对照表

1.0Bi6p1 3.9 Pt 5d10.0P 3p 18.0At 6s 24.0Kr 4s 34.0K 3s 44.0Ra 6s 52.0Tm 5s 65.7V 3s1.0Ce4f 4.0 Ir 5d10.0Ti 4s 18.0Ce 5p 24.0Sn 4d 35.0Re 5p3 44.0U 6s 52.3Yb 5s 66.0Ni 3p1.0Co3d 4.0Pm 4f 10.0V 4s 18.0Pr 5p 25.0Th 6p1 35.2Mo 4p 44.4Y 4s 52.6Fe 3p 66.0Pt 5p1 1.0Cr3d 4.5Ag 4d10.0Zr 5s 18.1Hf Ntv Ox 26.0Bi 5d3 35.2W Na2WO445.0Ta 5p1 53.0Sn loss 67.8Ta 5s1.0Fe3d 4.8Dy 5d10.5Bi 6s 18.2 C 2s 26.0He 1s 35.3Y loss 45.1As 2O3 53.4Os 4f5 68.0Ra 5d1.0Ga4p 5.0 B 2p10.7Cd 4d5 18.4Sr 4p 26.0Rn 6s 35.8W O3 45.5As Ntv Ox54.0Os 5p1 68.0Tc 4s1.0Hf5d 5.0 Br 4p11.0Kr 4p 18.7Ga 3d5 26.1Lu 5p 36.0Ce 5s 45.7Ge loss 54.2Se CdSe68.5Br 3d5 1.0In 5p 5.0Ca 3d11.0Rn 6p 18.8Ga 3d 26.8Ta 2O5 36.0Gd 5s 46.0Re 5p1 54.5Se GeSe68.5Br KBr 1.0Na3s 5.0 Er 4f 11.0Sc 4s 18.9Ga 3d3 26.8Zr 4p 36.6Sr 4s 46.3Ga loss 54.9Se 3d5 68.8Cd 4p1.0Os5d 5.0Po 6p11.1Cs 5p3 19.0Eu 5p 27.0Br 4s 36.7V 3p 46.8Re 2O7 54.9Li 1s 69.0Br 3d1.0Pb6p 5.3Se 4p11.6Cd 4d3 19.0Nd 5p 28.2Sc 3p 37.0W 5p3 46.8W 5p1 54.9Li OH 69.5Br 3d3 1.0Sn5p 5.5 Cl 3p12.0Cs 5p 19.0Pb 5d5 28.6In loss 37.5Hf 5p1 47.0Mn 3p 54.9Se 3d 70.0Re loss 1.2Yb4f7 5.8Au 5d12.0Po 6s 19.0Ra 6p 28.8Rb 4s 38.0Pm 5s 47.0Rh 4p 55.2Se GeSe271.0Pt 4f7 1.4Pd4d 6.0Ta 5d12.0Te 5s 19.0Sm 5p 29.0Dy 5p1 38.0Pr 5s 47.9Ru 4p 55.3Li CO3 71.8Mg loss1.4Rh4d 6.0 Y 4d12.0Tl 5d5 19.1Ga Sb fract29.0Er 5p 38.3Sn loss 48.0Dy 5s 55.6Nb 4s 72.6Pt 4f2.0Cd5p 6.2Hg 5d12.6Cs 5p1 19.4Ga AlAs etch29.0Lu 5p 39.0Eu 5s 48.0Rn 5d 55.7Se 3d3 72.7Al 2p3 2.0Mg3s 6.9Eu 4f 13.0Tl 5d 19.5N 2s 29.1Ge 3d5 39.0Nd 5s 48.0Sb loss 56.8Au 5p3 72.9Al 2p2.0Mo4d 7.0 O 2p13.2Rb 4p 19.7Ga P fract 29.2 F 2s 39.0Tc 4p 48.5 I 4d 56.8Lu 5s 73.1Tl 5p3 2.0Nb4d 7.0Sm 4f 13.2Rb 4p 19.7Ga As fract29.4Ge 3d 39.5Tm 5p 49.5Ho 5s 57.4Er 5s 73.2Al 2p1 2.0Nd4f 7.0Sn 5s14.0Ne 2p 20.0U 6p 29.5Ho 5p1 40.0At 5d 49.5Mg CO3 58.0Ag 4p 73.8Al N2.0Ni 3d 7.0Xe 5p14.0Sc 3d 20.2Zn loss 29.7Ge 3d3 40.0Ba 5s 49.6Mg(OH)258.0Fr 5d 74.0Au 5p1 2.0Pr 4f 7.1Lu4f714.2Hf 4f7 20.5Gd 5p 30.2Ge Se 40.0In loss 49.6Mg 2p3 58.0Hg 5p3 74.2Cr 3s2.0Sb5p 7.1Tb 4f 15.0Fr 6p 20.7Ga 2O3 30.3Na 2p 40.0Tb 5s 49.7Mg O 58.1W loss 74.3Al 2O3 2.0Sc4p 7.7Gd 4f 15.0H 1s 21.0Pb 5d3 30.9Nb 4p 40.1Te 4d 49.8Mg 2p 58.2Ti 3s 74.3Al2O3-nH2O 2.0Tc4d 7.8Dy 4f 15.0Hf 4f 21.6Ta 4f7 30.9Pb loss 40.2Re 4f7 49.9Mg 2p1 58.3Te loss 74.4Pt 4f5 2.0Ti 3d 8.0 At 6p15.0Rb 4p1 21.8Tb 5p 31.0Hf 5p3 41.0Ne 2s 50.0Mg CO3 58.6Ag 4p 74.4Al (OH)3 2.0V 3d 8.0 S 3p15.0Tl 5d3 22.0Dy 5p3 31.0Po 5d 41.0Sm 5s 50.0Sr loss 58.9Y loss 74.9Cu 3p2.0Yb 4f 8.3Ho 4f 15.7Cl 3s 22.0Pm 5p 31.3W 4f7 41.2Re 4f 50.3Zr 4s 59.0Co 3p 74.9Se loss 2.0Zr 4d 8.3Lu 5d15.9Hf 4f5 22.3Ar 3s 31.5Ge Se2 41.4Re Ntv Ox 50.4Mg NtvOx159.2As loss 75.0Cs 4d5 2.5Yb4f58.4Lu2O315.9 I 5s 22.7Ta 4f 31.7Sb 4d 41.5As 3d5 50.7Os 4f7 60.8Ir 4f7 75.1Pt O2-nH2O 2.6Te5p 8.5Tm4f716.0K 3p 23.0Cs 5s 32.1Ga loss 41.8As 3d 50.7Pd 4p 61.0Mg loss 75.1W 5s2.8Cu3d 8.6Lu4f516.0P 3s 23.1O 2s 32.3W 4f 42.0As S 50.7Sc 3s 62.0Ir 4f 75.5Al Ntv Ox 2.8Mn3d 8.9 Ar 3p16.0S 3s 23.3Ho 5p3 32.4Ti 3p 42.0Th 6s 50.9Mg reoxid62.0Ir O2 76.0Cs 4d2.8Re5d 9.0 F 2p16.9In 4d 23.3Y 4p 32.6Ta 5p3 42.1Ca 3s 51.0Ir 5p3 62.0Ir 5p1 77.8Ni loss 2.8Si 3p 9.0Ru 4d17.0La 5p 23.4Ta S2 33.0La 5s 42.1Cr 3p 51.0Mg NtvOx262.0Mo 4s 78.3In 4p2.8W 5d 9.0Sb 5s17.0Th 6p3 23.5Ca 3p 33.2Ge O2 42.2As 3d3 51.4Os 4f 62.0Xe 4d 79.0Cs 4d33.0Ge4p 9.0 Si 3s17.0Xe 5s 23.5Yb 5p 33.4Lu 5p 42.7Re 4f5 51.5Pt 5p3 62.3Hf 5s 80.0Ru 4s3.0 I 5p 9.1As 4p17.1Hf O2 23.8Bi 5d 33.5W 4f5 42.7Ta loss 51.5Mg reoxid62.7Ir Ntv Ox80.7Rh 4s3.0Pb6s 9.7Zn 3d17.7Pb 5d 24.0Ta 4f5 33.8Ge Ntv Ox43.0As 2S3 51.7Re loss 63.3Na 2s 81.0Hg 5p1 3.2Bi6p310.0Ba 5p17.9Ga InAs (ar)24.0Bi 5d5 34.0Fr 6s 44.0Os 5p3 51.9Mg NtvOx363.8Ir 4f5 81.8Re 5s82.0Br loss101.8Si Almand.119.4Ga loss 137.8Pb 2O3 158.9Y 2(CO3)3 181.0Ge 3s 204.1Nb NbO 235.3Mg Auger 82.0Mn 3s 101.9Hg 4f 119.4Tl CO3 137.8Se Auger159.2Bi Ntv Ox 181.1Zr 3d3 205.0Nb 3d3 237.0Pm 4p3 82.7Pb 5p3 102.0Pt 5s 120.0Hg 5s 138.3Pb 4f 159.6Ho 4d5 181.2Br 3p3 205.1S loss 237.6Ta 4d3 84.0Au 4f7 102.0Si 3N4 120.0Tl 4f 138.5Ge loss 160.0Bi 5s 182.0Br 3p 205.8Lu 4d3 237.9Rb 3p3 84.0Ba 4d3 102.6Si O 121.0Pm 4d 138.8Pb Ntv Ox161.2S PbS 182.0Fr 5p1 206.1Nb NbO2238.0Cs 4s84.7Ba 4d 102.9Zn loss 121.1 I 4p 139.0Pb CO3161.3Ho 2O3 182.1Yb 4d5 207.0Ce 4p3 238.0Rn 4f85.0Au 4f 103.0Ga 3p 122.0Ge 3p3 139.0Xe 4p 161.5S CuS, TaS2182.4Zr O2 207.0Xe 4s 238.9Mo loss85.0Th 5d5 103.0Ga 3p3 122.1Tl 4f5 139.5Zn 3s 161.7Se 3p3 182.8Er Auger 207.3P loss 241.8Ar 2p386.0Ba 4d5 103.0Pt loss 122.4Cu 3s 140.0Fr 5p3 161.9S HgS 183.7Si loss 207.4Nb Nb2O5242.0Ar 2p86.9 Kr 3d5 103.0Si O2 122.4In 4s 140.3Gd 4d5 162.2S MoS2 184.0Po 4f 207.4Nb Ntv Ox243.1W 4d587.2Kr 3d 103.0U 5d3 127.0Rn 5p3 140.7As 3p3 162.3Bi 4f5 184.9Yb 2O3 208.0Kr 3p3 243.9Ar 2p187.7Au 4f5 103.5Si O2-nH2O128.2Eu 4d5 141.2Gd2O3 162.4S Na2S2O3185.3S loss 210.0At 4f 245.0Nd 4p188.0 Al loss 103.7Al loss 128.3Tl loss 141.7Pb 4f5 162.6S FeS2 185.5 I 4s 210.8Hf 4d5 248.0Ba 4s 88.1Au2O3103.9Hg 4f5 128.6P InP etch142.0As 3p 163.9S 2p3 187.8Br 3p1 210.9Dy Auger248.0Rb 3p1 88.2Kr 3d3 104.0La 4d 129.0Ge 3p1 145.9Tb 4d5 164.0Rn 5p1 187.9 B CrB 213.0 B loss 249.6S loss 88.2Pd 4s 104.0Po 5p3 129.0P InP etch146.0Sr loss 164.0S 2p 188.0 B 1s 213.0La 4p1 250.0Sm 4p388.3Zn 3p 106.3Pb 5p1 129.0Sm 4d 147.0As 3p1 164.0Sr loss 188.0B MoB, LaB6214.0Rn 5s 253.0Mo loss89.0Os 5s 107.0Ga 3p1 129.3P GaP etch148.0At 5p1 165.1S 2p1 188.1 B WB 217.5Cl loss 253.0Tc 3d89.1Mg 2s 108.0Au 5s 130.0Be loss 148.0Pb 5s 166.6S Na2SO3 188.2 B Ni3B 218.0Pr 4p3 253.0Tc 3d590.6Sn 4p 109.7Rb 3d5 130.0Ho Auger 148.5Tb F3 167.3Er 4d5 188.9 B Ntv Ox 220.5Se Auger254.0Ra 5s91.0Fe 3s 109.7Rb OAc 130.1P 2p3 148.8Al loss 167.3Se 3p1 189.0P 2s 221.3Hf 4d3 255.0Br 3s92.8 Bi 5p3 109.9Cd 4s 130.6P 2p 149.8Pb loss 167.6Si loss 189.2Tm Auger 223.0Ce 4p1 255.0Eu 4p393.0Th 5d3 110.0Ce 4d 131.4P 2p1 149.9P loss 168.5Er 2O3 190.8 B N 225.7As 3s 255.0Pm 4p194.0 U 5d5 110.0Rb 3d 132.0Po 5p1 149.9Tb 3O7 168.5S Na2SO4 190.9Yb 4d3 226.1Ta 4d5 255.1Se Auger94.6 Tl 5p1 110.5Ni 3s 132.7Ga loss 150.5Si 2s 168.5S Na2S2O3194.0 B 2O3 228.0Mo 3d5 255.6W 4d395.2 Ir 5s 110.6Mg loss 133.4Al loss 152.0Zn loss 168.6P loss 195.0At 5s 228.0Nd 4p3 257.0Tc 3d396.0Br loss111.2Rb 3d3 133.6Si loss 152.3Dy 4d5 168.8Y loss 195.0U 5p3 229.0S 2s 260.0Re 4d597.0Ag 4s 111.8Be 1s 133.7Sr 3d5 152.9Sb 4s 169.1Te 4s 196.0Lu 4d5 229.4Mo O2 (?)260.0U 5p198.7Er Auger112.6Te 4p 133.7Sr CO3 153.0Ra 5p3 169.3Er 4d3 196.1Zr loss 229.5Mo 3d 261.0As Auger99.8 Si 2p3 113.6Be O 134.0Sr 3d 155.8Y 3d5 173.0Ba 4p 197.0La 4p3 229.7Mo S2 261.5Tb Auger 99.8Mg loss 114.7Be Ntv Ox 134.9Sm 2O3 156.1Dy 2O3 173.3Ga loss 197.5Ge Auger 229.9Se 3s 264.3Rb loss 99.9Hg 4f7 115.0At 5p3 135.5Sr 3d3 156.6Y 2O3 175.4Tm 4d 198.4Se Auger 230.0As Auger267.5S loss 100.1Si 2p 115.0Pr 4d 135.6Eu 2O3 157.0Bi 4f7 175.9Tb loss 198.7Cl 2p 231.1Mo 3d3 267.7W loss 100.2Si O 115.5Se Auger 136.8Pb O2 157.0Bi 4f 176.3Tm 2O3 198.9Cl 2p3 232.6Mo Ntv Ox268.0Fr 4f 100.4Si 2p1 116.2Si loss 136.8Rb loss 157.0Bi loss 177.0Po 5s 198.9Cl MCl 232.9Tb Auger268.4Sr 3p3 100.4Si C 117.7Tl 4f7 136.9Pb 4f7 157.0Y 3d 177.0Th 5p3 199.8Cl C-Cl 233.0Kr 3p1 270.0Cl 2s 100.6Sb 4p 117.9Al 2s 137.0Tl 5s 157.9Y 3d3 178.7Se Auger 200.0Ra 5p1 233.1Mo O3 271.3Gd 4p3 100.7Hg O 118.0Nd 4d 137.1Sn 4s 158.5Cs 4p3 178.7Zr 3d5 200.5Cl 2p1 234.0Fr 5s 273.5Re 4d3 100.9Co 3s 118.2Bi 5p1 137.5Pb O 158.8Bi 2O3 179.9Zr 3d 201.4Nb 3d 234.0Pr 4p1 274.5Er Auger 100.9Hg S 118.2Tl 2O3 137.6Pb 3O4 158.9Ga 3s 180.9Cs 4p1 202.3Nb 3d5 234.0Th 5p1 275.0La 4s278.7Sr 3p1 301.6Mg Auger340.3Pd 3d3 382.0U 4f 412.7Lu 4p1 460.2Gd Auger515.0Eu Auger 560.0Pd 3p1 279.0Os 4d5 305.0Pr 4s 341.4Ge Auger 384.9Tl 4d5 420.4Ta loss 462.5Ta 4p1 515.6V 2p 560.9Ti 2s 280.1Ru 3d5 305.5K loss 342.0Th 4f5 386.0Tm 4p1 421.6Mo loss 463.1In loss515.9V 2O3 562.8Ta 4s 281.0Ru Ntv Ox 307.2Rh 3d5 343.0Ho 4p1 388.0U 4f5 423.3W 4p3 464.0Bi 4d3 517.1V 2O5 565.0Na Auger 281.1Ru O2 308.5Rh Ntv Ox343.0Zr 3p1 388.3Se Auger 424.5N loss 466.1Ru 3p3 517.3V O2 567.0Rn 4d3 282.2Ru 3d 308.9Rh 2O3 346.5Pd loss 389.8K loss 425.0As Auger 466.8Nb 3s 518.5Re 4p1 568.1Cu Auger 282.6 C VC 308.9Sr loss 346.6Ca 2p 390.3Yb 4p1 425.0Tc 3p3 468.0As Auger519.0As Auger 570.9Ga Auger 282.9 C NbC 309.4Rh 3d 347.1Ca O 391.7Ga Auger 425.5Pb loss 468.5Tm 4s 519.6Pt 4p3 572.5Te CdTe 283.0 C TaC 310.4Ge Auger347.2Mg Auger 391.7Mg Auger 429.6Zr 3s 471.0Os 4p3 519.7V 2p1 572.9Te 3d5 283.0Sm 4p1 311.0Tb 4p1 347.8Ca UHV Ox393.8Mo 3p3 433.0Ge Auger 471.5Zn Auger521.3Rh 3p1 573.0Zn Auger 284.0Tb Auger 311.1Y 3p1 349.0Sm 4s 393.8Y 3s 434.3Pb 4d3 473.0Po 4d5 524.0Na Auger 573.6Ag 3p3 284.2Ru 3d3 311.9Ir 4d3 353.0Au 4d3 395.6Tb 4s 436.0Ho 4s 474.0Se Auger524.8Ge Auger 574.1Cr B 284.5 C HOPG 311.9Rh 3d3 357.2Sr 3s 397.0N CrN 437.3Hf 4p1 474.7In loss528.2Sb 3d5 574.3Cr 2p3 284.5Se Auger 312.5Mg Auger357.9Ge Auger 397.1N AlN 437.8Ca 2s 480.8Yb 4s 529.4O Ag2O, NiO575.0Cr 2p 285.0 C 1s 313.0 C loss 357.9Mg Auger 397.3N TiN 440.0Bi 4d5 484.9Sn 3d5 529.6Sb 2O3 575.5Cr Ntv Ox 285.4 C C-OR 314.5Pt 4d5 358.3Hg 4d5 397.6N Si3N4 443.6Ge Auger 486.3Sn O 529.8O MgO 575.6Cr 2O3 286.0Cl loss 315.1Se Auger358.6Se Auger 398.4N 1s 443.8In 3d5 486.4Ga Auger530.5O NaOH 576.5Te O2 286.0Tb 4p3 315.2Ho 4p3 359.0As Auger 398.4N BN 444.3In 2O3 487.3Sn O2 531.1O Al2O3 576.6Cr Ntv Ox 287.0 C C-Cl 319.5Ar 2s 359.2Lu 4p3 398.4Sc 2p3 444.4In Ntv Ox488.4Ru 3p1 531.1Sb 2O5 577.0Fr 4d5 287.8 C C=O, C-F 320.0Nd 4s 359.3Zr loss 399.8Se Auger 444.8In P fract488.8Ho Auger531.8O 1s LiOH 577.0Te 3d 288.9 C COOR 320.8Er 4p3 360.8Nb 3p3 399.9Tm Auger 444.9In GaAs 490.5W 4p1 532.3Pd 3p3 577.2Hg 4p3 289.0Eu 4p1 321.2K loss 363.0Eu 4s 400.6Ta 4p3 445.0Tc 3p1 493.3Sn 3d3 532.5Ga Auger 577.7Cr Ntv Ox 289.0Kr 3s 321.8Rb 3s 363.6Ga Auger 401.0Sc 2p 445.2In Ntv OH494.6Zn Auger532.5O B2O3, SiO2578.2Ir 4p1 289.4 C MCO3 322.0U 5s 363.7Dy Auger 401.9Sc 2O3 445.9In Ntv CO3494.8Ir 4p3 532.6Sb 3d 579.5Cr O3 290.0Ce 4s 323.6Mg Auger366.0Er 4p1 402.2N H4 446.4Re 4p3 496.3Rh 3p3 532.9O HgO 579.8Ge Auger 290.6Gd 4p1 326.8Ge Auger366.8Ag 2S 403.2Sc 2p1 446.9Pb loss 497.1Se Auger533.0At 4d3 580.0Cr KCrO4 290.8C C-CO3, CF2329.4Zr 3p3 367.7Ag O 404.1Cd O 447.3Ga Auger 497.2Sn 3d 533.8Hf 4s 581.8Zn Auger 291.7 C pi->pi* 331.0Pm 4s 368.2Ag Ag, Ag2O405.0Cd 3d5 448.0In 3d 497.4Na Auger536.4Na Auger 583.3Te 3d3 292.7 C CF3 331.2Pt 4d3 368.5Mg Auger 405.1Cd Te 450.3Er 4s 498.0Sc 2s 537.6Sb 3d3 583.5Cr 2p1 292.9K 2p3 KX 332.0Dy 4p1 370.0Eu Auger 405.4Cd Se, CO3451.4In 3d3 499.0Sn loss 541.0Rn 4d5 586.2Er Auger 293.0Os 4d3 332.3Tm 4p3 371.0Ag 3d 405.5Tl 4d3 453.0Se Auger 500.0Po 4d3 544.0Tc 3s 586.9Tm Auger 294.0Th 5s 333.0Th 4f7 371.0As Auger 406.7Cd (OH)2 453.9Ti 2p3 503.8Ga Auger544.2Sb loss 588.9Ga Auger 295.0K 2p 333.1Mg Auger374.2Ag 3d3 407.2N O3 454.3Na Auger 505.0Mo 3s 546.3Au 4p3 591.0Ru 3s 295.6Dy 4p3 334.0Au 4d5 376.0Gd 4s 408.0Cd 3d 455.1Ti O 507.0At 4d5 548.0Os 4p1 593.6W 4s 295.7K 2p1 335.0Pd 3d5 376.2Nb 3p1 411.0Tb Auger 456.0Ti 2p 507.5Sn loss548.1Cu Auger 600.0Gd Auger 296.2Ir 4d5 335.4Pd Ntv Ox377.2K 2s 411.3Mo 3p1 457.4Ti 2O3 507.9Lu 4s 552.4Na Auger 600.7Te loss 296.2Se Auger 337.0Pd O 377.3U 4f7 411.7Cd 3d3 458.0As Auger 512.1V 2p3 553.2O loss 603.0Fr 4d3 299.0Ra 4f 337.5Pd 3d 377.8Hg 4d3 412.0Pb 4d5 458.2Ti CaTiO3513.2Na Auger553.3Sb loss 603.0Ra 4d5 299.2Y 3p3 339.0As Auger379.5Hf 4p3 412.3Ge Auger 458.7Ti O2 513.5Ga Auger557.1Tb Auger 604.0Ag 3p1 300.6Sr loss 339.8Yb 4p3 381.0Mg Auger 412.6Dy 4s 460.0Ti 2p1 513.9Dy Auger558.5Zn Auger 609.1Pt 4p1609.6Tl 4p3 675.0Xe 3d 724.0Pt 4s 819.7Te 3p3 915.9Cr Auger999.0 O Auger 1107.0N Auger1243.8Pd Auger 617.0Cd 3p3 676.0Th 4d5 724.8Cs 3d5 826.0In 3s 918.6Cs Auger1003.0Nd 3d3 1108.0Sm 3d3 1245.9Tl Auger 619.0 I 3d 676.7In loss 724.8Cs Cl 830.5Co Auger925.3Co 2s 1003.6Cr Auger 1109.8Cd Auger1249.0Ge 2p1 619.2 I 3d5 677.9Tm Auger724.9Cs2O:SiO2833.0Ce Auger929.0Rn 4p1 1004.8Te 3s 1112.9Sb Auger1250.8Pt Auger 619.2 I KI 679.0Bi 4p3 736.0U 4d5 833.0F Auger930.9 I 3p1 1008.7Ni 2s 1116.6Ga 2p3 1259.8Ru a 623.2Ni Auger680.2Hg 4p1 740.0At 4p3 835.2La 2O3 931.7Cu Cl 1013.0O Auger 1117.7Sc Auger1264.2Mo Auger 625.2Re 4s 682.0Sm Auger740.0Cs 3d3 836.0La 3d5 931.8Pr 3d5 1014.7V Auger 1126.0Eu 3d5 1265.0Rh Auger 626.1Ho Auger682.4Xe 3d3 748.0Ho Auger 836.5Te loss 932.0Cs Auger1020.3Te Auger 1128.0La 3p3 1265.8Ge loss 626.4V 2s 685.1 F CaF2749.0Cs loss 837.2La B6 932.3Cu S 1021.7Zn O 1128.9Ag Auger1272.0Ce 3p1 627.8Rh 3s 685.7 F 1s 756.2Sn 3p1 837.9Co Auger932.4Cu 2O 1021.8Zn 2p3 1129.0Sn Auger1272.0U 4p1 628.2Cu Auger685.7 F LiF 758.0Nd Auger 841.1Gd Auger932.6Cu 2p3 1022.3Zn S 1131.8Te Auger1275.7Tb 3d3 629.4Ga Auger688.9 F CF2 761.1Pb 4p1 844.2Cs Auger932.9Cu 2O 1022.5Sb Auger 1135.0Ag Auger1296.2Dy 3d5 630.6 I 3d3 690.9Ir 4s 761.2Au 4s 846.0Fe Auger933.9Cu O 1027.0Pm 3d5 1137.0Ba 3p1 1298.6Mo Auger 634.5Er Auger695.7Cr 2s 761.8Cs loss 846.7Tl 4s 934.0Xe 3p3 1027.2Cr Auger 1141.0Xe 3s 1303.3Mg 1s 635.0Cu Auger697.4Co Auger763.4Gd Auger 851.0Po 4p1 934.6Cu(OH)21031.0Zn loss 1143.4Ga 2p1 1304.0Cl Auger 636.0Ra 4d3 700.3Tb Auger766.4Sb 3p3 851.6Mn Auger936.6Bi 4s 1031.9Sb Auger 1148.9Sc Auger1307.0Hf Auger 638.7Mn 2p3 702.0Ne Auger768.0Rn 4p3 852.6Ni 2p3 940.7Cu CT 1034.9Ti Auger 1151.0In Auger1315.3Mg loss 640.4Ni Auger703.1In 3p1 768.6Mn 2s 852.9Ni B 942.2Cu CT 1042.0At 4s 1153.0Fr 4s 1316.1Pt Auger 640.5Ga Auger703.5 F loss 770.2Sn loss 853.0La 3d3 943.8Cu CT 1043.0U 4p3 1155.0Eu 3d3 1318.0Ta Auger 640.9Mn Mn3O4705.0Po 4p3 772.8Cd 3s 853.8Ni O 944.0Sb 3s 1044.8Zn 2p1 1159.4Pd Auger1319.0Nb Auger 641.0Mn MnO 705.2Ni Auger777.7Ni Auger 854.3Ni Ntv Ox944.1Mn Auger1049.6Sn Auger 1170.0Th 4p1 1321.6Lu Auger 641.0Mn Mn2O3706.7Fe 2p3 778.3Co 2p3 855.4Ni(OH)2945.5Sb Auger1052.0Pm 3d3 1184.0Ce 3p3 1322.3Re Auger 641.6Mn MnO2707.2Fe S2 779.0U 4d3 859.0F Auger952.2Cu 2p1 1055.3V Auger 1185.5Rh Auger1323.9As 2p3 642.4Au 4p1 707.5Ga Auger779.2Co O 863.0Ne 1s 952.2Pr 3d3 1055.5Zn loss 1186.8Gd 2O31324.5Mo Auger 643.5 I loss 709.8Fe O 779.5Co 3O4 869.9Ni 2p1 952.5Cs Auger1058.0Ra 4p1 1186.9Gd 3d5 1326.3Mg loss 643.6Pb 4p3 710.4Fe2O3-g780.0Ba 3d5 870.5Cs Auger959.5Cr Auger1058.0Sn Auger 1190.0Ag Auger1334.0Pt Auger 645.0Mn 2p 710.5Fe 3O4780.0Ba CO3, OAc870.7Te 3p1 959.9Te Auger1063.0Ba 3p3 1194.0Ca Auger1335.1Dy 3d3 647.5Cu Auger710.8Fe2O3-a780.6Co (OH)2 875.0 I 3p3 965.0Th 4p3 1067.7Ti Auger 1196.4Zn 2s 1337.7Zr Auger 649.7Mn 2p1 711.5Fe OOH780.9Co Ntv Ox 878.1F Auger969.3Te Auger1071.8Na2O-SiO21208.0Ra 4s 1352.9Ho 3d5 651.0Cd 3p1 711.6 F loss 782.2Sb loss 879.0Ra 4p3 970.4 I Auger1071.9Na OH 1213.0Pd Auger1358.7Er 3d5 652.2Zn Auger712.2Ni Auger784.0Fe Auger 882.0Ce O2 976.8V Auger1072.0 I 3s 1217.0Cs 3s 1359.5As 2p1 655.0Eu Auger713.0Co Auger793.7Co 2p1 884.0Ce 3d5 979.7O Auger1072.0Na 1s 1217.0Ge 2p3 1363.6Yb Auger 655.7Ga Auger713.0Th 4d3 795.2Ba 3d3 885.2Sn 3s 980.0Fr 4p1 1072.0Na Cl 1217.0Ru Auger1365.5Mo Auger 657.2 I loss 714.1In loss 797.0Pr Auger 886.0At 4p1 981.0Nd 3d5 1076.4In Auger 1219.6Gd 3d3 1367.1Tm Auger 658.0Os 4s 714.6Sn 3p3 802.0Ba loss 886.5Ba Auger981.8 I Auger1081.0Sm 3d5 1221.4C Auger1368.2Zr Auger 659.4Zn Auger715.1Er Auger803.6Hg 4s 888.0Fe Auger994.6Te Auger1084.0In Auger 1225.0Ag Auger1373.3Tb 3p3 665.2In 3p3 719.5Cu Auger805.0Bi 4p1 888.4Te loss 995.0Po 4s 1092.5Te Auger 1234.7Rh Auger1378.9Gd 3p3 665.3Ho Auger719.6Ag 3s 808.9Tb Auger 891.7Pb 4s 995.0Sb Auger1097.0Rn 4s 1234.8Ge loss1390.9Pb Auger 669.7Xe 3d5 719.9Fe 2p1 810.0Fr 4p3 898.0Ba Auger996.0Xe 3p1 1097.2Cu 2s 1235.0K Auger1392.6Zr Auger 671.5Pd 3s 721.5Tl 4p1 812.6Sb 3p1 900.3Mn Auger997.3Cr Auger1102.8Ti Auger 1242.0Pr 3p3 1393.3Ho 3d3817.0Ba loss 902.0Ce 3d3 998.0Cs 3p3 1103.1Cd Auger 1242.1Tb 3d5 1395.0Si Auger。
S的电子结合能

XPS_DatabaseS的电子结合能:Energy (eV) Element Chemical bonding Ref 2478.5S1s H2S243243 2483.7S1s SO2243 2490.1S1s SF6S的电子结合能:Energy (eV) Element Chemical bonding Ref 161.5S2p NiS, Ni foil polishing and Ar+ etching+H2S 400°C/1h 101 161.6S2p NiS, Ni foil polishing + in H2O/28h+H2S 400°C/1h 101 161.6S2p NiS, Ni foil Polish+Ar+,O2 oxydations/T°C+H2S 400°C/1h 101 161.8S2p(S)2- in Co foil polish- Ar+ etch, +H2S -400°C/2h 101 162.9S2p(S2)2- or SH -Co foil polish- Ar+ etch, +H2S -400°C/2h 101 163S2p(S2)2-, Ni Polish +Ar+O2 oxydations/T°C+H2S 400°C/1h 101 163.1S2p(S2)2-, Ni foil polishing and Ar+ etching+H2S 400°C/1h 101 163.1S2p(S2)2-, Ni foil polish+ in H2o/28h+H2S 400°C/1h 101S的电子结合能:Energy (eV) Element Chemical bonding Ref 107.3S2p3/2 PbS 89 160S2p3/2 sulphides 186-air3'- 89 160.3S2p3/2 PbS160.5S2p3/2 PbS 111 160.55S2p3/2PbS - H2O 19j- 89 160.55S2p3/2 PbS 89 160.7S2p3/2 p-NaSC6H4NO2 111 160.7S2p3/2vieillissement à l'air de la galène pdt 3mn 89 160.9S2p3/2PbS -air 220j- 89 160.95S2p3/2vieillissement à l'eau de la galène pdt 19j 89 161S2p3/2 FeS 111 161.2S2p3/2 KFeS2 111 161.2S2p3/2RSNa ou RSK 245 161.2S2p3/2 S(2-)monosulfide 2343'- 89-air 161.25S2p3/2 CuFeS2161.3S2p3/2 CuFeS2 89 161.3S2p3/2vieillissement à l'air de la galène pdt 220j 89 161.4S2p3/2 Na2SSO3 111 161.4S2p3/2 Ni(SPh)2(dppe) 235 161.5S2p3/2 ZnS 150 161.5S2p3/2 Na2S 111 161.5S2p3/2 CuFeS23j- 89-air 161.5S2p3/2S (ads) / Mo(110) - S strongly bound 103 161.6S2p3/2CuFeS2 - H2O 22j- 89 161.6S2p3/2 Mo(NO)(S2CN(C2H5)2)3 235161.65 S2p3/2 CuFeS2 89161.7 S2p3/2 PhNHCSNHPh 111161.7 S2p3/2 CuFeS2 -air 220j- 89161.7 S2p3/2 Pd(SPh)2(dppe) 235161.8 S2p3/2 WS2 111161.8 S2p3/2 S(-II) 58161.8 S2p3/2 Pt(SPh)2(dppe) 235161.85 S2p3/2 Cu2S 89161.9 S2p3/2 NaS*C(S)NR2 245161.9 S2p3/2 S*SO3(-) 245161.9 S2p3/2 Ni(SCH2CH2S)(dppe) 235161.95 S2p3/2 vieillissement à l'air de la spharelite pdt 3 mn 89162 S2p3/2 Thiourée 195162 S2p3/2 Rh2(O2CH)4(tu)2 195162 S2p3/2 Rh2(O2CCH3)4(tu)2 195162 S2p3/2 PhSCMe3 111162 S2p3/2 gpts (S2SO3)2- 2eme pic 89162 S2p3/2 S2- 245162.05 S2p3/2 vieillissement à l'eau de la spharelite pdt 19j 89162.1 S2p3/2 NiCl2(tu)4 195162.1 S2p3/2 AgCl(tu)2 195162.1 S2p3/2 MoS2 111162.1 S2p3/2 Ph3PS 111162.1 S2p3/2 S2(2-) disulfide 234162.1 S2p3/2 ZnS 89162.1 S2p3/2 Pt(SPh)2(CyNC)2 235162.15 S2p3/2 vieillissement à l'air de la spharelite pdt 220j 89162.2 S2p3/2 Rh2(O2CC6H5)4(tu)2 195162.2 S2p3/2 Fe2S 61162.2 S2p3/2 Fe(S2CN(C2H5)2)2 235162.2 S2p3/2 Fe(NO)I(S2CN(C2H5)2)2 235162.2 S2p3/2 Mo(NO)2(S2CN(C2H5)2)2 235162.25 S2p3/2 Cu2S 89162.3 S2p3/2 Na2 S2O3 (peripheral S) 150162.3 S2p3/2 CuCl(tu)3 195162.4 S2p3/2 CS2 150162.4 S2p3/2 [Pr4N]ReCl5(tu) 195162.4 S2p3/2 CoBr2(tu)2 195162.4 S2p3/2 Co(NCS)2(tu)2 195162.4 S2p3/2 Ni(NO3)2(tu)6 195162.4 S2p3/2 Soufre sur alliage 600 70162.4 S2p3/2 Fe(NO)(S2CN(CH3)2)2 235162.4 S2p3/2 NiWS2 243162.5 S2p3/2 CoCl2(tu)2 195162.5 S2p3/2 Co(NO3)2(tu)4 195162.5S2p3/2 Ni(NCS)2(tu)2 195162.5S2p3/2Na2S2O3 (peripheral S) 111 162.5S2p3/2 CuS 89 162.5S2p3/2FeS2 -air 220j - 89 162.5S2p3/2 sulphides 186 162.5S2p3/2S (élément naturel) 147 162.5S2p3/2 Co(S2CN(CH3)2)3 235 162.5S2p3/2 (Ni(SCH2CH2S))n 235 162.5S2p3/2 Ni(SCH2CH2S)(PMe2Ph)2 235 162.6S2p3/2 NiS 150 162.6S2p3/2 WS2 150 162.6S2p3/2 [Rh(tu)6]Cl(NO3)2 195 162.6S2p3/2 [Cu(BF4)(tu)3]2 195 162.6S2p3/2 NiWS2 111(S)2- 89 162.6S2p3/2 FeS2162.6S2p3/2FeS2 - H2O 22j- 89 162.6S2p3/2FeS2 disulfide (2-) 239 162.6S2p3/2 ((C6H5)4P)(Fe(NO)(S2C2(CN)2)2) 235 162.6S2p3/2 Pt(S2C2(CN)2)(PPh3)2 235 162.6S2p3/2 (NH4)(Fe4S3(NO)7) 235 162.6S2p3/2 WS2 243 162.65S2p3/2FeS2 -air 3'- 89 162.65S2p3/2 CuS 89 162.7S2p3/2 [Rh(tu)5Cl]Cl2 195 162.7S2p3/2 tetrahydrothiophene 111n°1- 163 162.7S2p3/2 FeS2-pyrite 162.7S2p3/2 Pt(S2C2(CN)2)(CNCH3)2 235 162.7S2p3/2 Ni(SPh)2(CyNC)2 235 162.8S2p3/2 RhCl3(tu)3 195 162.8S2p3/2 WS2 111 162.8S2p3/2 NiS 111 162.8S2p3/2FeS2 -air 30j- 89 162.8S2p3/2MoS3 - species S2(II) 103 162.8S2p3/2 (Ni(SPh)2)n 235 162.8S2p3/2 Ni(SPh)2(PMe2Ph)2 235 162.8S2p3/2 Pd(SPh)2(CyNC)2 235 162.9S2p3/2 PhSH 111n°2- 163 162.9S2p3/2 FeS2-pyritepolysulfide 234 162.9S2p3/2 S(2-)n162.9S2p3/2 Methionine 235 162.9S2p3/2 Co(Met)2 235 162.9S2p3/2 Ni(Met)2 235 162.9S2p3/2 Cu(Met)2 235 162.9S2p3/2 Zn(Met)2 235 163S2p3/2 Ph2S 111 163S2p3/2 Mo2O4(S2CN(C2H5)2)2 235 163.1S2p3/2 FeS2 89163.2S2p3/2 Ni(S2C2(C6H5)2)2 235 163.3S2p3/2 (Pd(SPh)2)n 235 163.4S2p3/2 Fe(S2C2(C6H5)2)2 235 163.4S2p3/2 (Pt(SPh)2)n 235 163.4S2p3/2 (Fe(SCH3)(CO)3)2 235 163.4S2p3/2 (Fe(SC2H5)(NO)2)2 235 163.6S2p3/2 CS2 111 163.6S2p3/2 (Ru(CS2)Cl(PPh3)3)Cl 235 163.7S2p3/2 PhSSPh 111 163.7S2p3/2 S8 111 163.7S2p3/2 RSSR 245Sulfur. 26 163.7S2p3/2 S-C,163.8S2p3/2 Sn 111 163.8S2p3/2 RSH 245 163.9S2p3/2 thiophene 111 163.9S2p3/2gpts (S4O6)2- 2eme pic 89 164S2p3/2 S=C=S 245 164S2p3/2 RS*SO3- 245 164.05S2p3/2 S 150 164.1S2p3/2 RS*S(O)R 245 164.1S2p3/2 RS*SO2R 245 164.1S2p3/2 R2NS*NR2 245 164.1S2p3/2 RSCl 245 164.1S2p3/2 Pt(MetH)Cl2 235 164.2S2p3/2 S2N2 111 164.2S2p3/2 S8 245élémentaire 61 164.2S2p3/2 S164.2S2p3/2 S6 186 164.25S2p3/2 S(s) 111thiophen 245 164.3S2p3/2 S164.3S2p3/2 S° 89 165S2p3/2 RSOR 245 165.3S2p3/2 Sn(CH3)2Cl2(dmso)2 195 165.3S2p3/2Sn -pyrite n°1- 163((CH3)2S=O) 195 165.5S2p3/2 DMSO165.5S2p3/2 Me3SI 111 165.5S2p3/2 O2NC6H4SO2Na 111 165.6S2p3/2 CuCl2(dmso)2 195 165.7S2p3/2 Ph2SO 111 165.7S2p3/2 BzMeSO 111 165.9S2p3/2 NiCl2(dmso)3 195 165.9S2p3/2 CoCl2(dmso)3 195 165.9S2p3/2Sn ? -pyrite n°2- 163 166S2p3/2 MnCl2(dmso)3 195 166S2p3/2 CdCl2(dmso) 195 166S2p3/2 [Pd(dmso)4](BF4)2 195166S2p3/2 PhSO2Na 111 166S2p3/2 RSO2- 245 166.1S2p3/2 Co(NH3)4(SO3)(CN) 195 166.1S2p3/2 NH4[Co(NH3)4(SO3)2] 195 166.1S2p3/2 Na2SO3 111 166.1S2p3/2 RS(O)R 245 166.1S2p3/2 RS*(O)SR 245 166.2S2p3/2 SnCl2(dmso)2 195 166.2S2p3/2 FeCl3(dmso)2 195 166.3S2p3/2 ZnCl2(dmso)2 195SO3 150 166.4S2p3/2 Na2166.4S2p3/2 NH4[Co(en)(NH3)2(SO3)2] 195 166.4S2p3/2 PdCl2(dmso)2 195 166.4S2p3/2 SnCl4(dmso)2 195 166.4S2p3/2S oxyde type sulfite 61 166.5S2p3/2 HgCl2(dmso) 195 166.5S2p3/2 PtCl2(dmso)2 195 166.6S2p3/2 AlCl3(dmso)6 195 166.6S2p3/2 Na2SO3 111 166.7S2p3/2 SO3(2-) 245 166.7S2p3/2 Ir(SO2)(CO)Cl(PPh3)2 235 166.8S2p3/2 [Pd(dmso)4](BF4)2 195 166.9S2p3/2NaRh(NH3)4(SO3)2 . H2O 195 166.9S2p3/2 RhCl3(dmso)3 195 167S2p3/2 RS(O)OR 245 167.2S2p3/2 SO2 150 167.2S2p3/2K3Rh(SO3)3 . 2 H2O 195 167.4S2p3/2 Na2SSO3 111 167.4S2p3/2 SO2 111 167.4S2p3/2 SO4(-II) 58 167.5S2p3/2 RSO2R 245 167.5S2p3/2 (-)S*O3S(-) 245 167.7S2p3/2 BzMeSO2 111 167.8S2p3/2 SO2 111 167.9S2p3/2 PhSO3Na 111 168S2p3/2 p-H2NC6H4SO2NH2 111 168S2p3/2 RSO3- 245 168.1S2p3/2 PhSO3Me 111 168.1S2p3/2gpts (S2SO3)2- 1er pic 89 168.1S2p3/2 RS*O2SR 245 168.1S2p3/2 RS*O2NR2 245 168.1S2p3/2 SO2 245 168.1S2p3/2 SOCl2 245 168.2S2p3/2Cu(bipy)SO4 . 2 H2O 195 168.2S2p3/2gpts ( S4O6)2- 1er pic 89 168.3S2p3/2 Na2SO4 111168.3S2p3/2 FeSO4 111 168.4S2p3/2Na2 S2O3 (central S) 150 168.5S2p3/2Cu(en)2SO4 . H2O 195 168.5S2p3/2 RSO2OR 245 168.5S2p3/2 RSO2Cl 245 168.5S2p3/2 sulphates 186 168.6S2p3/2Na2S2O3 (central S) 111(SO4)2- 89 168.7S2p3/2 gpts168.7S2p3/2SO4(2-) -pyrite n°1- 163 168.8S2p3/2 Fe2(SO4)3 111 168.9S2p3/2 CuSO4 150SO4 150 168.9S2p3/2 Na2168.9S2p3/2 (-)SO3SR 245 169S2p3/2 CoSO4 195 169S2p3/2Cu(bipy)3SO4 . 7 H2O 195 169S2p3/2 SO4(2-) 245 169S2p3/2S dans SO4(-II) 183 169.1S2p3/2 CuSO4 111 169.1S2p3/2SO4(2-) -pyrite n°2- 163 169.4S2p3/2Cu(en)SO4 . H2O 195 169.5S2p3/2CuSO4 . 5 H2O 195 169.5S2p3/2 sulphates 186 169.8S2p3/2 RSO2OR 245 170S2p3/2 CS2 243(g) 111170.03S2p3/2 CS2170.2S2p3/2 H2S 111 170.2S2p3/2 RSO2F 245 170.2S2p3/2 H2S 243 170.3S2p3/2 CuSO4 195 170.3S2p3/2satellites -pyrite n°1- 163(g) 111170.44S2p3/2 H2S170.6S2p3/2 Cr2(SO4)3 186 170.8S2p3/2 COS 111 170.8S2p3/2 COS 243 172.2S2p3/2satellite -pyrite n°2- 163 174.2S2p3/2 SF6 150 174.4S2p3/2 SF6 111(g) 111174.8S2p3/2 SO2174.8S2p3/2 SO2 243 180.3S2p3/2 SF6(g) 111 180.4S2p3/2 SF6 243S的电子结合能:Energy (eV) Element Chemical bonding Ref 224.7S2s PbS89 224.7S2s PbS -air 3'- 89224.9S2s PbS -air 220j- 89 225.1S2s vieillissement à l'air de la galène pdt 3mn 89 225.3S2s vieillissement à l'air de la galène pdt 220j 89 225.3S2s vieillissement à l'eau de la galène pdt 19j 89 227.5S2s S -Fe /19Cr /9Ni /2.5Mo- 138 232.4S2s SO4 (2-) -Fe /19Cr /9Ni /2.5Mo- 138。
N的电子结合能

XPS_DatabaseN1s的电子结合能:Energy (eV) Element Chemical bonding Ref 395.7N1s N-C 43 396N1s in the passive film and in the bulk 84 396N1s TiN 47 396.1N1s N-C in the TiN coatings before erosion 43 396.2N1s N bonded in AlN, Energy N2+=75,100,300,1000 eV, IAD 139175cristal 396.3N1s AlN225 396.3N1s Cr-N 396.3N1s N bonded in AlN, Energy N2+=500 eV, IAD 139 396.4N1s CrN225powder 94 396.4N1s As-receivedAlN 396.4N1s AlN/PVB binder burnout in air 94 396.4N1s AlN/PVB binder burnout in nitrogen 94 396.4N1s AlN/PPC binder burnout in air 94 396.4N1s AlN/PPC binder burnout in nitrogen 94194 396.4N1s AlN 396.5N1s N bonded in AlN, Magnetron, N2,N2+ Ar 139150 396.6N1s CrN197 396.6N1s TiN 396.6N1s Cr traité au NaNO3 17 396.6N1s Fe traité au NaNO3 17 396.6N1s N ds Fe13 (nitré) 218 396.7N1s N-Ti 43 396.8N1s N:Ti 31208 396.8N1s N:Ti 396.8N1s N ds CrN 55148W/TiN 396.9N1s Interface396.9N1s Interface TiN/SiO2 (=> TiN) 148 396.9N1s TiN(100) using a photon energy between 440 and 470 eV 180 396.9N1s SS304 traité au NaNO3 17 396.9N1s interface W/TiN après bomb (275 min) 148 396.9N1s interface TiN/SiO2 après bomb (750 min) TiN pur 148 396.9N1s structure W/TiN/Si (Wpur) après bomb (525 min) 148 397N1s Mo traité au NaNO3 17 397N1s904L traité au NaNO3 17 397N1s AL6X traité au NaNO3 17 397N1s Nads 76 397N1s CrN in alloy 24 after sputtering the passive film 116 397N1s CrN in alloy 33 after sputtering the passive film 116O0.17 31 397.1N1s TiN0.54O0.08 31 397.1N1s TiN0.63397.1N1s TiN0.75 31208 397.1N1s TiN0,75397.1N1s N-Ti in the TiN coatings before and after erosion 43O0.44 31 397.2N1s TiN0.31397.2N1s implantation de N dans SS304 225 397.2N1s TiN0,31O0,44208 397.2N1s Nads sur l'acier de type 304 N 92 397.2N1s N ds 304 ss nitré 218 397.2N1s N ds l'acier 304 (nitré) 55 397.3N1s TiN0.09O0.74 31 397.3N1s TiN 10111 397.3N1s WN 397.4N1s Ni traité au NaNO3 17 397.4N1s N ds Cr2N 55 397.4N1s related to the NSi3 environment 213150 397.5N1s Si3N4 397.5N1s K4Fe(CN)6111 397.5N1s TiN(100) using a photon energy between 440 and 470 eV 180 397.5N1s N ds PMDA-ODA T=250°C av 0,16 nm de Cr(faible nrj) 131 397.5N1s N ds PMDA-ODA T=250°C av 1,0 nm de Cr(Cr-nitride) 131225 397.6N1s Cr2N 397.7N1s large pic après bombardement (5 min) 182192 397.7N1s nitride111 397.8N1s NaSCN 397.8N1s nitride 57 397.9N1s C-N, pyridinic N in PVCA treated at 573, 873 and 1173K 42 397.9N1s C-N, pyridinic N in chars (1223K) 149150 397.9N1s BN111 397.9N1s BN240 397.9N1s (a,a'-dipyridyl)Mo(CO)4111 398N1s phthalocyanine 398N1s NHads 76 398N1s ds le 304 ss avec N2 implanté 218 398.1N1s Graphene N (into the conjug. struct. of graphene mlcl) 71111 398.1N1s KCN240 398.1N1s (a,a'-dipyridyl)Mo(CO)3(P(OPh)3)182pic 398.3N1s large 398.3N1sà une profondeur de 0,5 nm 84 398.3N1s-N= in a cyclic structure 158240 398.4N1s (a,a'-dipyridyl)Mo(CO)3(P(O(n-Bu))3) 398.5N1s BN à 1.6ev FWHM 164150 398.6N1s NH3 398.6N1s BuNH2111111 398.6N1s pyridine 398.6N1s amine ou pyridine du Polyimide Kapton 15111 398.7N1s S2N2111 398.7N1s NaN3240 398.7N1s (o-phenanthroline)Mo(CO)4398.8N1s C-N-Cu in [Cu(H2daaen)] 166 398.8N1sà une profondeur de 0,5 nm 84 398.8N1s free N in interstitial sites, Energy N2+= 75 eV, IAD 139 398.9N1s C-N, pyridinic N in initial resin 149 398.9N1s N ds NH2 surf PET-APTES(24H) av red par LiAlH4 177 398.9N1s plasma: NH3 et N2 188188 398.9N1s -C=NH 398.9N1s Plasma: NH3 + N2 / réf: 284,3 eV pour C1s 189111 399N1s PhCN 399N1s AlN (N a été remplacé par O) 175 399N1s N ds PMDA-ODA T=250°C av 0,16 nm de Cr 131131 399N1s Cr-NO2/Ar/NH3122 399N1s plasma:111 399.1N1s tetracyanoquinodimethane188 399.1N1s PhNH2114C-NH-C 399.1N1s R-C=NH;122O2/NH3 399.1N1s plasma:399.1N1s AlN (N-O bond) 194111 399.2N1s PhNH2111 399.2N1s H2N*C6H4NO2 399.2N1s NO- in 316L before sputtering the passive film 116 399.2N1s NO- in 316L after sputtering the passive film 116 399.2N1s NO- in alloy 24 before sputtering the passive film 116 399.2N1s NO- in alloy 33 before sputtering the passive film 116240 399.2N1s (N,N,N',N'-tetramethylethylenediamine)Mo(CO)4111 399.3N1s H2NSO2C6N4NO2114N 399.3N1s Aromatic 399.3N1s Nitrogen in an NH2 state 213 399.4N1s C-N, pyrrolidonic N in PVPO treated at 573K 42 399.4N1s C-N, pyridinic N in PVPI treated at 573, 873 and 1173K 42 399.4N1s N at surface of SS304 225 399.4N1s N For N2/Ni(100) 64111 399.5N1s guanidineHCl104 399.5N1s N-C114 399.5N1s R-NH2 399.5N1s N at surface 84Ar/NH3122 399.5N1s plasma:399.6N1s CN in H4daaen 166 399.6N1s N-O 43 399.6N1s N-C-O177114 399.6N1s R-CN 399.7N1s PhNHCSNHPh111 399.7N1s Ni traité à NH3 17 399.7N1s SS304 traité à NH3 17 399.7N1s phi-NH2114surface 84 399.7N1s en399.7 N1s NH amide group 171399.8 N1s Conjugated N (C=N type, not in graphene molecules) 71399.8 N1s Fe traité à NH3 17399.8 N1s AL6X 17399.8 N1s NH3 sur l'acier de type 304 N 92399.8 N1s NH3 57399.8 N1s O=C-NH-(C,H) 114399.8 N1s -NH2 (-NH) 158399.81 N1s C-N in Kapton(TM), polyether imide film 205399.9 N1s 3ary amine (red° under X-ray beam) in initial resin 149399.9 N1s PhNNPh 111399.9 N1s Co(NH3)8Cl3 111399.9 N1s Mo treated with NH3 17399.9 N1s 317LX treated with à NH3 17400 N1s phthalocyanine 111400 N1s adsorption de N2,NH3, NH3 sur SS304 225400 N1s N2H4ads 76400 N1s N Ox fretted (5V for 5 min) in blood serum 207400 N1s N ds Fe13 (adsorbé) 218400 N1s N-O in the TiN coatings before and after erosion 43400.1 N1s C-N, pyridone in chars (1223K) 149400.1 N1s Na2N2O2 111400.1 N1s ds PE-Ar et PE-N (groupe organique nitrogène) 48400.2 N1s C-N, 2ndary prod. of PVPO treated at 573 and 873K 42400.2 N1s C-N, pyrrolic N in PVPO treated at 1173K 42400.2 N1s N-H ou N-O 192400.3 N1s C-N, pyrrolic N in PVCA treated at 573, 873 and 1173K 42400.3 N1s N Ox, 316 L alloy fretted (30 min) in blood serum 207400.3 N1s Plasma: NH3 + N2 / réf: 284,3 eV pour C1s 189400.4 N1s C-N, pyridonic N in PVPI treated at 573, 873 and 1173K 42400.4 N1s C-N du Polyimide Kapton 15400.4 N1s plasma: NH3 et N2 188400.4 N1s groupe aliphatique 188400.5 N1s N Ox in 316 L alloy dipped in blood serum 1h 207400.5 N1s N Ox"corrosion products" after fretted in blood 207400.7 N1s C-N-H in [Eu(H2daaen)] 166400.7 N1s C-N, quaternary N in PVPI treated at 1173K 42400.7 N1s N ds NH3+ surf PET-APTES(24H) av red par LiAlH4 177400.7 N1s N For N2/Ni(100) 64400.8 N1s C-N-Cu in [CuEu(daaen)] 166400.8 N1s N ds PMDA-ODA 130400.8 N1s PE après 5 min d'expo au plasma nitrogène 48400.9 N1s N incorp. in the condensed struct. units : chars 1223K 149400.9 N1s H3N+CHRCOO- 111400.9 N1s NH4NO3 111401N1s EtNH3Cl 111401N1s NO ( - delta ) ads 76 401.1N1s C-N, quaternary N in PVCA treated at 1173K 42111 401.1N1s Me4NBr 401.1N1s PE-N après protonation avec H2SO4(0,1M) 48 401.1N1s NH4+ in 316L before sputtering the passive film 116 401.1N1s NH4+ in 316L after sputtering the passive film 116 401.1N1s NH4+ in alloy 24 before sputtering the passive film 116 401.1N1s NH4+ in alloy 33 before sputtering the passive film 116 401.2N1s NH4+ in alloy 24 after sputtering the passive film 116 401.2N1s NH4+ in alloy 33 after sputtering the passive film 116 401.3N1s C-N, quaternary N in PVPO treated at 1173K 42PE-Ar-PFB 48 401.3N1s ds401.3N1s dsPE-Ar-TFE 48158 401.3N1s "oxidizedN"111 401.4N1s (NH3OH)+Cl-PE-Ar-PFPH 48 401.4N1s ds150 401.5N1s NH4Cl 401.5N1s amino-sulfate -pyrite n°1- 163114 401.5N1s C-N+111 401.6N1s p-NH3+C6H4SO3-PE-Ar 48 401.6N1s ds401.7N1s N-methyl pyridinium in initial resin 149150 401.7N1s NH4NO3 401.7N1s NH4+ sur l'acier de type 304 N 92111 401.8N1s N2H6SO4 402N1s Pyridine-N-oxyde in chars 149 402N1s chloranil-pyridine111 402N1s amino-sulfate -pyrite n°2- 163192 402N1s NH4+ 402.1N1s Me4NCl111in PVPI treated at 1173K 42 402.4N1s C-N,pyridine-N-oxyde402.7N1s N2 peak, Energy N2+= 75 eV, IAD 139111 402.8N1s Me3NO 402.8N1s plasma: NH3 et N2 188 402.8N1s Plasma: NH3 + N2 / réf: 284,3 eV pour C1s 189111 403N1s NaN3 403N1s AlN (N a été remplacé par O, Air 100°C) 175 403N1s N2 peak, Energy N2+= 1000 eV, IAD 139 403.1N1s Shake-up satellites (pi-pi*) (entrapped NOx) 149111 403.2N1s NaNO2 403.2N1s PE après traitement par pentafluorobenzaldehyde 48 403.6N1s C-N, pyridine-N-oxyde in PVPO treated at 873 and 1173K 42150 403.6N1s NaNO2 403.7N1s N2 peak, Energy N2+= 100,300 eV, IAD 139 403.8N1s N2 peak, Energy N2+= 500 eV, IAD 139 404.1N1s Shake-up satellites (pi-pi*) (entrapped NOx) 149111 404.3N1s AmONO 405N1s Al oxynitride, dans l'air t°>700°C 175 405.5N1s NO2114111 405.7N1s PhNO2 406N1s MeNO2111111 406N1s NH4NO3 406N1s NO ( + delta ) ads 76 406.2N1s NO3- in 316L after sputtering the passive film 116 406.2N1s NO3- in alloy 24 before sputtering the passive film 116 406.2N1s NO3- in alloy 33 before sputtering the passive film 116 406.2N1s NO3- in alloy after sputtering the passive film 116 406.2N1s NO3- in alloy after sputtering the passive film 116150 407.1N1s NaNO3 407.3N1s NaNO3111147 409.9N1s élémentnaturel。
Ni原子相互作用势能及物理性能解析分析

Ni原子相互作用势能及物理性能解析分析孟萍萍;李汉龙;封文江;王胜刚;朱影;张思【摘要】从价键理论与单原子状态理论出发,对面心立方Ni电子结构(3dn)2.69(3dc)5.24(3dm)0.66(4sc)0.25 (4sf)1.16进行了研究.根据修正后的铁磁金属晶格系数,通过对Brillouin函数泰勒级数展开及取五阶近似推导出磁电子数密度随温度变化的代数解析式,并画出了曲线图,得到的变化趋势是磁电子数密度随温度的升高而逐渐降低.此外求解了磁电子数密度随温度变化的代数解析式的一阶导数,并从一阶导数变化趋势印证磁电子数密度随温度的升高而逐渐降低这一规律.运用Ni磁性线热膨胀系数公式,计算了温度在0~600 K过程中,线热膨胀系数随温度的变化规律,得到磁性线热膨胀系数在整个变化过程中变化并不大,数量级为10-6.最后得出取五阶近似得到的磁电子数密度函数、磁性线热膨胀系数函数表达式有普遍实用性.【期刊名称】《沈阳师范大学学报(自然科学版)》【年(卷),期】2014(032)002【总页数】4页(P229-232)【关键词】Ni;势能函数;线热膨胀系数【作者】孟萍萍;李汉龙;封文江;王胜刚;朱影;张思【作者单位】沈阳师范大学物理科学与技术学院,沈阳110034;沈阳建筑大学理学院,沈阳110168;沈阳师范大学物理科学与技术学院,沈阳110034;中国科学院金属研究所磁性材料与磁学研究部,沈阳110016;沈阳师范大学物理科学与技术学院,沈阳110034;沈阳师范大学物理科学与技术学院,沈阳110034【正文语种】中文【中图分类】TG111.10 引言金属的势函数是固态理论研究的一个重要课题。
金属势函数的计算主要有Lennard-Jones“6-12”势、指数形式的 Morse势[1]和固体中多原子相互作用的新势能函数[2]。
Lennard-Jones:“6-12”势,对稀有气体性质的计算作用比较大,对一些简单金属也可以给出很好的描述,例如一些第1周期的碱金属,但比较粗略,对于固体很多的描述不是很详细。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XPS_DatabaseNi的电子结合能:Energy (eV) Element Chemical bonding Ref215 869.6Ni2p1/2 NiNi的电子结合能:Energy (eV) Element Chemical bonding Ref 851.4Ni2p3/2ds le 304 ss avec N2 implanté 218 851.4Ni2p3/2 Ni11 218 851.95Ni2p3/2 AuNi 150 852Ni2p3/2Ni (16 min)/Al2O3/Al 229 852.1Ni2p3/2 Ni 111métallique 118 852.3Ni2p3/2 Ni852.4Ni2p3/2 Ni 215 852.48Ni2p3/2 Ni 150 852.5Ni2p3/2 Ni 247 852.5Ni2p3/2Ni métal ( 10puis-6 torr) 78 852.5Ni2p3/2Ni métal ( 250°C -1h ) 78 852.5Ni2p3/2Ni, Ni foil polishing and Ar+ etching 101 852.6Ni2p3/2 NiS 150 852.6Ni2p3/2Ni, Ni foil polish and Ar+ etching, + O2 at 200°C/1h 101 852.6Ni2p3/2Ni, Ni foil polishing + water immersion/28h 101Ni 229 852.7Ni2p3/2 bulkmetal 13 852.7Ni2p3/2 Ni852.8Ni2p3/2 Ni2Si 150 852.8Ni2p3/2 Ni-21Cr-8Fe 183 852.8Ni2p3/2 Ni 183 852.8Ni2p3/2Ni° in a passive film on SUS316L 65 852.9Ni2p3/2 Ni2P 150 852.9Ni2p3/2 2 min Ni deposit : Ni dispersed on Al2O3 229 852.9Ni2p3/2Ni, Ni foil polishing and Ar+ etching+H2S 400°C/1h 101 853Ni2p3/2 NiB 150 853Ni2p3/2Ni (7 min)/Al2O3/Al annealed to 800K for 30 min 229 853Ni2p3/2Ni metal with a sample immersed in a 60°C solution 11 853Ni2p3/2Ni metal with a sample immersed in a room t° solution 11 853Ni2p3/2NiS/Ni3S2 -Ni foil polish in H2O/28h+H2S 400°C/1h 101 853Ni2p3/2Ni Polish +Ar+,+O2 -200°C/1h+400°C/2h30mn+H2S 400°C/1h 101 853.1Ni2p3/2NiOads ( 10puis-6 torr) 78 853.1Ni2p3/2NiOads ( air 15min ) 78 853.3Ni2p3/2élément naturel (liaison métallique) 147 853.5Ni2p3/2 NiO 111 853.55Ni2p3/2 Al3Ni 150 853.6Ni2p3/2 NiI2 111 853.9Ni2p3/2 Ni(C5H5)2 111 853.9Ni2p3/2 Ni(PPh3)2 111853.9Ni2p3/2abrasé sur dry 600 grit sandpaper qq sec 207 853.9Ni2p3/2 NiO 118 854Ni2p3/2 Ni2S3 111 854Ni2p3/2 NiO 247 854Ni2p3/2NiO (1er pic) ( 800°C - 10min ) 78 854Ni2p3/2NiO ( 1er pic) ( 800°C-air ) 78 854Ni2p3/2NiO (1er pic ) ( 800°C-air+ O2-10min ) 78 854Ni2p3/2Ni (1 min)/Al2O3/Al : NiO 229 854.2Ni2p3/2 NiO 150 854.2Ni2p3/2 Ni(Co)4 150 854.2Ni2p3/2 NiO 157 854.4Ni2p3/2Ni(II) dans NiO 183 854.4Ni2p3/2 (Ni(SCH2CH2S))n 235 854.4Ni2p3/2 Ni(SCH2CH2S)(PMe2Ph)2 235 854.5Ni2p3/2 Ni(Co)4 111 854.5Ni2p3/2Ni (16 min)/Al2O3/Al annealed to 800K for 10 min :NiAl 229 854.5Ni2p3/2Ni oxide with a sample immersed in a room t° solution 11 854.5Ni2p3/2 Ni(SPh)2(CyNC)2 235 854.6Ni2p3/2 Ni-(dimethyl-glyoxime)2 150 854.6Ni2p3/2 NiO 155 854.6Ni2p3/2 NiO 13 854.6Ni2p3/2 Ni(SPh)2(dppe) 235 854.6Ni2p3/2 Ni(SPh)2(PMe2Ph)2 235 854.7Ni2p3/2 Ni(CN)2 111 854.7Ni2p3/2 Ni(SCH2CH2S)(dppe) 235 854.7Ni2p3/2 (Ni(SPh)2)n 235 854.8Ni2p3/2 NiCl2(NBu3)2 111 854.9Ni2p3/2 NiS 111 854.9Ni2p3/2 NiBr2 111 854.9Ni2p3/2 Ni(dimethylglyoxime) 111 854.9Ni2p3/2 NiFe2O4 111 855Ni2p3/2voir spectres dans la publication 102 855Ni2p3/2Ni oxide with a sample immersed in a 60°C solution 11 855.3Ni2p3/2 NiCO3 111 855.3Ni2p3/2 USY-A-6 44 855.3Ni2p3/2 LaHY 44 855.3Ni2p3/2 Ni(Met)2 235 855.4Ni2p3/2 Ni(C24H27N7)(PF6)2 111 855.4Ni2p3/2 K2Ni(CN)4 111 855.4Ni2p3/2 NiFe2O4 247 855.4Ni2p3/2 USY-A-8 44 855.5Ni2p3/2 Ni(acac)2 150 855.5Ni2p3/2 Me4NNiCl3 111 855.5Ni2p3/2NiO Oads ( 800°C-air+ O2-10min ) 78 855.5Ni2p3/2 USY-B-8 44 855.6Ni2p3/2 Ni(OH)2 247855.6Ni2p3/2 Ni(OH)2 118 855.6Ni2p3/2NiOx, Ni foil polishing + water immersion/28h 101 855.7Ni2p3/2 Ni(OH)2 150acethylacetonate 111 855.7Ni2p3/2 Ni855.7Ni2p3/2 Ni2O3 13 855.8Ni2p3/2 Ni2O3 150 855.8Ni2p3/2NiO (2nd pic) ( 800°C - 10min ) 78 855.8Ni2p3/2NiO (2ème pic) ( 800°C-air ) 78 855.8Ni2p3/2NiO ( 2ème pic) ( 800°C-air+ O2-10min ) 78 855.8Ni2p3/2Ni(OH)2 dans Inconnel 600 (Publication riche en El) 246 855.8Ni2p3/2NiOx, Ni foil polish and Ar+ etching, + O2 at 200°C/1h 101 855.9Ni2p3/2Ni2O3 ( 10puis-6 torr) 78 855.9Ni2p3/2Ni2O3 (1er pic) ( air 15min ) 78 855.9Ni2p3/2Ni2O3 ( 800°C-air ) 78 855.9Ni2p3/2Ni2O3 ( 800°C-air+ O2-10min ) 78 855.9Ni2p3/2 USY-B-8H 44 856Ni2p3/2 NiAl2O4 150 856Ni2p3/2 Ni(OH)2 111 856Ni2p3/2 Ni2O3 111 856Ni2p3/2NiOx, Ni foil polish-Ar+etch+O2, 200°C/1h+400°C/2h30mn 101 856.1Ni2p3/2 NiCl2 111 856.1Ni2p3/2Ni2O3 (1er pic) ( 250°C -1h ) 78 856.1Ni2p3/2 USY-2 44cyclohexanebutyrate 111 856.3Ni2p3/2 Ni856.3Ni2p3/2 USY-D 44 856.4Ni2p3/2 (NH4)2NiF4 111 856.4Ni2p3/2 Ni(OH)2 13 856.5Ni2p3/2 NiCl2 150 856.6Ni2p3/2 NiSiO4 150 856.7Ni2p3/2 NiSiO3 150 856.8Ni2p3/2 Ni(NO3)2 111biuret 111 856.8Ni2p3/2 KNitrifluoroacetate 111 856.9Ni2p3/2 Ni856.9Ni2p3/2 LaHY-H2O 44 856.9Ni2p3/2 NiSiO3 155 857Ni2p3/2 NiSO4 111 857.1Ni2p3/2 NiAl2O4 111 857.2Ni2p3/2 NiF2 150 857.2Ni2p3/2 NiWO4 111 857.3Ni2p3/2Metal salt NiCl2 in 316 L alloy 207 857.8Ni2p3/2 NiF2 111 858.5Ni2p3/2Ni métal (10puis-6 torr) 78 858.7Ni2p3/2 NiSiF6 111 860.9Ni2p3/2 K2NiF6 111 861.2Ni2p3/2NiO (3eme pic) ( 800°C - 10min ) 78 861.2Ni2p3/2NiO ( 3ème pic) ( 800°C-air ) 78861.2Ni2p3/2NiO (3ème pic) ( 800°C-air+ O2-10min ) 78 861.4Ni2p3/2Ni2O3 ( 2eme pic) ( air 15min ) 78 861.4Ni2p3/2Ni2O3 ( 2ème pic ) ( 250°C -1h ) 78Ni的电子结合能:Energy (eV) Element Chemical bonding Ref21567.4Ni3p1/2 NiNi的电子结合能:Energy (eV) Element Chemical bonding Ref21565.7Ni3p3/2 Ni247métal66.3Ni3p3/2 Ni24767.3Ni3p3/2 NiO247 68Ni3p3/2 Ni(OH)224768.1Ni3p3/2 NiFe2O4Ni的电子结合能:Energy (eV) Element Chemical bonding Ref215 110.2Ni3s Ni247 110.7Ni3s Ni247 111.8Ni3s NiO247 112.7Ni3s Ni(OH)2247 113Ni3s NiFe2O4。