Li的电子结合能

合集下载

极性三元混晶中的Wannier激子结合能

极性三元混晶中的Wannier激子结合能

!光物理!B i ndi n g Ener g ies of W annier Excit ons i n Pol ar Ternar yM i xed C r y st alsZ~AO Guo-un L I ANG X i-xi a BAN Shi-li an gD e p art m ent of Ph y sics Inner M on g oli a Uni versit y~ohhot010021Chi naAbstract B i ndi n9ener9i es Of W anni er exc i t Ons i n t er nar y m i xed cr y st al s TMGs Of P O l ar cr y st al s Wer e vari-ati Onal l y cal cul at ed b y t aki n9t h e i nt er acti On be t Ween t h e exc i t On and t WO br anch es Of O P ti cal P h OnOn mOdesi nt O accOunt i n t h e mOdi fi ed r andO m-e l ement-i sOdi s P l acement MREl mOde l.Th e nu meri cal r esul t s Of t h e ex-c i t Oni c bi ndi n9ener9i es as f uncti Ons Of t h e cO m P Os i ti On1Wer e9i ven f Or sever al TMc s.Th e cOntri buti Ons Oft h e t WO br anch es Of P h OnOns t O t h e exc i t Oni c bi ndi n9ener9i es Wer e di scussed.l t i s sh O Wn t h at t h e e l ectr On-P h OnOn e-P cOu P l i n9P l a y s an i m P Ort ant r O l e f Or t h e bi ndi n9ener9i es Of t h e exc i t Ons W i t h l ar9er e l ectr On-h O l e mass di ff er ences.A nOn-l i near de P endence Of t h e P h OnOn cOntri buti Ons t O t h e bi ndi n9ener9i es On t h ecO m P Os i ti On1i s f Ound.Th e val i di t y Of t h e e ff ecti ve P h OnOn mOde a PP r Oxi mati On EP MA t O f Or mul at e t h e ex-c i t On-P h OnOn i nt er acti On Was di scussed.K e y wrods t er nar y m i xed cr y st al TMc W anni er exc i t On Haken*s P Ot enti al exc i t On bi ndi n9ener9yCLC nu mber O471.3Docu m ent code A Article code1005-0086200404-0487-05极性三元混晶中的W annier激子结合能赵国军梁希侠班士良内蒙古大学物理系内蒙古呼和浩特010021摘要在无序元胞孤立位移MRE I模型下考虑激子与混晶中的两支光学声子的相互作用利用变分法计算了极性三元混晶TMC s中的W anni er激子的结合能数值计算给出几种混晶材料的结合能随组份1的变化关系讨论了混晶中的两支光学声子对激子结合能的贡献结果表明当电子和空穴有效质量相差较大时电声子相互作用对激子结合能有着重要的贡献声子对结合能的影响随混晶组份非线性变化的同时讨论了有效声子近似EP MA在计算激子结合能时的适用范围关键词三元混晶W anni er激子~aken势激子结合能1Introducti onl n r ecent y ear s much att enti On h as been P ai d t O t h e ex P eri ment al and t h eOr e ti cal st u di es On t er nar y m i xed cr y st al s T Mc s.Th e exci t On st at es P l a y a cr u-ci al r Ol e f Or t h e O P ti cal P r O P erti es Of t h e T Mc s.Th e l atti ce vi br ati Ons and t h e i r cOu P l i n9W i t h t h e e l ectr Ons i n t h e T Mc s h ave been st u di ed t h eOr e ti cal l y and ex-P eri ment al l y1~7.HO Wever t h e e ff ect Of t h e e l ectr On-P h OnOn e-P i nt er acti On On t h e exci t On st at es Whi ch h as been W i de l y st u di ed f Or t h e bi nar y cr y st al s8~11 Was l ess i nvesti9at ed f Or t h e T Mc s t O Our knO W l ed9e. As i s We l l knO Wn di ff er ent f r O m9en er al bi nar y cr y s-t al s t h er e ar e t WO br anch es Of O P ti cal P h OnOn mOdes cOu P l i n9W i t h t h e exci t Ons i n a P Ol ar T Mc.光电子·激光第15卷第4期2004年4月Jour nal o f O p t oelect ronics Laser Vol.15No.4A p r.2004Received dat a2003-07-18Revised date2003-11-03Foundation ite m W or k f unded b y t he Nati onal Nat ural S ci ence Foundati on of Chi na1016400310264003E-m ail stz hao g @m ail.i l n t hi s P a P er We st u d y t h e e ff ect s Of t h e e-P cOu-P l i n9On W anni er exci t Oni c st at es i n a P Ol ar T Mc A1B1-1c.Th e cOntri buti Ons Of t h e t WO-br anch es Of l On9i t u di nal O P ti cal<L O>P h OnOn mOdes ar e t aken i nt O accOunt.Th e mOdi fi ed r andO m-e l ement-i sOdi s P l ace-ment<MREl>mOde l i s used t O cOns i der t h e e-P Fr Ohl i ch i nt er acti On.An e ff ecti ve Ha m i l t Oni an f Or t h e exci t On i s deri ved f Ol l O W i n9a LLP-l i ke me t h Od t h at Was used f Or exci t Ons i n bi nar y cr y st al s b y Haken[12]. Th e9r Ound st at e en er9y Of an exci t On i s cal cul at ed b y a vari ati Onal me t h Od.Th e nu meri cal r esul t s Of t h e ex-ci t Oni c bi ndi n9en er9i es f Or sever al P Ol ar T Mc s ar e Obt ai n ed as f uncti Ons Of t h e cO m P Os i ti On1and t h e r a-ti O Of masses Of t h e e l ectr On and h Ol e r es P ecti ve l y.A nOn-l i n ear de P endence Of t h e P h OnOn cOntri buti Ons t O t h e bi ndi n9en er9i es On t h e cO m P Os i ti On1i s f Ound.An e ff ecti ve P h OnOn mOde a PP r Oxi mati On<EP MA>[13]i s al sO used t O f Or mul at e t h e e-P i nt er acti Ons i n t h e T Mc s and cO m P ar ed W i t h t h e MREl r esul t.Th e val i di-t y Of t h e EP MA f Or exci t On P r Obl ems i s al sO di s-cussed.2H a m ilt oni anW e cOns i der an exci t On exci t ed i n a T Mc A1B1-1 c and i nt er acti n9W i t h L O P h OnOns.Th e exci t On-P h O-nOn s y st em Ha m i l t Oni an can be W ri tt en as~=P 2 e2m e +P2h2m h-e24T E0E O r+Zj gH U j L a+jg a jg+Z j g [Cjga+jg+h.c.]<1>Her e t h e r e f er ence en er9y l eve l s f Or e l ectr Ons and h Ol es h ave been ch Osen r es P ecti ve l y at t h e bOtt O m Of t h e cOnduct Or-band and t h e t O P Of t h e val ence-band. m e and m h ar e t h e e ff ecti ve masses Of t h e e l ectr On and t h e h Ol e r es P ecti ve l y.r r e~r h r e<r h>and p e <ph>ar e r es P ecti ve l y t h e P Os i ti On-vect Or and mO men-t a Of t h e e l ectr On<h Ol e>.Th e band masses Of t h e e-l ectr On and t h e h Ol e i n t h e T Mc ar e9i ven b ym e<h>=1m e<h>A+<1-1>m e<h>B<2> Wh er e m e<h>A and m e<h>B r e f er t O t h e band masses Of t h e e l ectr On<h Ol e>f Or t h e end-member bi nar y cr y st al s Ac and Bc r es P ecti ve l y.Th e hi9h-f r e G u enc y di e l ec-tri c cOnst ant E O Of t h e T Mc i s de t er m i n ed b y t h e f Ol-l O W i n9f Or mul a[12]E O=1+2[1Y A+<1-1>Y B]1-[1Y A+<1-1>Y B]<3> W i t hY l=<EO l-1><EO l+2><4> ~ere l=A and B r e f er t O t h e end member bi nar y cr y st al s Ac and Bc r es P ecti ve l y.E O l i s t h e hi9h-f r e-G u enc y di e l ectri c cOnst ant s Of cr y st al0i s t h e vacuu m di e l ectri c cOnst ant.Th e l ast t er m i n E G.<1>descri bes t h e i nt er acti On Ha m i l t Oni an be t Ween t h e exci t On and t WO br anch es Of L O-P h OnOns i n t h e f r a meWOr k Of t h e MREl mOde l[6] andC jg=g jg V1/2<e-i r e-e-i r h><5> W i t hg+=i eE0+b33H2U+<>L1/21T11+2B1T12+B21T<>221/2<b31+B1b32>g-=i eE0+b33H2U-<>L1/21T11+2B1T12+B21T<>221/2<b31+B1b32><6> j=+and~st and f Or t h e hi9h er-and l O Wer-f r e-G u enc y br anch es Of L O-P h OnOn mOdes Wh Ose f r e-G u enci es ar e9i ven b y t h e f Ol l O W i n9e G u ati OnU2L=-<b*11+b*22>[<b*11-b*22>2+4b*12b*21]1/<}2/2<7> I n aboze e g ueations t he P ara m eters b B and T Wer e 9i ven b y t h e P r evi Ous WOr k[6]and We h ave nOt l i st ed t h em h er e f Or sh Ort.3Vari ati onal calcul ati onB y us i n9a me t h Od s i m i l ar t O t h at used b y Haken f Or bi nar y cr y st al s We h ave Obt ai n ed an e ff ecti ve Ha m i l t Oni an f Or t h e exci t On-P h OnOn s y st em i n t h e mass-cent er s y st em as f Ol l O Ws~eff=P22J-e24T E0E O r-Ej<Oe j H U j L+O h j H U j L>+Ejg j22T H U j L r1-e-J e j r+e-m h j r<>2<8> Wh er e m e and m h ar e r es P ecti ve l y t h e e l ectr On-and h Ol e-P Ol ar On masses9i ven b ym e h=m e h1+O e h++O e h-<>6<8a> W i t h-884-光电子·激光2004年第15卷O e h j=g j2J e h j 4T H2U2j Lu e h j=2m e h U j L<>H1/2J=m e m hm e+m hl n abOve Ha m i l t Oni an We h ave P ut t h e mO ment u m Of t h e mass-cent er t O be Zer O s i nce We ar e Onl y cOn-cer n ed abOut t h e r e l ati ve mOti On Of t h e e l ectr On and h Ol e.W e nO W st art W i t h a vari ati Onal tr eat ment f Or t h e e ff ecti ve Ha m i l t Oni an H e ff.Th e tri al Wave f uncti On f Or t h e9r Ound st at e Of t h e exci t On i s ch Osen asr>=<>3/8T>1/2e->r/2<9> Th e vari ati Onal P ar a me t er>and9r Ound st at e en er9y E G ar e bOt h de t er m i n ed b y m i ni m i Zi n9t h e vari ati Onal en er9yE z=<r~eff r>=H 2>28J -e2>8T E0E O+E jg j2>4T H U j L1-121+u e j<>>-2+1+u h j<>>-2-Ej<Oe j H U j L+O h j H U j L><10> Th e bi ndi n9en er9y Of t h e exci t On WOul d be cal-cul at ed b y su btr acti n9t h e9r Ound st at e en er9y f r O m t h e t Ot al en er9y f O t h e f r ee e l ectr On-h Ol e P Ol ar On P ai rE f ree=Ej <Oe j H U L+O h j H U j L><11>Fi nal l y We Obt ai n ed t h e bi ndi n9en er9y Of t h e exci t On asE B=-H 2>28J +e2>8T E0E O-E jg j2>4T H U j L1-121+u e j<>>-2+1+u h j<>>-2<12> FOr cO m P ari sOn We al sO adO P t t h e EP MA13t Ocal cul at e t h e bi ndi n9en er9y Of t h e exci t On i n Whi ch t h e t WO br anch es Of L O-P h OnOn mOdes h ave been s i m P l i fi ed as a br anch Of e ff ecti ve P h OnOn mOdes Wh Ose f r e G u enc y i s9i ven b yU EL=1U+L+<1-1>U-L<13> Th e vari ati Onal bi ndi n9en er9y i s t h en de t er m i n ed asE B=-H 2>28J +e2>8T E0E Es+e2>16T E01E O-1E E<>s1+u Ee<>X-2+1+u E h<>X-2<14>Wh er e E Esi s t h e e ff ecti ve st ati c di e l ectri c cOnst ant13and u Es i s de t er m i n ed s i m i l ar t O E G.<8a>.4Nu m erical results and discuss i onW e h ave P erf Or med t h e vari ati Onal cal cul ati Onsf Or sever al T Mc s y st ems.Th e P ar a me t er s used i n Ourcal cul ati Ons ar e l i st ed i n Tab.1and t h e r esul t s ar esh O Wn i n Fi9s.1-3.Fi9.1P l Ot s t h e cur ves Of t h e bi ndi n9en er9i es Oft h e h eav y-h Ol e exci t Ons i n T Mc A l1Ga1-x AsZn Se1Te1-1A9c l1Br1-1and A l1Ga1-x N.l t i s Obvi Oust h at t h e bi ndi n9en er9i es W i t h P h OnOn i nfl u ences ar el ess t h an t h at W i t h Out P h OnOn i nfl u ences.l t i s ex P ect edt h at e l ectr On L O-P h OnOn i nt er acti On i n P Ol ar mat eri al sscr een sur e l y t h e cOul O mb P Ot enti al be t Ween t h e e-l ectr On and t h e h Ol e sO t h at t h e bi ndi n9en er9i es Oft h e exci t Ons ar e r educed.Nat ur al l y t h e bi ndi n9en er-9i es de P end evi dentl y On t h e cO m P Os i ti On1t hr Ou9ht h e r educed masses Of t h e exci t Ons and t h e exci t On-P h OnOn i nt er acti On.Th e cOntri buti Ons Of t h e exci t On-P h OnOn i nt er ac-ti On t O t h e bi ndi n9en er9i es f Or t h e sa me s y st ems ar ei l l ustr at ed i n Fi9.2.Th e t Ot al cOntri buti On and t h Osef r O m t WO br ach es Of t h e O P ti cal P h OnOn mOdes ar e al lP l Ott ed.S i m i l arl y t O t h e P Ol ar On case t h e t WO-mOdebeh avi Or i s sh O Wn f Or sO me s y st ems<A l1Ga1-x As andA9c l1Br1-x>but On e-mOde beh avi Or f Or Ot h er s<A l1Ga1-x As and Zn Se1Te1-x>213.l t i s al sO f Oundt h at t h e cur ves Of t h e t Ot al e-P cOntri buti Ons t O t h ebi ndi n9en er9i es ar e Obvi Ous l y nOn-l i n ear On t h e cO m-P Os i ti On1f Or e i t h er t h e t WO-mOde Or On e-mOde be-h avi Or s y st ems.Tab.l0P tical P honon ener g ies dielectric const antsband-m asses of electrons and holes of severalbi nar y cr y st als.H ere ener gy is m easured i nm e V and m i n t he electron rest m assH U TO H U LO E O E s m e m hh m l hA l A s844.8850.598.1610.060.15000.760.15010Ga A s833.2936.2510.8913.180.06570.620.07410A l N982.84113.024.688.500.33001.43G a N969.5592.035.359.500.19000.86ZnS e825.6630.495.908.330.17100.600.14510Zn T e821.9525.427.289.860.16000.600.15410A g C l814.8823.023.979.500.30202.09814A gB r811.3517.074.6810.60.21501.25014984第4期Z~AO Guo-un et al.B i ndi n g Ener g i es of W anni er Excit onsi nF i g .l B i ndi n g ener g ies !E B "of t he heav y -hole excit ons w it h !soli d li ne "and w it hout !lon g dashed li ne "i ncl udi n g t he excit on-P honon i nteraction #calcul ated b y E M PA !short dashed li ne "#and w it hout i nvolvi n g UCVV !g ri d li nes "as f unctions of t he co m P os ition 1f Or sever al TMc s y st ems $!a "A l 1Ga l -1As #!b "Zn Se 1Te l -x #!c "A 9c l 1Br l -x #!d "A l 1Ga l -1NF i g .2Tot al contri butions !soli d "of t he excit on-P honon i nteraction and t he contri butions of t wo branches of P honon m odes !dashed and g ri d li nes "se P aratel yt o t he bi ndn g ener g ies of t he excit ons i n several T M C s y ste m s $!a "A l X G a l -X A s #!b "ZnS e X Te l -X #!c "A g C l X B r l -x #!d "A l X G a l -XNF i g .3Contri butions of t he excit on P honon i nteraction t o t he bi ndi n g ener g ies of t he excit ons i n t he li g ht !dashed "and heav y !soli d "hole cases f or !a "A l X G a l -X A s and !b "ZnS e X Te l -X s y ste m sTh e e ff ect Of t h e uni t-ce l l vOl u me vari ati OnU cVV i s al sO cOns i der ed i n Our cal cul ati On .D i ff er -ent f r O m t h e P Ol ar On P r Obl ems 13 9t h e U cVV i s nOt r e-mar kabl e On t h e exci t On bi ndi n 9en er 9y f Or al l t h e cO m P ut ed mat eri al s see Fi 9.1 .l t i s t h e case t h at t h e P Ol ari Zati On Ori ent ati On Of t h e e l ectr Oni c and h Ol e *s ar e O PP Os i t e 9sO t h at t h e t Ot al e ff ect i s al mOst can-ce l l ed .FOr cO m P ari sOn 9We h ave al sO P l Ott ed t h e cur ves Of t h e bi ndi n 9en er 9i es i nc l u di n 9t h e e -P cOntri buti Ons cal cul at ed b y t h e EP MA i n Fi 9.1.On e can see f r O m t h e fi 9ur es t h at t h e di ff er ence Of t h e t WO cur ves Ob-t ai n ed b y EP MA and MREl mOde l s i s Obvi Ous 9i n P arti -.094.光电子·激光2004年第15卷cul ar f Or t h e t WO-mOde beh avi Or T Mc s,such as A l1Ga1-x As,and A9c l1Br1-x s y st ems.l t f Ol l O Ws t h at t h e EP MA i s nOt a9OOd a PP r Oxi mati On i n cOns i deri n9 t h e exci t On-L O P h OnOn i nt er acti On f Or t h e T Mc s even f Or t h e Weaker e-P cOu P l i n9s y st ems I-V cO m P O-n ent s.Th er e f Or e t h e ch ar act eri sti cs Of t WO-mOde O P ti-cal vi br ati On i n T Mc s sh Oul d be t aken i nt O accOunt i n exci t On P Ol ar On P r Obl ems.TO under st and t h e i nfl u ence Of t h e r ati O Of e l ec-tr On-h Ol e masses t O t h e cOntri buti On Of t h e e l ectr On <h Ol e>-P h OnOn i nt er acti On,as exa m P l es,We h ave i l-l ustr at ed t h e exci t On bi ndi n9en er9i es as f uncti Ons Of t h e cO m P Os i ti On1f Or A l1Ga1-x As,and Zn Se1Te1-x s y st ems i n t h e h eav y and l i9ht h Ol e cases,r es P ecti ve-l y.l n t h e cal cul ati On We ch OOse t h e l i9ht-and h eav y-h Ol e masses<i n uni t Of t h e bar e e l ectr On>r es P ecti ve-l y as0.15and0.76f Or t h e bi nar y cO m P Ound A l As,0. 074and0.620f Or GaAs,0.145and0.750f Or Zn Se, 0.154and0.60f Or Zn Te.Th e cO m P ut ed r esul t s ar e sh O Wn i n Fi9.3.l t i s ex P ect ed t h at t h e bi ndi n9en er-9i es Of t h e h eav y-h Ol e exci t Ons ar e ar Ound t WO-ti mes 9r eat er t h an t h at Of t h e l i9ht-h Ol e exci t Ons f Or bOt h t h e t WO s y st ems.Th e L O-P h OnOn cOntri buti Ons t O t h e bi ndi n9en er9i es var y i n t h e r an9e f r O m ar Ound34% Of t h e t Ot al bi ndi n9en er9i es<f Or h eav y-h Ol e A l1Ga1-x As>t O ar Ound46%<f Or l i9ht-h Ol e Zn Se x Te1-1>.l t i s t hus c l ear t h at t h e e-P cOu P l i n9P l a y s an i m P Ort ant r Ol e f Or t h e exci t On bi ndi n9en er9i es i n e i t h er t h e h eav y-h Ol e case Or t h e l i9ht-h Ol e case.References=[1]D W Ta y l Or.O P ti cal P r O P erti es Of m i xed cr y st al s[M].Am-st er da m=NOrt h-HO l l and,1988.35-131.[2]T P Marti n.Ra man scatt eri n9i n m i xed cr y st al s[J].Ph y s.S t<t.SO.<b>,1975,67<1>=137-142.[3]S J Adachi.GaAs,A l As and A l1Ga1-x As=Mat eri al P ar a m-e t er sf Or use i n r esear ch and devi ce a PP l i cati Ons[J].J.A P P l.Ph y s.,1985,58<3>=1-29.[4]K W Ki m,M A S tr Osc i O.El ectr On-O P ti cal-P h OnOn i nt er ac-ti On i n bi nar y/t er nar y h e t er Ostr uct ur es[J].J.A P P l.Ph y s.,1990,68<12>=6289-6292.[5]S G Yu,K W Ki m,L Ber9man,et al.LOn9-Wave l en9t h O P-ti cal P h OnOns i n t er nar y ni tri de-based cr y st al s[J].Ph y s.Rev.,1998,B58<23>=15283-15287.[6]x x Li an9,S L Ban.NOt e t O e l ectr On-P h OnOn i nt er acti On i nt er nar y m i xed cr y st al s[J].J ournal o f Lu m inescence, 2001,94-95=781-785.[7]Z P W an9,x x Li an9.c y c l Otr On r esOnance Of P O l ar Ons i nt er nar y m i xed cr y st al s[J].Eur.Ph y s.J.,2003,B33<3>= 265-271.[8]c A l bri ch,K K Ba i a i.B i ndi n9ener9y Of a MOtt-W anni erexc i t On i n a P O l ari Zabl e medi u m[J].Soli d S t ate Co m-m un.,1977,22<2>=157-160.[9]E Kart h euser.l n=PO l ar On i n l Oni c cr y st al and P O l ar sem i-cOnduct Or s[M].Amst er da m=NOrt h-HO l l and,1972.718-733.[10]R c h en,K K Ba i a i.Eff ect Of exc i t On-O P ti cal P h OnOn i nt er-acti Ons On t h e bi ndi n9ener9i es Of exc i t Ons i n i Oni c G u an-t u m We l l str uct ur es[J].Ph y s.S t at.Sol<b>,1997,l99<2>=417-426.[11]GU O Z i-Zh en9,Ll AN G x i-xi a,BAN S hi-l i an9.T yP e-I ex-c i ti Oni c ch ar act eri sti cs Of t h e GaN/GaA l N W i de9u at u mWe l l[J].J.o f O P t oelect ronics-Laser<光电子-激光>, 2001,l2<12>=1303-1306.<i n c hi nese>[12]H Haken.PO l ar Ons and Exc i t Ons[M].Edi n bur9h=O l i verand BO y d,1963.295.[13]x x Li an9,J S Y i an9.Eff ecti ve P h OnOn a PP r Oxi mati On OfP OO l ar Ons i n t er nar y m i xed cr y st al s[J].Soli d S t ate Co m-m un.,1996,l00<9>=629-634.[14]W vOn der O st en.El ectr Oni c P r O P erti es Of s i l ver h al i des[A].A.Bal der eschi,W.c Za i a,E.TOsatti,M.TOs i.Th eP h y s i cs Of l at ent i ma9e f Or mati On i n s i l ver h al i des[c].S i n9a P Or e=W Orl d S c i enti fi c,1984.1-22.B io g ra P h y=ZHA0G uo-un<1974->,mal e,at P r esent,he i s a dOct Or al candi dat e i n l nner MOn9O l i a Uni ver s i t y,hi s r esear ch i nt er est ed i n t he fi e l d Of cOn-densed matt er P h y s i cs-194-第4期Z~AO Guo-un et al.=B i ndi n g Ener g i es of W anni er Excit onsi n-极性三元混晶中的Wannier激子结合能作者:赵国军, 梁希侠, 班士良作者单位:内蒙古大学物理系,内蒙古,呼和浩特,010021刊名:光电子·激光英文刊名:JOURNAL OF OPTOELECTRONICS·LASER年,卷(期):2004,15(4)被引用次数:5次1.D W Taylor Optical properties of mixed crystals 19882.T P Martin Raman scattering in mixed crystals 1975(01)3.S J Adachi GaAs,AlAs and AlxGa1-xAs:Material parameters for use in research and device applications 1985(03)4.K W Kim;M A Stroscio Electron-optical-phonon interaction in binary/ternary heterostructures 1990(12)5.S G Yu;K W Kim;L Bergman Long-wavelength optical phonons in ternary nitride-based crystals[外文期刊] 1998(23)6.X X Liang;S L Ban Note to electron-phonon interaction in ternary mixed crystals 20017.Z P Wang;X X Liang Cyclotron resonance of polarons in ternary mixed crystals 2003(03)8.C Albrich;K K Bajaj Binding energy of a Mott-Wannier exciton in a polarizable medium 1977(02)9.E Kartheuser查看详情 197210.R Chen;K K Bajaj Effect of exciton-optical phonon interactions on the binding energies of excitons in ionic quantum well structures[外文期刊] 1997(2)11.GUOZi-zheng;LIANG Xi-xia;BAN Shi liang Type-Ⅱ excitionic characteristics of the GaN/GaAlN wide guatum well 200112.HHaken Polarons and Excitons 196313.X X Liang;J S Yiang Effective phonon approximation of poolarons in ternary mixed crystals 1996(09)14.W von der Osten Electronic properties of silver halides 19841.朱俊.班士良.ZHU Jun.BAN Shi-liang GaAs/Al_xGa_(1-x)As对称耦合双量子阱中激子结合能的压力效应[期刊论文]-内蒙古大学学报(自然科学版)2009,40(5)2.郭子政.梁希侠.班士良GaN/GaAlN宽量子阱的二类激子特征[期刊论文]-光电子·激光2002,13(12)3.李春霞Ⅱ~Ⅵ族半导体团簇的第一性原理研究[期刊论文]-科技资讯2007(16)4.张敏.班士良磁场对GaAs/AlxGa1-xAs异质结系统中束缚极化子的影响[期刊论文]-半导体学报2004,25(12)5.张敏电场下应变GaN/Al<,x>Ga<,1-x>N异质结中的杂质态及压力效应[学位论文]20096.戴宪起.黄凤珍.郑冬梅.DAI Xianqi.Huang Fengzhen.Zheng Dongmei Al含量对GaN/Alx Ga1-x N量子点中激子态的影响[期刊论文]-半导体学报2005,26(4)7.王新强.杜国同.殷景志.李明涛.安海岩.杨树人.WANG Xin-qiang.DU Guo-tong.YIN Jing-zhi.LI Ming-tao.ANHai-yan.YANG Shu-ren InAsP/InGaP应变补偿量子阱的研究进展[期刊论文]-光电子·激光2000,11(2)8.朱俊.班士良GaAs/AlxGa1-xAs对称耦合双量子阱中激子结合能的压力效应[会议论文]-20099.戴宪起.黄凤珍.史俊杰.DAI Xian-qi.HUANG Feng-zhen.SHI Jun-jie应变GaN量子点中激子态的研究[期刊论文]-功能材料2006,37(1)10.郑冬梅.戴宪起.ZHENG Dong-mei.DAI Xian-qi III族氮化物量子点中类氢施主杂质位置对束缚激子结合能的影响[期刊论文]-贵州师范大学学报(自然科学版)2007,25(1)1.白旭芳.李志新.张颖.王鸿雁.张兰霞.王晓昱.王冀霞.肖景林声子之间相互作用对量子点中弱耦合激子基态能量的影响[期刊论文]-内蒙古民族大学学报(自然科学版) 2007(1)2.杨洪涛.额尔敦朝鲁.冀文慧极性晶体中极化子效应对界面强耦合激子性质的影响[期刊论文]-发光学报 2007(6)3.杨洪涛.额尔敦朝鲁极性晶体中界面强耦合激子的性质[期刊论文]-河北科技师范学院学报 2007(1)4.李志新.肖景林半导体量子点中弱耦合激子的性质[期刊论文]-发光学报 2006(4)5.李志新.肖景林半导体量子点中强耦合激子的性质[期刊论文]-半导体学报 2006(10)引用本文格式:赵国军.梁希侠.班士良极性三元混晶中的Wannier激子结合能[期刊论文]-光电子·激光 2004(4)。

li2s6和co单原子的结合能

li2s6和co单原子的结合能

Li2S6和Co单原子是两种常见的物质,它们具有不同的化学性质和结构特征。

本文将分别探讨Li2S6和Co单原子的结合能,并比较它们之间的差异和通信。

一、Li2S6的结合能1. Li2S6是硫酸锂的一种衍生物,具有较高的离子导电性和化学稳定性。

2. 根据密度泛函理论(DFT)计算,Li2S6的结合能为XXX eV,这表明它具有较强的化学惯性和稳定性。

3. Li2S6的结合能与其晶体结构、键长和键角密切相关,通过调控这些因素可以改变其结合能的大小。

二、Co单原子的结合能1. Co单原子是一种典型的过渡金属单原子催化剂,具有优异的催化活性和选择性。

2. 实验和理论研究表明,Co单原子的结合能在不同的载体上有所差异,取决于其与载体的相互作用和电子结构。

3. Co单原子的结合能通常与其表面态密度、电荷转移和氧化还原特性密切相关,这些因素对其催化性能起着重要作用。

三、比较和探讨1. Li2S6和Co单原子分别代表了离子晶体化合物和过渡金属催化剂的典型案例,它们在结合能上具有不同的特点和应用前景。

2. 从理论和实验角度分析,Li2S6和Co单原子的结合能受多种因素的影响,包括晶体结构、表面态密度、电子结构等。

3. 进一步研究Li2S6和Co单原子的结合能,可以为材料科学和催化技术提供指导和启示,促进新材料的设计和合成。

Li2S6和Co单原子的结合能是两种不同类型的化合物的重要性质之一,它们在材料科学和催化技术领域具有重要的应用价值和研究意义。

通过深入研究和比较它们的结合能,可以为相关领域的科研工作和产业发展提供有益的启示和支撑。

四、Li2S6和Co单原子的结合能调控与应用1. 结合能调控Li2S6和Co单原子的结合能是其化学性质和应用性能的重要指标,因此对其结合能的调控具有重要意义。

在材料科学和催化技术领域,人们通过多种手段来调控Li2S6和Co单原子的结合能,以实现更广泛的应用。

针对Li2S6,可以通过控制晶体结构、离子交换和表面修饰等方式来调控其结合能。

licl 水 结合能 dft

licl 水 结合能 dft

licl 水结合能 dft(原创版)目录1.引言2.DFT 计算方法简介3.水的结构及性质4.水的结合能5.DFT 计算水的结合能的实例6.结论正文1.引言水分子(H2O)是自然界中最常见的分子之一,由两个氢原子(H)和一个氧原子(O)组成。

水分子的结构和性质对于许多科学领域都具有重要意义,因此研究水分子的结合能对于理解其结构和性质具有重要价值。

在理论计算领域,密度泛函理论(DFT)是一种广泛应用于研究分子结合能的方法。

2.DFT 计算方法简介密度泛函理论(DFT)是一种量子化学计算方法,它通过计算分子的电子密度来描述分子的结构和性质。

DFT 方法可以有效地处理分子中的电子相关性问题,因此被广泛应用于计算分子的结合能、电子亲和势、离解能等物理量。

3.水的结构及性质水分子具有一个角形结构,其中一个氧原子位于分子的中心,两个氢原子分别位于氧原子的两侧。

水分子的结构可以通过一系列的键长、键角和电荷分布等参数来描述。

水分子的物理性质,如结合能、电子亲和势、离解能等,都与其结构密切相关。

4.水的结合能水的结合能是指将两个水分子结合在一起所需要的能量。

在气相中,两个水分子之间的结合能通常称为氢键结合能。

在水溶液中,水分子与其他分子(如离子、分子)之间的结合能称为溶剂化结合能。

研究水的结合能有助于理解水的物理性质和化学反应过程。

5.DFT 计算水的结合能的实例使用 DFT 方法计算水的结合能,首先需要通过量子化学软件(如Gaussian、VASP 等)构建水分子的模型,然后进行计算。

在计算过程中,需要选择适当的交换关联函数(如 B3LYP、BLYP 等)和基组(如 6-31G、6-311G 等)来描述电子密度和电子相关性。

通过比较计算得到的结合能与实验数据,可以评估 DFT 方法在计算水中结合能的准确性和可靠性。

6.结论密度泛函理论(DFT)是一种有效的计算水分子结合能的方法。

硼核结合能大于锂核结合能-定义说明解析

硼核结合能大于锂核结合能-定义说明解析

硼核结合能大于锂核结合能-概述说明以及解释1.引言1.1 概述硼核结合能大于锂核结合能是一个具有广泛研究价值的话题。

随着能源需求的增长和能源安全的日益受到关注,核能作为一种清洁、可持续的能源形式备受关注。

在核能研究领域,核反应的能量释放是一个重要的参数,而核结合能则是影响核反应能量释放的重要因素之一。

本文将从硼核结合能和锂核结合能两个方面入手,对它们进行详细的介绍和分析,并最终得出一个关于它们之间关系的结论。

通过本文的研究,有望为核能领域的相关研究提供新的思路和视角,为未来核能的发展指明方向。

1.2 文章结构本文主要分为三个部分,即引言、正文和结论。

在引言部分,将会对硼核结合能和锂核结合能进行简要介绍,并说明本文的目的和意义。

在正文部分,将分别分析硼核结合能和锂核结合能的特点和计算方法,并进行比较分析。

在结论部分,将对文章进行总结,分析影响因素,并展望未来的研究方向。

整体结构清晰、逻辑性强,有利于读者对本文内容的理解和把握。

1.3 目的目的部分内容应该是对本文的写作目的进行说明。

在这篇文章中,我们的目的是探讨硼核结合能和锂核结合能之间的差异,并通过比较分析来证明硼核结合能大于锂核结合能。

通过对这一问题的深入研究,我们可以更好地理解不同核材料的特性和应用潜力,为核能科学和工程领域的发展提供更多的理论和实践依据。

同时,本文也旨在引起读者对核能相关议题的关注,促进学术交流和合作。

通过本文的研究,我们希望能够为核能领域的进一步研究和发展提供一定的启示和参考价值。

2.正文2.1 硼核结合能硼是一种轻元素,其原子核由5个质子和不同数量的中子组成。

硼的原子核结合能是指在核反应或核衰变中,释放出的能量与其原子核质量差的乘积。

硼核结合能的大小决定了核反应的能量释放程度以及核反应的稳定性。

硼的原子核结合能相对较高,表明硼原子核内部的质子和中子之间的结合力很强。

在核聚变反应中,硼核能够与氢原子核发生聚变反应,释放大量能量。

xps电子结合能对照表

xps电子结合能对照表

1.0Bi6p1 3.9 Pt 5d10.0P 3p 18.0At 6s 24.0Kr 4s 34.0K 3s 44.0Ra 6s 52.0Tm 5s 65.7V 3s1.0Ce4f 4.0 Ir 5d10.0Ti 4s 18.0Ce 5p 24.0Sn 4d 35.0Re 5p3 44.0U 6s 52.3Yb 5s 66.0Ni 3p1.0Co3d 4.0Pm 4f 10.0V 4s 18.0Pr 5p 25.0Th 6p1 35.2Mo 4p 44.4Y 4s 52.6Fe 3p 66.0Pt 5p1 1.0Cr3d 4.5Ag 4d10.0Zr 5s 18.1Hf Ntv Ox 26.0Bi 5d3 35.2W Na2WO445.0Ta 5p1 53.0Sn loss 67.8Ta 5s1.0Fe3d 4.8Dy 5d10.5Bi 6s 18.2 C 2s 26.0He 1s 35.3Y loss 45.1As 2O3 53.4Os 4f5 68.0Ra 5d1.0Ga4p 5.0 B 2p10.7Cd 4d5 18.4Sr 4p 26.0Rn 6s 35.8W O3 45.5As Ntv Ox54.0Os 5p1 68.0Tc 4s1.0Hf5d 5.0 Br 4p11.0Kr 4p 18.7Ga 3d5 26.1Lu 5p 36.0Ce 5s 45.7Ge loss 54.2Se CdSe68.5Br 3d5 1.0In 5p 5.0Ca 3d11.0Rn 6p 18.8Ga 3d 26.8Ta 2O5 36.0Gd 5s 46.0Re 5p1 54.5Se GeSe68.5Br KBr 1.0Na3s 5.0 Er 4f 11.0Sc 4s 18.9Ga 3d3 26.8Zr 4p 36.6Sr 4s 46.3Ga loss 54.9Se 3d5 68.8Cd 4p1.0Os5d 5.0Po 6p11.1Cs 5p3 19.0Eu 5p 27.0Br 4s 36.7V 3p 46.8Re 2O7 54.9Li 1s 69.0Br 3d1.0Pb6p 5.3Se 4p11.6Cd 4d3 19.0Nd 5p 28.2Sc 3p 37.0W 5p3 46.8W 5p1 54.9Li OH 69.5Br 3d3 1.0Sn5p 5.5 Cl 3p12.0Cs 5p 19.0Pb 5d5 28.6In loss 37.5Hf 5p1 47.0Mn 3p 54.9Se 3d 70.0Re loss 1.2Yb4f7 5.8Au 5d12.0Po 6s 19.0Ra 6p 28.8Rb 4s 38.0Pm 5s 47.0Rh 4p 55.2Se GeSe271.0Pt 4f7 1.4Pd4d 6.0Ta 5d12.0Te 5s 19.0Sm 5p 29.0Dy 5p1 38.0Pr 5s 47.9Ru 4p 55.3Li CO3 71.8Mg loss1.4Rh4d 6.0 Y 4d12.0Tl 5d5 19.1Ga Sb fract29.0Er 5p 38.3Sn loss 48.0Dy 5s 55.6Nb 4s 72.6Pt 4f2.0Cd5p 6.2Hg 5d12.6Cs 5p1 19.4Ga AlAs etch29.0Lu 5p 39.0Eu 5s 48.0Rn 5d 55.7Se 3d3 72.7Al 2p3 2.0Mg3s 6.9Eu 4f 13.0Tl 5d 19.5N 2s 29.1Ge 3d5 39.0Nd 5s 48.0Sb loss 56.8Au 5p3 72.9Al 2p2.0Mo4d 7.0 O 2p13.2Rb 4p 19.7Ga P fract 29.2 F 2s 39.0Tc 4p 48.5 I 4d 56.8Lu 5s 73.1Tl 5p3 2.0Nb4d 7.0Sm 4f 13.2Rb 4p 19.7Ga As fract29.4Ge 3d 39.5Tm 5p 49.5Ho 5s 57.4Er 5s 73.2Al 2p1 2.0Nd4f 7.0Sn 5s14.0Ne 2p 20.0U 6p 29.5Ho 5p1 40.0At 5d 49.5Mg CO3 58.0Ag 4p 73.8Al N2.0Ni 3d 7.0Xe 5p14.0Sc 3d 20.2Zn loss 29.7Ge 3d3 40.0Ba 5s 49.6Mg(OH)258.0Fr 5d 74.0Au 5p1 2.0Pr 4f 7.1Lu4f714.2Hf 4f7 20.5Gd 5p 30.2Ge Se 40.0In loss 49.6Mg 2p3 58.0Hg 5p3 74.2Cr 3s2.0Sb5p 7.1Tb 4f 15.0Fr 6p 20.7Ga 2O3 30.3Na 2p 40.0Tb 5s 49.7Mg O 58.1W loss 74.3Al 2O3 2.0Sc4p 7.7Gd 4f 15.0H 1s 21.0Pb 5d3 30.9Nb 4p 40.1Te 4d 49.8Mg 2p 58.2Ti 3s 74.3Al2O3-nH2O 2.0Tc4d 7.8Dy 4f 15.0Hf 4f 21.6Ta 4f7 30.9Pb loss 40.2Re 4f7 49.9Mg 2p1 58.3Te loss 74.4Pt 4f5 2.0Ti 3d 8.0 At 6p15.0Rb 4p1 21.8Tb 5p 31.0Hf 5p3 41.0Ne 2s 50.0Mg CO3 58.6Ag 4p 74.4Al (OH)3 2.0V 3d 8.0 S 3p15.0Tl 5d3 22.0Dy 5p3 31.0Po 5d 41.0Sm 5s 50.0Sr loss 58.9Y loss 74.9Cu 3p2.0Yb 4f 8.3Ho 4f 15.7Cl 3s 22.0Pm 5p 31.3W 4f7 41.2Re 4f 50.3Zr 4s 59.0Co 3p 74.9Se loss 2.0Zr 4d 8.3Lu 5d15.9Hf 4f5 22.3Ar 3s 31.5Ge Se2 41.4Re Ntv Ox 50.4Mg NtvOx159.2As loss 75.0Cs 4d5 2.5Yb4f58.4Lu2O315.9 I 5s 22.7Ta 4f 31.7Sb 4d 41.5As 3d5 50.7Os 4f7 60.8Ir 4f7 75.1Pt O2-nH2O 2.6Te5p 8.5Tm4f716.0K 3p 23.0Cs 5s 32.1Ga loss 41.8As 3d 50.7Pd 4p 61.0Mg loss 75.1W 5s2.8Cu3d 8.6Lu4f516.0P 3s 23.1O 2s 32.3W 4f 42.0As S 50.7Sc 3s 62.0Ir 4f 75.5Al Ntv Ox 2.8Mn3d 8.9 Ar 3p16.0S 3s 23.3Ho 5p3 32.4Ti 3p 42.0Th 6s 50.9Mg reoxid62.0Ir O2 76.0Cs 4d2.8Re5d 9.0 F 2p16.9In 4d 23.3Y 4p 32.6Ta 5p3 42.1Ca 3s 51.0Ir 5p3 62.0Ir 5p1 77.8Ni loss 2.8Si 3p 9.0Ru 4d17.0La 5p 23.4Ta S2 33.0La 5s 42.1Cr 3p 51.0Mg NtvOx262.0Mo 4s 78.3In 4p2.8W 5d 9.0Sb 5s17.0Th 6p3 23.5Ca 3p 33.2Ge O2 42.2As 3d3 51.4Os 4f 62.0Xe 4d 79.0Cs 4d33.0Ge4p 9.0 Si 3s17.0Xe 5s 23.5Yb 5p 33.4Lu 5p 42.7Re 4f5 51.5Pt 5p3 62.3Hf 5s 80.0Ru 4s3.0 I 5p 9.1As 4p17.1Hf O2 23.8Bi 5d 33.5W 4f5 42.7Ta loss 51.5Mg reoxid62.7Ir Ntv Ox80.7Rh 4s3.0Pb6s 9.7Zn 3d17.7Pb 5d 24.0Ta 4f5 33.8Ge Ntv Ox43.0As 2S3 51.7Re loss 63.3Na 2s 81.0Hg 5p1 3.2Bi6p310.0Ba 5p17.9Ga InAs (ar)24.0Bi 5d5 34.0Fr 6s 44.0Os 5p3 51.9Mg NtvOx363.8Ir 4f5 81.8Re 5s82.0Br loss101.8Si Almand.119.4Ga loss 137.8Pb 2O3 158.9Y 2(CO3)3 181.0Ge 3s 204.1Nb NbO 235.3Mg Auger 82.0Mn 3s 101.9Hg 4f 119.4Tl CO3 137.8Se Auger159.2Bi Ntv Ox 181.1Zr 3d3 205.0Nb 3d3 237.0Pm 4p3 82.7Pb 5p3 102.0Pt 5s 120.0Hg 5s 138.3Pb 4f 159.6Ho 4d5 181.2Br 3p3 205.1S loss 237.6Ta 4d3 84.0Au 4f7 102.0Si 3N4 120.0Tl 4f 138.5Ge loss 160.0Bi 5s 182.0Br 3p 205.8Lu 4d3 237.9Rb 3p3 84.0Ba 4d3 102.6Si O 121.0Pm 4d 138.8Pb Ntv Ox161.2S PbS 182.0Fr 5p1 206.1Nb NbO2238.0Cs 4s84.7Ba 4d 102.9Zn loss 121.1 I 4p 139.0Pb CO3161.3Ho 2O3 182.1Yb 4d5 207.0Ce 4p3 238.0Rn 4f85.0Au 4f 103.0Ga 3p 122.0Ge 3p3 139.0Xe 4p 161.5S CuS, TaS2182.4Zr O2 207.0Xe 4s 238.9Mo loss85.0Th 5d5 103.0Ga 3p3 122.1Tl 4f5 139.5Zn 3s 161.7Se 3p3 182.8Er Auger 207.3P loss 241.8Ar 2p386.0Ba 4d5 103.0Pt loss 122.4Cu 3s 140.0Fr 5p3 161.9S HgS 183.7Si loss 207.4Nb Nb2O5242.0Ar 2p86.9 Kr 3d5 103.0Si O2 122.4In 4s 140.3Gd 4d5 162.2S MoS2 184.0Po 4f 207.4Nb Ntv Ox243.1W 4d587.2Kr 3d 103.0U 5d3 127.0Rn 5p3 140.7As 3p3 162.3Bi 4f5 184.9Yb 2O3 208.0Kr 3p3 243.9Ar 2p187.7Au 4f5 103.5Si O2-nH2O128.2Eu 4d5 141.2Gd2O3 162.4S Na2S2O3185.3S loss 210.0At 4f 245.0Nd 4p188.0 Al loss 103.7Al loss 128.3Tl loss 141.7Pb 4f5 162.6S FeS2 185.5 I 4s 210.8Hf 4d5 248.0Ba 4s 88.1Au2O3103.9Hg 4f5 128.6P InP etch142.0As 3p 163.9S 2p3 187.8Br 3p1 210.9Dy Auger248.0Rb 3p1 88.2Kr 3d3 104.0La 4d 129.0Ge 3p1 145.9Tb 4d5 164.0Rn 5p1 187.9 B CrB 213.0 B loss 249.6S loss 88.2Pd 4s 104.0Po 5p3 129.0P InP etch146.0Sr loss 164.0S 2p 188.0 B 1s 213.0La 4p1 250.0Sm 4p388.3Zn 3p 106.3Pb 5p1 129.0Sm 4d 147.0As 3p1 164.0Sr loss 188.0B MoB, LaB6214.0Rn 5s 253.0Mo loss89.0Os 5s 107.0Ga 3p1 129.3P GaP etch148.0At 5p1 165.1S 2p1 188.1 B WB 217.5Cl loss 253.0Tc 3d89.1Mg 2s 108.0Au 5s 130.0Be loss 148.0Pb 5s 166.6S Na2SO3 188.2 B Ni3B 218.0Pr 4p3 253.0Tc 3d590.6Sn 4p 109.7Rb 3d5 130.0Ho Auger 148.5Tb F3 167.3Er 4d5 188.9 B Ntv Ox 220.5Se Auger254.0Ra 5s91.0Fe 3s 109.7Rb OAc 130.1P 2p3 148.8Al loss 167.3Se 3p1 189.0P 2s 221.3Hf 4d3 255.0Br 3s92.8 Bi 5p3 109.9Cd 4s 130.6P 2p 149.8Pb loss 167.6Si loss 189.2Tm Auger 223.0Ce 4p1 255.0Eu 4p393.0Th 5d3 110.0Ce 4d 131.4P 2p1 149.9P loss 168.5Er 2O3 190.8 B N 225.7As 3s 255.0Pm 4p194.0 U 5d5 110.0Rb 3d 132.0Po 5p1 149.9Tb 3O7 168.5S Na2SO4 190.9Yb 4d3 226.1Ta 4d5 255.1Se Auger94.6 Tl 5p1 110.5Ni 3s 132.7Ga loss 150.5Si 2s 168.5S Na2S2O3194.0 B 2O3 228.0Mo 3d5 255.6W 4d395.2 Ir 5s 110.6Mg loss 133.4Al loss 152.0Zn loss 168.6P loss 195.0At 5s 228.0Nd 4p3 257.0Tc 3d396.0Br loss111.2Rb 3d3 133.6Si loss 152.3Dy 4d5 168.8Y loss 195.0U 5p3 229.0S 2s 260.0Re 4d597.0Ag 4s 111.8Be 1s 133.7Sr 3d5 152.9Sb 4s 169.1Te 4s 196.0Lu 4d5 229.4Mo O2 (?)260.0U 5p198.7Er Auger112.6Te 4p 133.7Sr CO3 153.0Ra 5p3 169.3Er 4d3 196.1Zr loss 229.5Mo 3d 261.0As Auger99.8 Si 2p3 113.6Be O 134.0Sr 3d 155.8Y 3d5 173.0Ba 4p 197.0La 4p3 229.7Mo S2 261.5Tb Auger 99.8Mg loss 114.7Be Ntv Ox 134.9Sm 2O3 156.1Dy 2O3 173.3Ga loss 197.5Ge Auger 229.9Se 3s 264.3Rb loss 99.9Hg 4f7 115.0At 5p3 135.5Sr 3d3 156.6Y 2O3 175.4Tm 4d 198.4Se Auger 230.0As Auger267.5S loss 100.1Si 2p 115.0Pr 4d 135.6Eu 2O3 157.0Bi 4f7 175.9Tb loss 198.7Cl 2p 231.1Mo 3d3 267.7W loss 100.2Si O 115.5Se Auger 136.8Pb O2 157.0Bi 4f 176.3Tm 2O3 198.9Cl 2p3 232.6Mo Ntv Ox268.0Fr 4f 100.4Si 2p1 116.2Si loss 136.8Rb loss 157.0Bi loss 177.0Po 5s 198.9Cl MCl 232.9Tb Auger268.4Sr 3p3 100.4Si C 117.7Tl 4f7 136.9Pb 4f7 157.0Y 3d 177.0Th 5p3 199.8Cl C-Cl 233.0Kr 3p1 270.0Cl 2s 100.6Sb 4p 117.9Al 2s 137.0Tl 5s 157.9Y 3d3 178.7Se Auger 200.0Ra 5p1 233.1Mo O3 271.3Gd 4p3 100.7Hg O 118.0Nd 4d 137.1Sn 4s 158.5Cs 4p3 178.7Zr 3d5 200.5Cl 2p1 234.0Fr 5s 273.5Re 4d3 100.9Co 3s 118.2Bi 5p1 137.5Pb O 158.8Bi 2O3 179.9Zr 3d 201.4Nb 3d 234.0Pr 4p1 274.5Er Auger 100.9Hg S 118.2Tl 2O3 137.6Pb 3O4 158.9Ga 3s 180.9Cs 4p1 202.3Nb 3d5 234.0Th 5p1 275.0La 4s278.7Sr 3p1 301.6Mg Auger340.3Pd 3d3 382.0U 4f 412.7Lu 4p1 460.2Gd Auger515.0Eu Auger 560.0Pd 3p1 279.0Os 4d5 305.0Pr 4s 341.4Ge Auger 384.9Tl 4d5 420.4Ta loss 462.5Ta 4p1 515.6V 2p 560.9Ti 2s 280.1Ru 3d5 305.5K loss 342.0Th 4f5 386.0Tm 4p1 421.6Mo loss 463.1In loss515.9V 2O3 562.8Ta 4s 281.0Ru Ntv Ox 307.2Rh 3d5 343.0Ho 4p1 388.0U 4f5 423.3W 4p3 464.0Bi 4d3 517.1V 2O5 565.0Na Auger 281.1Ru O2 308.5Rh Ntv Ox343.0Zr 3p1 388.3Se Auger 424.5N loss 466.1Ru 3p3 517.3V O2 567.0Rn 4d3 282.2Ru 3d 308.9Rh 2O3 346.5Pd loss 389.8K loss 425.0As Auger 466.8Nb 3s 518.5Re 4p1 568.1Cu Auger 282.6 C VC 308.9Sr loss 346.6Ca 2p 390.3Yb 4p1 425.0Tc 3p3 468.0As Auger519.0As Auger 570.9Ga Auger 282.9 C NbC 309.4Rh 3d 347.1Ca O 391.7Ga Auger 425.5Pb loss 468.5Tm 4s 519.6Pt 4p3 572.5Te CdTe 283.0 C TaC 310.4Ge Auger347.2Mg Auger 391.7Mg Auger 429.6Zr 3s 471.0Os 4p3 519.7V 2p1 572.9Te 3d5 283.0Sm 4p1 311.0Tb 4p1 347.8Ca UHV Ox393.8Mo 3p3 433.0Ge Auger 471.5Zn Auger521.3Rh 3p1 573.0Zn Auger 284.0Tb Auger 311.1Y 3p1 349.0Sm 4s 393.8Y 3s 434.3Pb 4d3 473.0Po 4d5 524.0Na Auger 573.6Ag 3p3 284.2Ru 3d3 311.9Ir 4d3 353.0Au 4d3 395.6Tb 4s 436.0Ho 4s 474.0Se Auger524.8Ge Auger 574.1Cr B 284.5 C HOPG 311.9Rh 3d3 357.2Sr 3s 397.0N CrN 437.3Hf 4p1 474.7In loss528.2Sb 3d5 574.3Cr 2p3 284.5Se Auger 312.5Mg Auger357.9Ge Auger 397.1N AlN 437.8Ca 2s 480.8Yb 4s 529.4O Ag2O, NiO575.0Cr 2p 285.0 C 1s 313.0 C loss 357.9Mg Auger 397.3N TiN 440.0Bi 4d5 484.9Sn 3d5 529.6Sb 2O3 575.5Cr Ntv Ox 285.4 C C-OR 314.5Pt 4d5 358.3Hg 4d5 397.6N Si3N4 443.6Ge Auger 486.3Sn O 529.8O MgO 575.6Cr 2O3 286.0Cl loss 315.1Se Auger358.6Se Auger 398.4N 1s 443.8In 3d5 486.4Ga Auger530.5O NaOH 576.5Te O2 286.0Tb 4p3 315.2Ho 4p3 359.0As Auger 398.4N BN 444.3In 2O3 487.3Sn O2 531.1O Al2O3 576.6Cr Ntv Ox 287.0 C C-Cl 319.5Ar 2s 359.2Lu 4p3 398.4Sc 2p3 444.4In Ntv Ox488.4Ru 3p1 531.1Sb 2O5 577.0Fr 4d5 287.8 C C=O, C-F 320.0Nd 4s 359.3Zr loss 399.8Se Auger 444.8In P fract488.8Ho Auger531.8O 1s LiOH 577.0Te 3d 288.9 C COOR 320.8Er 4p3 360.8Nb 3p3 399.9Tm Auger 444.9In GaAs 490.5W 4p1 532.3Pd 3p3 577.2Hg 4p3 289.0Eu 4p1 321.2K loss 363.0Eu 4s 400.6Ta 4p3 445.0Tc 3p1 493.3Sn 3d3 532.5Ga Auger 577.7Cr Ntv Ox 289.0Kr 3s 321.8Rb 3s 363.6Ga Auger 401.0Sc 2p 445.2In Ntv OH494.6Zn Auger532.5O B2O3, SiO2578.2Ir 4p1 289.4 C MCO3 322.0U 5s 363.7Dy Auger 401.9Sc 2O3 445.9In Ntv CO3494.8Ir 4p3 532.6Sb 3d 579.5Cr O3 290.0Ce 4s 323.6Mg Auger366.0Er 4p1 402.2N H4 446.4Re 4p3 496.3Rh 3p3 532.9O HgO 579.8Ge Auger 290.6Gd 4p1 326.8Ge Auger366.8Ag 2S 403.2Sc 2p1 446.9Pb loss 497.1Se Auger533.0At 4d3 580.0Cr KCrO4 290.8C C-CO3, CF2329.4Zr 3p3 367.7Ag O 404.1Cd O 447.3Ga Auger 497.2Sn 3d 533.8Hf 4s 581.8Zn Auger 291.7 C pi->pi* 331.0Pm 4s 368.2Ag Ag, Ag2O405.0Cd 3d5 448.0In 3d 497.4Na Auger536.4Na Auger 583.3Te 3d3 292.7 C CF3 331.2Pt 4d3 368.5Mg Auger 405.1Cd Te 450.3Er 4s 498.0Sc 2s 537.6Sb 3d3 583.5Cr 2p1 292.9K 2p3 KX 332.0Dy 4p1 370.0Eu Auger 405.4Cd Se, CO3451.4In 3d3 499.0Sn loss 541.0Rn 4d5 586.2Er Auger 293.0Os 4d3 332.3Tm 4p3 371.0Ag 3d 405.5Tl 4d3 453.0Se Auger 500.0Po 4d3 544.0Tc 3s 586.9Tm Auger 294.0Th 5s 333.0Th 4f7 371.0As Auger 406.7Cd (OH)2 453.9Ti 2p3 503.8Ga Auger544.2Sb loss 588.9Ga Auger 295.0K 2p 333.1Mg Auger374.2Ag 3d3 407.2N O3 454.3Na Auger 505.0Mo 3s 546.3Au 4p3 591.0Ru 3s 295.6Dy 4p3 334.0Au 4d5 376.0Gd 4s 408.0Cd 3d 455.1Ti O 507.0At 4d5 548.0Os 4p1 593.6W 4s 295.7K 2p1 335.0Pd 3d5 376.2Nb 3p1 411.0Tb Auger 456.0Ti 2p 507.5Sn loss548.1Cu Auger 600.0Gd Auger 296.2Ir 4d5 335.4Pd Ntv Ox377.2K 2s 411.3Mo 3p1 457.4Ti 2O3 507.9Lu 4s 552.4Na Auger 600.7Te loss 296.2Se Auger 337.0Pd O 377.3U 4f7 411.7Cd 3d3 458.0As Auger 512.1V 2p3 553.2O loss 603.0Fr 4d3 299.0Ra 4f 337.5Pd 3d 377.8Hg 4d3 412.0Pb 4d5 458.2Ti CaTiO3513.2Na Auger553.3Sb loss 603.0Ra 4d5 299.2Y 3p3 339.0As Auger379.5Hf 4p3 412.3Ge Auger 458.7Ti O2 513.5Ga Auger557.1Tb Auger 604.0Ag 3p1 300.6Sr loss 339.8Yb 4p3 381.0Mg Auger 412.6Dy 4s 460.0Ti 2p1 513.9Dy Auger558.5Zn Auger 609.1Pt 4p1609.6Tl 4p3 675.0Xe 3d 724.0Pt 4s 819.7Te 3p3 915.9Cr Auger999.0 O Auger 1107.0N Auger1243.8Pd Auger 617.0Cd 3p3 676.0Th 4d5 724.8Cs 3d5 826.0In 3s 918.6Cs Auger1003.0Nd 3d3 1108.0Sm 3d3 1245.9Tl Auger 619.0 I 3d 676.7In loss 724.8Cs Cl 830.5Co Auger925.3Co 2s 1003.6Cr Auger 1109.8Cd Auger1249.0Ge 2p1 619.2 I 3d5 677.9Tm Auger724.9Cs2O:SiO2833.0Ce Auger929.0Rn 4p1 1004.8Te 3s 1112.9Sb Auger1250.8Pt Auger 619.2 I KI 679.0Bi 4p3 736.0U 4d5 833.0F Auger930.9 I 3p1 1008.7Ni 2s 1116.6Ga 2p3 1259.8Ru a 623.2Ni Auger680.2Hg 4p1 740.0At 4p3 835.2La 2O3 931.7Cu Cl 1013.0O Auger 1117.7Sc Auger1264.2Mo Auger 625.2Re 4s 682.0Sm Auger740.0Cs 3d3 836.0La 3d5 931.8Pr 3d5 1014.7V Auger 1126.0Eu 3d5 1265.0Rh Auger 626.1Ho Auger682.4Xe 3d3 748.0Ho Auger 836.5Te loss 932.0Cs Auger1020.3Te Auger 1128.0La 3p3 1265.8Ge loss 626.4V 2s 685.1 F CaF2749.0Cs loss 837.2La B6 932.3Cu S 1021.7Zn O 1128.9Ag Auger1272.0Ce 3p1 627.8Rh 3s 685.7 F 1s 756.2Sn 3p1 837.9Co Auger932.4Cu 2O 1021.8Zn 2p3 1129.0Sn Auger1272.0U 4p1 628.2Cu Auger685.7 F LiF 758.0Nd Auger 841.1Gd Auger932.6Cu 2p3 1022.3Zn S 1131.8Te Auger1275.7Tb 3d3 629.4Ga Auger688.9 F CF2 761.1Pb 4p1 844.2Cs Auger932.9Cu 2O 1022.5Sb Auger 1135.0Ag Auger1296.2Dy 3d5 630.6 I 3d3 690.9Ir 4s 761.2Au 4s 846.0Fe Auger933.9Cu O 1027.0Pm 3d5 1137.0Ba 3p1 1298.6Mo Auger 634.5Er Auger695.7Cr 2s 761.8Cs loss 846.7Tl 4s 934.0Xe 3p3 1027.2Cr Auger 1141.0Xe 3s 1303.3Mg 1s 635.0Cu Auger697.4Co Auger763.4Gd Auger 851.0Po 4p1 934.6Cu(OH)21031.0Zn loss 1143.4Ga 2p1 1304.0Cl Auger 636.0Ra 4d3 700.3Tb Auger766.4Sb 3p3 851.6Mn Auger936.6Bi 4s 1031.9Sb Auger 1148.9Sc Auger1307.0Hf Auger 638.7Mn 2p3 702.0Ne Auger768.0Rn 4p3 852.6Ni 2p3 940.7Cu CT 1034.9Ti Auger 1151.0In Auger1315.3Mg loss 640.4Ni Auger703.1In 3p1 768.6Mn 2s 852.9Ni B 942.2Cu CT 1042.0At 4s 1153.0Fr 4s 1316.1Pt Auger 640.5Ga Auger703.5 F loss 770.2Sn loss 853.0La 3d3 943.8Cu CT 1043.0U 4p3 1155.0Eu 3d3 1318.0Ta Auger 640.9Mn Mn3O4705.0Po 4p3 772.8Cd 3s 853.8Ni O 944.0Sb 3s 1044.8Zn 2p1 1159.4Pd Auger1319.0Nb Auger 641.0Mn MnO 705.2Ni Auger777.7Ni Auger 854.3Ni Ntv Ox944.1Mn Auger1049.6Sn Auger 1170.0Th 4p1 1321.6Lu Auger 641.0Mn Mn2O3706.7Fe 2p3 778.3Co 2p3 855.4Ni(OH)2945.5Sb Auger1052.0Pm 3d3 1184.0Ce 3p3 1322.3Re Auger 641.6Mn MnO2707.2Fe S2 779.0U 4d3 859.0F Auger952.2Cu 2p1 1055.3V Auger 1185.5Rh Auger1323.9As 2p3 642.4Au 4p1 707.5Ga Auger779.2Co O 863.0Ne 1s 952.2Pr 3d3 1055.5Zn loss 1186.8Gd 2O31324.5Mo Auger 643.5 I loss 709.8Fe O 779.5Co 3O4 869.9Ni 2p1 952.5Cs Auger1058.0Ra 4p1 1186.9Gd 3d5 1326.3Mg loss 643.6Pb 4p3 710.4Fe2O3-g780.0Ba 3d5 870.5Cs Auger959.5Cr Auger1058.0Sn Auger 1190.0Ag Auger1334.0Pt Auger 645.0Mn 2p 710.5Fe 3O4780.0Ba CO3, OAc870.7Te 3p1 959.9Te Auger1063.0Ba 3p3 1194.0Ca Auger1335.1Dy 3d3 647.5Cu Auger710.8Fe2O3-a780.6Co (OH)2 875.0 I 3p3 965.0Th 4p3 1067.7Ti Auger 1196.4Zn 2s 1337.7Zr Auger 649.7Mn 2p1 711.5Fe OOH780.9Co Ntv Ox 878.1F Auger969.3Te Auger1071.8Na2O-SiO21208.0Ra 4s 1352.9Ho 3d5 651.0Cd 3p1 711.6 F loss 782.2Sb loss 879.0Ra 4p3 970.4 I Auger1071.9Na OH 1213.0Pd Auger1358.7Er 3d5 652.2Zn Auger712.2Ni Auger784.0Fe Auger 882.0Ce O2 976.8V Auger1072.0 I 3s 1217.0Cs 3s 1359.5As 2p1 655.0Eu Auger713.0Co Auger793.7Co 2p1 884.0Ce 3d5 979.7O Auger1072.0Na 1s 1217.0Ge 2p3 1363.6Yb Auger 655.7Ga Auger713.0Th 4d3 795.2Ba 3d3 885.2Sn 3s 980.0Fr 4p1 1072.0Na Cl 1217.0Ru Auger1365.5Mo Auger 657.2 I loss 714.1In loss 797.0Pr Auger 886.0At 4p1 981.0Nd 3d5 1076.4In Auger 1219.6Gd 3d3 1367.1Tm Auger 658.0Os 4s 714.6Sn 3p3 802.0Ba loss 886.5Ba Auger981.8 I Auger1081.0Sm 3d5 1221.4C Auger1368.2Zr Auger 659.4Zn Auger715.1Er Auger803.6Hg 4s 888.0Fe Auger994.6Te Auger1084.0In Auger 1225.0Ag Auger1373.3Tb 3p3 665.2In 3p3 719.5Cu Auger805.0Bi 4p1 888.4Te loss 995.0Po 4s 1092.5Te Auger 1234.7Rh Auger1378.9Gd 3p3 665.3Ho Auger719.6Ag 3s 808.9Tb Auger 891.7Pb 4s 995.0Sb Auger1097.0Rn 4s 1234.8Ge loss1390.9Pb Auger 669.7Xe 3d5 719.9Fe 2p1 810.0Fr 4p3 898.0Ba Auger996.0Xe 3p1 1097.2Cu 2s 1235.0K Auger1392.6Zr Auger 671.5Pd 3s 721.5Tl 4p1 812.6Sb 3p1 900.3Mn Auger997.3Cr Auger1102.8Ti Auger 1242.0Pr 3p3 1393.3Ho 3d3817.0Ba loss 902.0Ce 3d3 998.0Cs 3p3 1103.1Cd Auger 1242.1Tb 3d5 1395.0Si Auger。

内层电子的结合能增加

内层电子的结合能增加

3.2.1、原子势能模型(Atom Potential Model) — 化学 位移的定性图象


内层电子一方面受到原子核强烈的库仑作用而具有一定的 结合能,另一方面又受到外层电子的屏蔽作用。 原子势能模型: EB = Vn + Vv 当外层电子密度减少时,屏蔽作用将减弱,内层电子的结 合能增加;反之则结合能将减少。
ad KT EB EB Erelax Erelat Ecorr

这样就和实验测的值符合一致了
弛豫能计算值
原子 He Li Be B C 1s 1.5 3.8 7.0 10.6 13.7 0.0 0.7 1.6 2.4 0.7 1.6 2s 2p 3s 3p 3d 4s
N
结合能的确定

光电子的结合能建立在元素终态构型基础上。
Initial State
Conduction Band Free Electon Level Fermi Level
Final State
Conduction Band
Valence Band 2p 2s 1s
Valence Band
3.1.2、结合能的理论计算
电荷势模型
I为A原子成键的部分离子特征。Pauling建议
XA XB I {1 exp[ 0.25( X A X B ) 2 ]} | XA X B|
XA和XB是A, B原子的电负性。

结果表明,DEB与q之间有较好的线性关系,理论与实验 之间相当一致。
电荷势模型
含碳化合物C1s电子结合能位移同原子电荷q的关系
453.8
458.5
〖例〗三氟醋酸乙酯中C1s轨道电子结合能位移.
聚合物中碳C 1s轨道电子结合能大小顺序:

结构化学基础第五版周公度答案

结构化学基础第五版周公度答案

结构化学基础第五版周公度答案目录01.量子力学基础知识 ...................................................................................................................... 1 02 原子的结构和性质 ................................................................................................................. 13 04分子的对称性 ............................................................................................................................ 48 05 多原子分子中的化学键 ........................................................................................................... 61 06配位化合物的结构和性质 ........................................................................................................ 91 07晶体的点阵结构和晶体的性质 .............................................................................................. 103 08金属的结构和性质 .................................................................................................................. 119 09离子化合物的结构化学 .......................................................................................................... 135 10次级键及超分子结构化学 (153)01.量子力学基础知识【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原子由电子组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J ·mol -1为单位的能量。

原子物理学杨福家第四版课后答案

原子物理学杨福家第四版课后答案

目 录第一章 原子的位形 ............................................................................. - 1 - 第二章 原子的量子态:波尔模型 ..................................................... - 7 - 第三章 量子力学导论 ....................................................................... - 12 - 第四章 原子的精细结构:电子的自旋 ........................................... - 16 - 第五章 多电子原子 ......................................................................... - 23 - 第六章 X 射线 ................................................................................... - 28 -第一章 原子的位形 1-1)解:α粒子与电子碰撞,能量守恒,动量守恒,故有:⎪⎩⎪⎨⎧+'='+=e e v m v M v M v M mv Mv 222212121 ⎪⎪⎩⎪⎪⎨⎧='-='-⇒222e e v M m v v v Mm v ve v m p=∆e p=mv p=mv ∴∆∆,其大小: (1) 222(')(')(')e m v v v v v v v M-≈+-=近似认为:(');'p M v v v v ∆≈-≈22e m v v v M∴⋅∆=有 212e p p Mmv ⋅∆=亦即: (2)(1)2/(2)得22422210e e m v m p Mmv M -∆===p 亦即:()ptg rad pθθ∆≈=-4~101-2) 解:① 22a b ctg Eθπε=228e ;库仑散射因子:a=4)2)(4(420202EZ e E Ze a πεπε==22279()() 1.44()45.545eZ a fmMev fm E Mev πε⨯=== 当901θθ=︒=时,ctg2122.752b a fm ∴== 亦即:1522.7510b m -=⨯② 解:金的原子量为197A =;密度:731.8910/g m ρ=⨯ 依公式,λ射α粒子被散射到θ方向,d Ω立体角的内的几率: nt d a dP 2sin16)(42θθΩ=(1)式中,n 为原子核数密度,()AA m n n N ρ∴=⋅= 即:A V n Aρ=(2)由(1)式得:在90º→180 º范围内找到α粒子得几率为:(θP 18022490a nt 2sin ()164sin 2d a nt πθθπρθθ︒︒=⋅=⎰将所有数据代入得)(θP 5()9.410ρθ-=⨯这就是α粒子被散射到大于90º范围的粒子数占全部粒子数得百分比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档