大数据汇报ppt 内部精华版
合集下载
大数据分析PPT(共 73张)

' LOGO '
COMPANY LOGOTYPE INSERT
Value 价值
• 挖掘大数据的价值类似沙里淘金,从海量数据中挖掘稀疏但珍贵的信息. • 价值密度低,是大数据的一个典型特征.
' LOGO '
COMPANY LOGOTYPE INSERT
• 2010年海地地震,海地人散落在全国各地,援助人员为 弄清该去哪里援助手忙脚乱。传统上,他们只能通过飞往 灾区上空来查找需要援助的人群。
数据量增加
数据结构日趋复杂
大量新数据源的出现则导致了非结构化、 半结构化数据爆发式的增长
根据IDC 监测,人类产生的数据量正在呈指数级 增长,大约每两年翻一番,这个速度在2020 年之 前会继续保持下去。这意味着人类在最近两年产生 的数据量相当于之前产生的全部数据量。
TB
PB
EB
ZB
' LOGO '
• 一些研究人员采取了一种不同的做法:他们开始跟踪
海地人所持手机内部的SIM卡,由此判断出手机持有人所
处的位置和行动方向。正如一份联合国(UN)报告所述,此
举帮助他们“准确地分析出了逾60万名海地人逃离太子港
之后的目的地。”后来,当海地爆发霍乱疫情时,同一批
研究人员再次通过追踪SIM卡把药品投放到正确的地点,
这些消息足够一个人昼夜不息的浏览16 年…
每天亚马逊上将产生 6.3 百万笔订单…
每个月网民在Facebook 上要花费7 千亿分钟,被移动互联
网使用者发送和接收的数据高达1.3EB…
Google 上每天需要处理24PB 的数据…
' LOGO '
COMPANY LOGOTYPE INSERT
2024大数据ppt课件完整版

2024大数据ppt课件完整版
目录 CONTENTS
• 大数据概述与发展趋势 • 数据采集与预处理技术 • 数据存储与管理技术 • 数据分析与挖掘算法 • 数据可视化与报表呈现技巧 • 大数据安全与隐私保护策略
01
大数据概述与发展趋势
大数据定义及特点
01
数据量在TB、 PB甚至EB级别以上的数据。
,降低医疗成本。
金融科技
利用大数据技术进行风 险控制和客户管理,提 高金融业务的智能化水
平。
智能制造
通过大数据分析优化生 产流程,提高生产效率
和产品质量。
02
数据采集与预处理技术
数据来源及采集方法
互联网数据
社交媒体、新闻网站、论坛等。
企业内部数据
CRM、ERP、SCM等系统数据。
数据来源及采集方法
动态交互式报表设计思路
实时更新
通过数据接口实现报表数据的实时更 新,反映最新业务情况。
交互操作
提供筛选、排序、分组等交互功能, 方便用户按需查看和分析数据。
图表联动
实现不同图表之间的联动,当用户在 一个图表上操作时,其他相关图表也 能相应变化。
个性化定制
提供报表样式、布局等个性化定制功 能,满足不同用户的需求。
基于文本的特征提取
对文本数据进行分词、词频统计等操 作。
特征提取和降维技术
• 基于图像的特征提取:提取图像的形状、纹理等 特征。
特征提取和降维技术
主成分分析(PCA)
流形学习
通过线性变换将原始数据变换为一组 各维度线性无关的表示。
通过保持数据的局部结构来发现数据 的全局结构,如Isomap、LLE等。
• 重复值处理:删除或合并重复数据记录。
目录 CONTENTS
• 大数据概述与发展趋势 • 数据采集与预处理技术 • 数据存储与管理技术 • 数据分析与挖掘算法 • 数据可视化与报表呈现技巧 • 大数据安全与隐私保护策略
01
大数据概述与发展趋势
大数据定义及特点
01
数据量在TB、 PB甚至EB级别以上的数据。
,降低医疗成本。
金融科技
利用大数据技术进行风 险控制和客户管理,提 高金融业务的智能化水
平。
智能制造
通过大数据分析优化生 产流程,提高生产效率
和产品质量。
02
数据采集与预处理技术
数据来源及采集方法
互联网数据
社交媒体、新闻网站、论坛等。
企业内部数据
CRM、ERP、SCM等系统数据。
数据来源及采集方法
动态交互式报表设计思路
实时更新
通过数据接口实现报表数据的实时更 新,反映最新业务情况。
交互操作
提供筛选、排序、分组等交互功能, 方便用户按需查看和分析数据。
图表联动
实现不同图表之间的联动,当用户在 一个图表上操作时,其他相关图表也 能相应变化。
个性化定制
提供报表样式、布局等个性化定制功 能,满足不同用户的需求。
基于文本的特征提取
对文本数据进行分词、词频统计等操 作。
特征提取和降维技术
• 基于图像的特征提取:提取图像的形状、纹理等 特征。
特征提取和降维技术
主成分分析(PCA)
流形学习
通过线性变换将原始数据变换为一组 各维度线性无关的表示。
通过保持数据的局部结构来发现数据 的全局结构,如Isomap、LLE等。
• 重复值处理:删除或合并重复数据记录。
2024版大数据PPT免费

政府管理
大数据可以提高政府决策的科学性、 准确性和时效性,推动政府治理体系 和治理能力现代化。
6
02
大数据技术架构与组件
2024/1/28
7
分布式存储技术
Hadoop分布式文件系统(HDFS)
一种高度容错性的分布式文件系统,适合部署在廉价机器上,提供高吞吐量的数据访问。
HBase
一种分布式、可伸缩、大数据存储服务,支持结构化、半结构化和非结构化数据的存储。
Hale Waihona Puke 2024/1/28Cassandra
一种高度可扩展的分布式NoSQL数据库,提供高可用性和无单点故障的数据存储服务。
8
分布式计算框架
Spark
一种快速、通用的大规模数据处理引 擎,提供了Java、Scala、Python和R 等语言的API,支持批处理、流处理、 图处理和机器学习等应用。
Flink
2024/1/28
03
完善政策法规
建立健全大数据相关政策法规,保障数据安全和个人隐私,促进大数据
产业健康发展。
30
THANK YOU
2024/1/28
31
2024/1/28
4
大数据产生背景
01
02
03
互联网的发展
随着互联网的普及和深入 应用,人们产生的数据量 呈指数级增长,形成了海 量的数据资源。
2024/1/28
物联网的兴起
物联网技术的快速发展使 得各种设备产生的数据不 断汇聚,进一步推动了大 数据时代的到来。
云计算的普及
云计算提供了强大的计算 和存储能力,为大数据的 处理和分析提供了有力支 持。
建立因变量与自变量之间的线性关系,实现 预测和解释。
【最全】大数据ppt.优质PPT

含义:大数据(big data):是指无法在可承
受的时间范围内用常规软件工具进行捕捉、管理和处 理的数据集合。从某种程度上说,大数据是数据分析 的前沿技术。
通俗含义:简言之,大数据就是从各种各样类
型的数据中,运用一定的方法快速获得有价值信息的
能力。
大数据的四个V特征
1 volume:海量化 2 Variety:多样化 3 Velocity:快速化 4 Value:价值密度低
大数据ppt
将从如下几个方面为大家介绍大 数 据 何为大数据?
1
2 技术核心?
安全威胁有哪些? 3 4 现阶段应用? 5 为何选址贵阳?
何为大数据?
首先来了解一下大数据到底有多大?
一组名为“互联网上一天”的数据告 诉我们,一天之中,互联网产生的全部内容 可以刻满1.68亿张DVD;发出的邮件有2940 亿封之多,相当于 两年的纸质信件数量;发出 的社区帖子达200万个,相当于《时代》杂 志770年的文字量。一分钟内,微博推特上 新发的数据量超过10万;社交网络“脸谱” 的浏览量超过600万……由此可见,大数据 不仅量大,而且更新快。
空气清新,达到世界卫生组织设立的清新空气负氧离子标准的上限。 为了使总部能在车辆出现晚点的时候跟踪到车辆的位置和预防引擎事故,在货车上装有传感器、无线适配器和GPS。
大数据的核心技术: 例如实名注册一个社交网站后,用户信息将不再受用户本人支配,攻击者可通过攻击社交网站窃取用户信息。
大数据中用户无法知道数据的确切存放位置,用户对其个人数据的采集、存储、使用、分享无法有效控制。 网络服务提供商就是一朵云 如论坛、博客、微博等为黑客窃取个人信息提供了平台。 厂家可以通过产品的销售情况对产品的销售模式进行调整:如可以根据某款产品在各地的销售量情况可以适时调整供货量。 即从大量的、不完全的、有噪声的、模糊的、随机的实际数据中,提取出我们想要的、或者有潜在价值的信息的过程。 一分钟内,微博推特上新发的数据量超过10万; 这其实就涉及到了数据的积累。
大数据介绍ppt

大数据的价值与影响
01
价值
02
商业价值:通过大数据分析,企业可以更准确地了 解市场需求,优化产品和服务。
03
社会价值:政府和企业可以利用大数据提高公共服 务和决策效率。
大数据的价值与影响
• 个人价值:大数据也可以帮助个人更好地了解自己和他人 。
大数据的价值与影响
影响 经济影响:大数据产业已经成为全球经济的重要组成部分。
医疗资源优化
通过分析医疗资源的使用数据,优化医疗资源的 配置和调度,提高医疗效率和质量。
金融投资
1 2
市场预测
通过对历史市场数据的挖掘和分析,预测市场走 势和未来趋势,为投资决策提供支持。
风险管理
通过对金融数据的分析和建模,识别和评估潜在 的风险因素,为风险管理提供依据。
3
客户画像
通过对客户数据的挖掘和分析,了解客户的投资 偏好和风险承受能力,为个性化服务提供支持。
数据完整性
由于数据丢失、篡改等原因,数据完整性难以保证,需要采用数据 校验和恢复技术。
数据可信度
由于数据造假、欺骗等问题,数据可信度受到挑战,需要建立数据 信任机制。
数据处理与分析效率问题
数据存储与处理
大数据量巨大,需要高效的数据 存储和处理技术,如分布式存储 、并行计算等。
数据查询与分析
大数据查询和分析需要快速响应 和高效处理,需要采用实时计算 、流式计算等技术。
数据安全与隐私保护
数据安全
通过加密技术、访问控制和安全审计等手段,确保大数据的 安全性和完整性。
隐私保护
在处理大数据时,需要遵守隐私保护原则,保护个人隐私和 敏感信息,避免数据泄露和滥用。
03
大数据应用领域
大数据专题(共43张PPT)

应用
MapReduce广泛应用于大数据处理领域,如日志分析、数据挖掘、机器学习等。
分布式数据库HBase
概述
HBase(Hadoop Database)是一个高可扩展性的列存储系统,构建在Hadoop分布 式文件系统之上。它提供了对大规模结构化数据的随机、实时读写访问能力。
特点
HBase采用列式存储,支持动态扩展,具有良好的伸缩性和高性能。它支持ACID事务, 提供了高可用性和数据一致性保证。
对数据进行分组、汇总等 操作。
Part
04
大数据分析方法与应用
统计分析方法
描述性统计
对数据进行整理和描述, 包括数据的中心趋势、离 散程度、分布形态等。
推论性统计
通过样本数据推断总体特 征,包括参数估计和假设 检验等方法。
多元统计分析
研究多个变量之间的关系, 包括回归分析、因子分析、 聚类分析等。
Hadoop的核心组件之一,为大 数据应用提供了一个高度容错、
可扩展的分布式文件系统。
架构
HDFS采用主从架构,包括一个 NameNode和多个DataNode。 NameNode负责管理文件系统 的元数据,而DataNode负责存
储实际的数据。
特点
HDFS支持大规模数据存储,具 有高度的容错性和可扩展性。它 采用流式数据访问模式,适合处
加密技术
采用加密算法对敏感数据进行加密处理,确保数 据在传输和存储过程中的安全性。
企业如何保障大数据安全
制定完善的大数据安全管理制度 和流程,明确各部门职责和权限。
加强员工安全意识教育和培训, 提高全员大数据安全意识。
加强大数据安全技术研发和投入, 提高安全防护能力和水平。
建立大数据安全应急响应机制, 及时应对和处理安全事件。
MapReduce广泛应用于大数据处理领域,如日志分析、数据挖掘、机器学习等。
分布式数据库HBase
概述
HBase(Hadoop Database)是一个高可扩展性的列存储系统,构建在Hadoop分布 式文件系统之上。它提供了对大规模结构化数据的随机、实时读写访问能力。
特点
HBase采用列式存储,支持动态扩展,具有良好的伸缩性和高性能。它支持ACID事务, 提供了高可用性和数据一致性保证。
对数据进行分组、汇总等 操作。
Part
04
大数据分析方法与应用
统计分析方法
描述性统计
对数据进行整理和描述, 包括数据的中心趋势、离 散程度、分布形态等。
推论性统计
通过样本数据推断总体特 征,包括参数估计和假设 检验等方法。
多元统计分析
研究多个变量之间的关系, 包括回归分析、因子分析、 聚类分析等。
Hadoop的核心组件之一,为大 数据应用提供了一个高度容错、
可扩展的分布式文件系统。
架构
HDFS采用主从架构,包括一个 NameNode和多个DataNode。 NameNode负责管理文件系统 的元数据,而DataNode负责存
储实际的数据。
特点
HDFS支持大规模数据存储,具 有高度的容错性和可扩展性。它 采用流式数据访问模式,适合处
加密技术
采用加密算法对敏感数据进行加密处理,确保数 据在传输和存储过程中的安全性。
企业如何保障大数据安全
制定完善的大数据安全管理制度 和流程,明确各部门职责和权限。
加强员工安全意识教育和培训, 提高全员大数据安全意识。
加强大数据安全技术研发和投入, 提高安全防护能力和水平。
建立大数据安全应急响应机制, 及时应对和处理安全事件。
大数据汇报(内部精华版)ppt课件

完整最新ppt
1
Question
➢大数据从何而来,互联网技术发展现状? ➢什么是大数据、云计算与大数据有什么 关系、大数据类型? ➢大数据如何获取、存储、处理、分析的 技术? ➢大数据怎么用、未来发展趋势?
完整最新ppt
2
互联网发展趋势
完整最新ppt
3
风云变幻中……
2021/5/10
完整最新ppt
完整最新ppt
17
完整最新ppt
18
大数据系统 整体架构
完整最新ppt
19
Data Value : 数据挖掘与分析
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其 中的、人们事先不知道的、但潜在的有用信息和知识的过程。
完整最新ppt
20
数据挖掘与分析
➢知识发现(KDD)是从数据集中识别 出有效的、新颖的、潜在有用的,以及 最终可理解的模式的过程。 ➢数据挖掘是数据库知识发现(KDD) 中不可缺少一部分
2021/5/10
完整最新ppt
66
大数据的4V特性
体量Volume 多样性Variety 价值密度Value 速度Velocity
非结构化数据的超大规模和增长 总数据量的80~90% 比结构化数据增长快10倍到50倍 是传统数据仓库的10倍到50倍
大数据的异构和多样性 很多不同形式(文本、图像、视频、机器数据) 无模式或者模式不明显 不连贯的语法或句义
➢异常检测:识别其特征显著不同于其他 数据的观测值
完整最新ppt
22
实战项目1—— Python 网络爬虫
网络爬虫是一个自动提取网页的程序/脚 本,它可以搜索引擎从万维网上下载网 页,是搜索引擎的重要组成。
1
Question
➢大数据从何而来,互联网技术发展现状? ➢什么是大数据、云计算与大数据有什么 关系、大数据类型? ➢大数据如何获取、存储、处理、分析的 技术? ➢大数据怎么用、未来发展趋势?
完整最新ppt
2
互联网发展趋势
完整最新ppt
3
风云变幻中……
2021/5/10
完整最新ppt
完整最新ppt
17
完整最新ppt
18
大数据系统 整体架构
完整最新ppt
19
Data Value : 数据挖掘与分析
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其 中的、人们事先不知道的、但潜在的有用信息和知识的过程。
完整最新ppt
20
数据挖掘与分析
➢知识发现(KDD)是从数据集中识别 出有效的、新颖的、潜在有用的,以及 最终可理解的模式的过程。 ➢数据挖掘是数据库知识发现(KDD) 中不可缺少一部分
2021/5/10
完整最新ppt
66
大数据的4V特性
体量Volume 多样性Variety 价值密度Value 速度Velocity
非结构化数据的超大规模和增长 总数据量的80~90% 比结构化数据增长快10倍到50倍 是传统数据仓库的10倍到50倍
大数据的异构和多样性 很多不同形式(文本、图像、视频、机器数据) 无模式或者模式不明显 不连贯的语法或句义
➢异常检测:识别其特征显著不同于其他 数据的观测值
完整最新ppt
22
实战项目1—— Python 网络爬虫
网络爬虫是一个自动提取网页的程序/脚 本,它可以搜索引擎从万维网上下载网 页,是搜索引擎的重要组成。
2024版大数据ppt(数据有关文档)共30张[1]
![2024版大数据ppt(数据有关文档)共30张[1]](https://img.taocdn.com/s3/m/ce91353800f69e3143323968011ca300a6c3f6b1.png)
利用大数据技术和人工智能算法,可以对海量医疗数据进行分析和挖掘,为医生提供临床决 策支持。例如,通过对病人的病史、检查结果、用药记录等数据进行综合分析,可以辅助医 生做出更准确的诊断和治疗方案。
远程医疗与健康管理
大数据技术可以实现远程医疗服务和健康管理,方便患者随时随地获取医疗服务和健康指导。 例如,通过可穿戴设备收集患者的生理数据,可以实时监测患者的健康状况,及时发现异常 情况并给出预警提示。
多元统计分析
处理多个变量的统计方法,如回归分析、 因子分析等。
16
机器学习算法应用
监督学习
利用已知结果的数据训 练模型,如线性回归、 决策树等。
2024/1/30
无监督学习
在没有已知结果的情况 下,通过数据之间的相 似性进行聚类或降维, 如K-means、主成分分 析等。
强化学习
让模型在与环境交互的 过程中学习,如Qlearning、深度强化学 习等。
18
2024/1/30
05
大数据在各领域应用案例
19
金融行业应用案例
2024/1/30
01
风险管理与合规
利用大数据分析技术,金融机构可以更准确地评估和管理风险,提高合
规性。例如,通过对客户交易数据的实时监控和分析,可以及时发现异
常交易行为,防止欺诈和洗钱等违法行为。
02
客户画像与精准营销
金融机构可以利用大数据技术对客户进行画像,了解客户的消费习惯、
包括企业数据库、业务系统、日志文件等。
外部数据源
包括社交媒体、公开数据集、第三方数据提供商 等。
数据类型
包括结构化数据(如关系型数据库中的表)和非 结构化数据(如文本、图像、音频、视频等)。
2024/1/30
远程医疗与健康管理
大数据技术可以实现远程医疗服务和健康管理,方便患者随时随地获取医疗服务和健康指导。 例如,通过可穿戴设备收集患者的生理数据,可以实时监测患者的健康状况,及时发现异常 情况并给出预警提示。
多元统计分析
处理多个变量的统计方法,如回归分析、 因子分析等。
16
机器学习算法应用
监督学习
利用已知结果的数据训 练模型,如线性回归、 决策树等。
2024/1/30
无监督学习
在没有已知结果的情况 下,通过数据之间的相 似性进行聚类或降维, 如K-means、主成分分 析等。
强化学习
让模型在与环境交互的 过程中学习,如Qlearning、深度强化学 习等。
18
2024/1/30
05
大数据在各领域应用案例
19
金融行业应用案例
2024/1/30
01
风险管理与合规
利用大数据分析技术,金融机构可以更准确地评估和管理风险,提高合
规性。例如,通过对客户交易数据的实时监控和分析,可以及时发现异
常交易行为,防止欺诈和洗钱等违法行为。
02
客户画像与精准营销
金融机构可以利用大数据技术对客户进行画像,了解客户的消费习惯、
包括企业数据库、业务系统、日志文件等。
外部数据源
包括社交媒体、公开数据集、第三方数据提供商 等。
数据类型
包括结构化数据(如关系型数据库中的表)和非 结构化数据(如文本、图像、音频、视频等)。
2024/1/30
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息管理系统(HIS)
虚拟数据库
实时监控平台
11
Google 大数据处理技术
- Google文件系统GFS(Google File System)
- 并行数据处理MapReduce - 结构化数据表BigTable - 分布式锁管理Chubby
MapReduce
BigTable
GFS
Chubby
云计算的“云”就是存在于互联网上的服务器集群上的资源,它包括硬件资源(服务 器、存储器、CPU等)和软件资源(如应用软件、集成开发环境等)本地计算机只需要 通过互联网发送一个需求信息,远端就会有成千上万的计算机为你提供需要的资源并将 结果返回本地计算机。
ASG Server
ASG Server
To Other Grid Nodes
ASG Server ASG Server
Grid Server
Grid Server
ASG Server
Grid Server
移动终端
ASG Server
Grid Server
To Other Grid Nodes
ASG Server
PC用户
移动终端
ASG Server
ASG Server
邮件服务器
大量的不相关信息 对未来趋势与模式的可预测分析 深度复杂分析(机器学习、人工智能Vs传统商务智能(咨询、 报告等)
实时分析而非批量式分析 数据输入、处理与丢弃 立竿见影而非事后见效
2.什么是云计算?
云计算将计算任务分布在大量计算机构成的资源池上,是各种应用系统能够根据需 要获取计算力、存储空间和各种软件服务。
作用:
- 成本降低,能用PC机,不用大型机和高端存储 - 软件容错硬件故障视为常态,通过软件保证可靠性 - 简化并行分布式计算,无须控制节点同步和数据交换
技术变革
云计算:把集中的运算分散开来
物联网:把分散的设备连在一起
Hadoop:把大数据切成小模块
大数据处理技术——Hadoop
➢开源Apache项目,灵感来源于Google的三篇论文:BigTable、MapReduce、GFS; ➢Hadoop核心组件包括:
Task:携程数据库(游客数据、点评记录)
实战项目2—— 数据分析及可视化应用
1.Python—2012年美国总统大选数据分析 2.动态气泡图的实现 3.热力感应图(heatmap.js)
管理大数据“易”,理解大数据“难”
•目前大数据管理多从架构和并行等方面考虑, 解决高并发数据存取的性能要求及数据存储 的横向扩展,但对非结构化数据的内容理解 仍缺乏实质性的突破和进展,这是实现大数 据资源化、知识化、普适化的核心.
移动社交网络数字足迹:探索个人和群体移动模式、群体事件监测、 个性化的兴趣点推荐和搜索服务、交叉重叠式社群的发现与诠释等;
移动电话数字足迹:测量城市交通系统效率、优化城市道路、人的移 动性、地区经济发展、传染病预测、监测群体移动位置预测群体事件 等。
2020/3/13
NWU 智能信息处理研究所
30
大数据时代的发展趋势
大数据时代的发展趋势
大数据时代的发展趋势
大数据时代的发展趋势
2020/3/13
6
大数据的4V特性
体量Volume 多样性Variety 价值密度Value 速度Velocity
非结构化数据的超大规模和增长 总数据量的80~90% 比结构化数据增长快10倍到50倍 是传统数据仓库的10倍到50倍
大数据的异构和多样性 很多不同形式(文本、图像、视频、机器数据) 无模式或者模式不明显 不连贯的语法或句义
邮件服务器
PC用户
PC用户
3.大数据类型:结构化与非结构化数据
数据模型: ➢结构化数据:二维表(关系 型) ➢半结构化数据:树、图 ➢非结构化数据:无
结构化数据:先有结构、再有 数据 半结构化数据:先有数据,再 有结构
关系数据库曾经是万能的
电子病历
CRM客户关系管理
远程监护平台
关系数据模型
销售管理系统 2020/3/13
Question
➢大数据从何而来,互联网技术发展现状? ➢什么是大数据、云计算与大数据有什么 关系、大数据类型? ➢大数据如何获取、存储、处理、分析的 技术? ➢大数势
风云变幻中……
2020/3/13
4
1.大数据 (Big Data)
所谓“大数据”(big data)指的是这样一种现象:一个公司日常运营所生成和积累用户 行为数据“增长如此之快,以至于难以使用现有的数据库管理工具来驾驭,困难存在于数 据的获取、存储、检索、共享、分析和可视化等方面。”这些数据量是如此之大,已经不 是以我们所熟悉G或T为单位来衡量,而是以P、E或Z为计量单位,所以称之为大数据。
➢异常检测:识别其特征显著不同于其他 数据的观测值
实战项目1—— Python 网络爬虫
网络爬虫是一个自动提取网页的程序/脚 本,它可以搜索引擎从万维网上下载网 页,是搜索引擎的重要组成。 ➢做为oping、 chinahr) ➢科学研究:在线人类行为,在线社群 演化,复杂网络,数据挖掘领域的实证 科学研究,快速收集大量数据
•非结构化海量信息的智能化处理:自然语言 理解、多媒体内容理解、机器学习等.
大数据驱动架构概念图
大数据存储 云计算技术是最理想的解决方案!?
2020/3/13
27
社会计算研究
2020/3/13
28
城市计算的基本框架
2020/3/13
29
数字足迹与城市计算
出租车GPS 数字足迹:不同时刻的城市热点检测、城市区域的功能特 性分类、路径规划、出租车司机寻客策略、异常轨迹检测、城市道路 交通流量预测等;
-分布式文件系统(HDFS) -分布式数据库存储系统(Hbase) -分布式计算构架(MapReduce) ➢使用Java编写 ➢运行平台:Linux
HDFS 分布式文件系统
HDFS: - 分布式文件存储系统,存储海量的数 据;
- 数据冗余,硬件容错; - 流式的数据访问; - 存储大文件;
- 适合数据批量读写,吞吐量高;适 一次写入,多次读取,顺序读写。 - 不适合交互式应用,低延迟很难 满足不支持多用户并发写相同文件。
数据挖掘基本方法
➢预测建模:将已有数据和模型用于对未 知变量的语言。(1)分类,用于预测离 散的目标变量(2)回归,用于预测连续 的目标变量
➢关联分析:反映一个事物与其他事物之 间的相互依存性和关联性。用来发现描述 数据中强关联特征的模式。
➢聚类分析:发现紧密相关的观测值组群 ,使得与属于不同簇的观测值相比,属于 同一簇的观测值相互之间尽可能类似
HDFS 体系架构
大数据系统 整体架构
Data Value : 数据挖掘与分析
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其 中的、人们事先不知道的、但潜在的有用信息和知识的过程。
数据挖掘与分析
➢知识发现(KDD)是从数据集中识别 出有效的、新颖的、潜在有用的,以及 最终可理解的模式的过程。 ➢数据挖掘是数据库知识发现(KDD) 中不可缺少一部分