2020年新版新人教版八年级数学上册教案全册
八级上册数学教案人教版(全册)

八级上册数学教案人教版(第一部分)一、教学目标1. 知识与技能:使学生掌握本册数学的基本概念、性质、定理和公式,提高学生的数学思维能力和解决问题的能力。
2. 过程与方法:通过自主学习、合作探讨、实践操作等方式,培养学生的数学学习兴趣,提高学生的数学素养。
3. 情感态度与价值观:让学生体验到数学在实际生活中的运用,认识到数学的重要性,培养学生的责任感和使命感。
二、教学内容1. 第一章:实数与函数(1) 实数的概念、性质和运算;(2) 函数的定义、性质和图像;(3) 一次函数、二次函数、反比例函数的解析式、图像和性质。
2. 第二章:几何基础(1) 点、线、面的基本概念和性质;(2) 直线方程、圆方程;(3) 三角形、四边形的性质和判定;(4) 坐标系的应用。
三、教学重点与难点1. 教学重点:实数的运算、函数的性质、几何图形的判定与性质。
2. 教学难点:函数的图像、几何图形的复杂计算和证明。
四、教学方法1. 采用问题驱动法,引导学生主动探究数学问题;2. 运用案例分析法,让学生通过实际例子理解数学概念;3. 利用数形结合法,培养学生直观的数学思维;4. 实施分组合作学习,培养学生的团队协作能力。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的准确性、书写规范性,评估学生的学习效果。
3. 考试成绩:定期进行数学考试,对学生的知识掌握程度进行评估。
4. 学生自评:鼓励学生自我评价,反思自己的学习过程,提出改进措施。
八级上册数学教案人教版(第二部分)六、教学安排1. 课时分配:本部分共安排课时,具体分配如下:第一章:实数与函数:课时第二章:几何基础:课时第十五章:课时2. 教学计划:根据课时分配,合理安排每个章节的教学内容,确保教学目标的达成。
七、教学资源1. 教材:使用人教版八级上册数学教材。
2. 教辅资料:提供相应的教辅资料,辅助教学。
最新人教版八年级数学上册教案(全册 共168页)

最新人教版八年级数学上册教案(全册共168页)第十一章三角形一、课标要求(1)理解三角形及三角形有关的线段(边、高、中线、角平分线)的概念,证明三角形两边的和大于第三边,了解三角形的重心的概念,了解三角形的稳定性。
(2)理解三角形的内角、外角的概念,探索并证明三角形内角和定理,探索并掌握直角三角形的两个锐角互余,掌握有两个角互余的三角形是直角三角形,掌握三角形的一个外角等于与它不相邻的两个内角的和。
(3)了解多边形的有关概念(边、内角、外角、对角线、正多边形),探索并掌握多边形的内角和与外角和公式。
二、教材分析第1节研究与三角形有关的线段。
首先结合引言中的实际例子给出三角形的概念,进而研究三角形的分类。
对于三角形的边,证明了三角形两边的和大于第三边。
然后给出三角形的高、中线与角平分线的概念。
结合三角形的中线介绍三角形的重心的概念。
最后结合实际例子介绍三角形的稳定性。
第2节研究与三角形有关的角,对于三角形的内角,证明了三角形内角和定理。
然后由这个定理推出直角三角形的性质:直角三角形的两个锐角互余。
最后给出三角形的外角的概念,并由三角形内角和定理推出:三角形的外角等于与它不相邻的两个内角的和。
第3节介绍多边形的有关概念与多边形的内角和、外角和公式。
三角形是多边形的一种,因而可以借助三角形给出多边形的有关概念,如多边形的边、内角、外角、内角和都可由三角形的有关概念推广而来。
三角形是最简单的多边形,因而常常将多边形分为若干个三角形,利用三角形的性质研究多边形。
多边形的内角和公式就是利用上述方法得到的。
将多边形的有关内容与三角形的有关内容紧接安排,可以加强它们之间的联系,便于学生学习。
三、教学建议1.把握好教学要求与三角形有关的一些概念在本章中只要求达到理解的程度就可以了,进一步的要求可通过后续学习达到。
如对于三角形的角平分线,在本章中只要知道它的定义,能够从定义得出角相等就可以了,学生在画角平分线时发现三条角平分线交于一点,可直接肯定这个结论,在下一章“全等三角形”中再证明这个结论,同样,三角形的三条中线交于一点的结论也可直接点明。
新人教版八年级数学上册全册名师教案大全5篇_1

新人教版八年级数学上册全册名师教案大全5篇新人教版八班级数学上册全册名师教案【篇1】一、学习目标:1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;2、会运用两数差的平方公式进行计算。
二、学习过程:请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:(一)探究1、计算: (a - b) =方法一:方法二:方法三:2、两数差的平方用式子表示为_________________________;用文字语言叙述为___________________________ 。
3、两数差的平方公式结构特征是什么?(二)现学现用利用两数差的平方公式计算:1、(3 - a)2、 (2a -1)3、(3y-x)4、(2x – 4y)5、( 3a - )(三)合作攻关敏捷运用两数差的平方公式计算:1、(999)2、( a – b – c )3、(a + 1) -(a-1)(四)达标训练1、、选择:下列各式中,与(a - 2b)肯定相等的是()A、a -2ab + 4bB、a -4bC、a +4bD、 a - 4ab +4b2、填空:(1)9x + + 16y = (4y - 3x )(2) ( ) = m - 8m + 162、计算:( a - b) ( x -2y )3、有一边长为a米的正方形空地,现预备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?(四)提升1、本节课你学到了什么?2、已知a – b = 1,a + b = 25,求ab 的值新人教版八班级数学上册全册名师教案【篇2】一、教学目标(一)、学问与技能:(1)使同学了解因式分解的意义,理解因式分解的概念。
(2)熟悉因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
(二)、过程与方法:(1)由同学自主探究解题途径,在此过程中,通过观看、类比等手段,寻求因式分解与因数分解之间的关系,培育同学的观看力量,进一步进展同学的类比思想。
新人教版八年级上册数学全册教案(共52课时)

第一课时11.1 全等三角形教学目标1.领会全等三角形对应边和对应角相等的有关概念.2.经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.重、难点与关键1.重点:会确定全等三角形的对应元素.2.难点:掌握找对应边、对应角的方法.教学过程一、动手操作,导入课题1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,•思考得到的图形有何特点? 2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,•思考得到的图形有何特点?学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.概念:能够完全重合的两个三角形叫做全等三角形.【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?【学生活动】动手操作,实践感知,得出结论:两个三角形全等.【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?【交流讨论】通过同桌交流,实验得出下面结论:1.任意放置时,并不一定完全重合,•只有当把相同的角旋转到一起时才能完全重合. 2.这时它们的三个顶点、三条边和三个内角分别重合了.3.完全重合说明三条边对应相等,三个内角对应相等,•对应顶点在相对应的位置.【教师活动】根据学生交流的情况,给予补充和语言上的规范.1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,•重合的边叫做对应边,重合的角叫做对应角.2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.【问题提出】课本图11.1─1中,△ABC≌△DEF,对应边有什么关系?对应角呢?【学生活动】经过观察得到下面性质:1.全等三角形对应边相等;2.全等三角形对应角相等.二、随堂练习,巩固深化课本P4练习.三、课堂总结,发展潜能1.什么叫做全等三角形?2.全等三角形具有哪些性质?四、布置作业,专题突破课本P4习题11.1第1,2,3,4题.第二课时11.2.1三角形全等的判定(SSS)教学目标1.了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.经历探索“边边边”判定全等三角形的过程,解决简单的问题.重、难点与关键1.重点:掌握“边边边”判定两个三角形全等的方法.2.难点:理解证明的基本过程,学会综合分析法.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学过程一、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果△ABC 与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:1.画线段取B′C′=BC;2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;3.连接线段A′B′、A′C′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).(2)判断两个三角形全等的推理过程,叫做证明三角形全等.二、范例点击,应用所学【例1】如课本图11.2─3所示,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.(教师板书)【教师活动】分析例1,分析:要证明△ABD≌△ACD,可看这两个三角形的三条边是否对应相等.证明:∵D 是BC 的中点,∴BD=CD在△ABD 和△ACD 中,,.AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.三、实践应用,合作学习【问题思考】已知AC=FE ,BC=DE ,点A 、D 、B 、F 在直线上,AD=FB (如图所示),要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?四、随堂练习,巩固深化课本P8练习.五、课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)六、布置作业,专题突破1.课本P15习题11.2第1,2题.第三课时11.2.2 三角形全等判定(SAS)教学目标1.领会“边角边”判定两个三角形的方法.2.经历探究三角形全等的判定方法的过程,学会解决简单的推理问题.重、难点及关键1.重点:会用“边角边”证明两个三角形全等.2.难点:应用结合法的格式表达问题.教学过程一、回顾交流,操作分析【动手画图】作一个角等于已知角.【学生活动】动手用直尺、圆规画图.已知:∠AOB.求作:∠A1O1B1,使∠A1O1B1=∠AOB.【导入课题】教师叙述:请同学们连接CD、C1D1,回忆作图过程,分析△COD和△C1O1D1•中相等的条件.【学生活动】与同伴交流,发现下面的相等量:OD=O1D1,OC=O1C1,∠COD=∠C1O1D1,△COD≌△C1O1D1.归纳出规律:两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS•”).二、范例点击,应用新知【例2】如课本图11.2-6所示有一池塘,要测池塘两侧A、B的距离,可先在平地上取一个可以直接到达A和B的点,连接AC并延长到D,使CD=CA,连接BC并延长到E,•使CE=CB,连接DE,那么量出DE的长就是A、B的距离,为什么?【教师活动】分析:如果能够证明△ABC≌△DEC,就可以得出AB=DE.在△ABC和△DEC 中,CA=CD,CB=CE,如果能得出∠1=∠2,△ABC和△DEC•就全等了.证明:在△ABC 和△DEC 中12CA CD CB CE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEC (SAS )∴AB=DE三、辨析理解,正确掌握【问题探究】我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,•使长木棍的另一端与射线BC 的端点B 重合,适当调整好长木棍与射线BC 所成的角后,固定住长木棍,把短木棍摆起来(课本图11.2-7),出现一个现象:△ABC 与△ABD 满足两边及其中一边对角相等的条件,但△ABC 与△ABD 不全等.这说明,•有两边和其中一边的对角对应相等的两个三角形不一定全等.【学生活动】观察教师操作教具、发现问题、辨析理解,动手用直尺和圆规实验一次,做法如下:(如图1所示)(1)画∠ABT ;(2)以A 为圆心,以适当长为半径,画弧,交BT 于C 、C ′;(3)•连线AC ,AC ′,△ABC 与△ABC ′不全等.【形成共识】“边边角”不能作为判定两个三角形全等的条件.【教学形式】观察、操作、感知,互动交流.四、随堂练习,巩固深化课本P10练习第1、2题.五、课堂总结,发展潜能1.请你叙述“边角边”定理.2.证明两个三角形全等的思路是:首先分析条件,•观察已经具备了什么条件;然后以已具备的条件为基础根据全等三角形的判定方法,来确定还需要证明哪些边或角对应相等,再设法证明这些边和角相等.六、布置作业,专题突破1.课本P15习题11.2第3、4题.第四课时11.2.3 三角形全等判定(ASA)教学目标1.理解“角边角”、“角角边”判定三角形全等的方法.2.经历探索“角边角”、“角角边”判定三角形全等的过程,能运用已学三角形判定法解决实际问题.重、难点与关键1.重点:应用“角边角”、“角角边”判定三角形全等.2.难点:学会综合法解决几何推理问题.教学过程一、回顾交流,巩固学习【知识回顾】情境思考:1.小菁做了一个如图1所示的风筝,其中∠EDH=∠FDH,ED=FD,•将上述条件注在图中,小明不用测量就能知道EH=FH吗?与同伴交流.(1) (2)[答案:能,因为根据“SAS”,可以得到△EDH≌△FDH,从而EH=FH] 2.如图2,AB=AD,AC=AE,能添上一个条件证明出△ABC≌△ADE吗?[答案:BC=•DE(SSS)或∠BAC=∠DAE(SAS)].3.如果两边及其中一边的对角对应相等,两个三角形一定会全等吗?试举例说明.二、实践操作,导入课题D CB AE 【动手动脑】问题探究:先任意画一个△ABC ,再画出一个△A ′B ′C ′,使A ′B ′=AB ,∠A ′=∠A ,∠B ′=∠B (即使两角和它们的夹边对应相等),把画出的△A ′B ′C ′剪下,•放到△ABC 上,它们全等吗?【学生活动】动手操作,感知问题的规律,画图如下:探究规律:两角和它们的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA ”).【知识铺垫】课本图11.2─8中,∠A ′=∠A ,∠B ′=∠B ,那么∠C=∠A ′C ′B•′吗?为什么?【学生回答】根据三角形内角和定理,∠C ′=180°-∠A ′-∠B ′,∠C=180°-∠A-∠B ,由于∠A=∠A ′,∠B=∠B ′,∴∠C=∠C ′.【教师提问】在△ABC 和△DEF 中,∠A=∠D ,∠B=∠E ,BC=EF (课本图11.2─9),△ABC 与△DEF 全等吗?【学生活动】运用三角形内角和定理,以及“ASA ”很快证出△ABC ≌△EFD ,并且归纳如下:• •归纳规律:•两个角和其中一个角的对边对应相等的两个三角形全等(简与成AAS ).三、范例点击,应用所学【例3】如课本图11.2─10,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C ,求证:AD=AE .【教师活动】引导学生,分析例3.•关键是寻找到和已知条件有关的△ACD•和△ABE ,再证它们全等,从而得出AD=AE .证明:在△ACD 与△ABE 中,()A A AC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩公共角 画一个△A ′B ′C ′,使A ′B ′=AB , ∠A ′=∠A ,∠B ′=∠B :1.画A ′B ′=AB ;2.在A ′B ′的同旁画∠DA ′B ′=∠A ,∠EBA ′=∠B ,A ′D ,B ′E 交于点C ′。
人教版八年级上册数学教案(5篇)

人教版八年级上册数学教案(5篇)人教版八年级上册数学教案(5篇)人教版八年级上册数学教案1 一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的才能;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探究的思想感情。
理解三角形高、角平分线及中线概念到用几何语言准确表述,这是学生在几何学习上的一个深化.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着非常重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.本节的重点是理解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.二、目的和目的解析1.教学目的(1)理解三角形的高、中线与角平分线等概念;(2)会用工具画三角形的高、中线与角平分线;2.教学目的解析(1)经历画图理论过程,理解三角形的高、中线与角平分线等概念.(2)可以纯熟用几何语言表达三角形的高、中线与角平分线的性质.(3)掌握三角形的高、中线与角平分线的画法.(4)理解三角形的三条高、三条中线与三条角平分线分别相交于一点.三、教学问题诊断分析^p三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联络又有本质的区别.人教版八年级上册数学教案2 一、教学目的1、认识中位数和众数,并会求出一组数据中的众数和中位数。
人教版八年级数学上册教案册5篇

人教版八年级数学上册教案全册5篇一、教材分析1、特点与地位:重点中的重点。
本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有肯定的有用意义。
2、重点与难点:结合学生现有抽象思维力量水平,已把握根本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下: (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。
(2)难点:求解最短路径算法的程序实现。
3、教学安排:最短路径问题包含两种状况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。
依据教学大纲安排,重点讲解第一种状况问题的解决。
安排一个课时讲授。
教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。
二、教学目标分析1、学问目标:把握最短路径概念、能够求解最短路径。
2、力量目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培育学生的数据抽象力量。
(2)通过旅游景点线路选择问题的解决,培育学生的独立思索、分析问题、解决问题的力量。
3、素养目标:培育学生讲究工作方法、与他人合作,提高效率。
三、教法分析课前充分预备,研读教材,查阅相关资料,制作多媒体课件。
教学过程中除了使用传统的“讲授法”以外,主要采纳“案例教学法”,同时辅以多媒体课件,以启发的方式绽开教学。
由于本节课的内容属于图这一章的难点,考虑学生的承受力量,留意与学生沟通,依据学生的反响掌握好教学进度是本节课胜利的关键。
四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。
2、课中指导学生争论任务解决方法,引导学生分析本节课学问点。
3、课后给学生布置同类型任务,加强练习。
五、教学过程分析(一)课前复习(3~5分钟)回忆“路径”的概念,为引出“最短路径”做铺垫。
教学方法及留意事项:(1)采纳提问方式,留意准时小结,提问的目的是帮忙学生回忆概念。
新人教版八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)第十一章全等三角形11.1全等三角形教学目标:1了解全等形及全等三角形的的概念;2 理解全等三角形的性质;3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉;4 学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣。
重点:探究全等三角形的性质难点:掌握两个全等三角形的对应边,对应角教学过程:观察下列图案,指出这些图案中中形状与大小相同的图形问题:你还能举出生活中一些实际例子吗?这些形状、大小相同的图形放在一起能够完全重合。
能够完全重合的两个图形叫做全等形能够完全重合的两个三角形叫做全等三角形引导学生完成课本P思考:3归纳:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。
“全等”用“≌”表示,读作“全等于”两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如⊿ABC和⊿DEF全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作⊿ABC≌⊿DEF。
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角思考图11.1-1中,⊿ABC≌⊿DEF,对应边有什么关系?对应角呢?思考:如课本P3归纳:全等三角形性质:全等三角形的对应边相等;全等三角形的对应角相等。
思考:(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角DDD(2)将⊿ABC 沿直线BC 平移,得到⊿DEF,说出你得到的结论,说明理由?B(3)如图,⊿ABE ≌⊿ACD, AB 与AC ,AD 与AE 是对应边,已知:∠A=43°,∠B=30°,求∠ADC 的大小。
BC作业:P4习题11.1第1,2,3题。
课题:11.2 三角形全等的判定(1)教学目标①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.②掌握三角形全等的“边边边”条件,了解三角形的稳定性.③通过对问题的共同探讨,培养学生的协作精神.教学难点三角形全等条件的探索过程.一、复习过程,引入新知多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.二、创设情境,提出问题根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.三、建立模型,探索发现出示探究1,先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C',满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗?让学生按照下面给出的条件作出三角形.(1)三角形的两个角分别是30°、50°.(2)三角形的两条边分别是4cm,6cm.(3)三角形的一个角为30°,—条边为3cm.再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?让学生充分交流后,在教师的引导下作出△A'B'C',并通过比较得出结论:三边对应相等的两个三角形全等.四、应用新知,体验成功实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.鼓励学生举出生活中的实例.给出例l,如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.AB D让学生独立思考后口头表达理由,由教师板演推理过程.例2 如图是用圆规和直尺画已知角的平分线的示意图,作法如下:①以A为圆心画弧,分别交角的两边于点B和点C;②分别以点B、C为圆心,相同长度为半径画两条弧,两弧交于点D;③画射线AD.AD就是∠BAC的平分线.你能说明该画法正确的理由吗?例3 如图四边形ABCD中,AB=CD,AD=BC,你能把四边形ABCD分成两个相互全等的三角形吗?你有几种方法?你能证明你的方法吗?试一试.ADB C五、巩固练习:课本P8页的练习.六、反思小结回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.七、布置作业课本P15习题11.2第1、2题..A B CDE课题:11.2 三角形全等的判定2)教学目标①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力. ②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.③通过对问题的共同探讨,培养学生的协作精神. 教学难点指导学生分析问题,寻找判定三角形全等的条件. 知识重点应用“边角边”证明两个三角形全等,进而得出线段或角相等. 教学过程(师生活动) 一、情境,引入课题多媒体出示探究3:已知任意△ABC ,画△A'B'C',使A'B'=AB ,A'C'=AC ,∠A'=∠A .教帅点拨,学生边学边画图,再让学生把画好的△A'B'C',剪下放在△ABC 上,观察这两个三角形是否全等. 二、交流对话,探求新知根据前面的操作,鼓励学生用自己的语言来总结规律: 两边和它们的夹角对应相等的两个三角形全等.(SAS)补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边. 三、应用新知,体验成功出示例2,如图,有—池塘,要测池塘两端A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD =CA ,连接BC 并延长到E ,使CE =CB .连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?让学生充分思考后,书写推理过程,并说明每一步的依据. (若学生不能顺利得到证明思路,教师也可作如下分析: 要想证AB =DE , 只需证△ABC ≌△DEC△ABC 与△DEC 全等的条件现有……还需要……)明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决. 补充例题:1、已知:如图AB=AC,AD=AE,∠BAC=∠DAE求证: △ABD ≌△ACE 证明:∵∠BAC=∠DAE (已知)∠ BAC+ ∠ CAD= ∠DAE+ ∠ CAD ∴∠BAD=∠CAEAB CDEFM 在△ABD 与△ACE AB=AC (已知)∠BAD= ∠CAE (已证) AD=AE (已知)∴△ABD ≌△ACE (SAS) 思考:求证:1.BD=CE 2. ∠B= ∠C 3. ∠ADB= ∠AEC 变式1:已知:如图,AB ⊥AC,AD ⊥AE,AB=AC,AD=AE. 求证: △DAC ≌△EABBE=DC ∠B= ∠ C ∠ D= ∠ E BE ⊥CD四、再次探究,释解疑惑 出示探究4,我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等.教师演示:方法(一)教科书10页图11.2-7.方法(二)通过画图,让学生更直观地获得结论. 五、巩固练习课本P10页,练习1、2. 六、小结提高1.判定三角形全等的方法;2.证明线段、角相等常见的方法有哪些?让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构. 七、布置作业1.课本P15页,习题11.2第3、4题. 2.选作题:(1)小明做了一个如图所示的风筝,测得DE =DF ,EH =FH ,你能发现哪些结沦?并说明理由.(2)如图,∠1=∠2,AB =AD ,AE =AC ,求证BC =DE .课题: 11.2 三角形全等的判定(3)教学目标①探索并掌握两个三角形全等的条件:“ASA ”“AAS ”,并能应用它们判别两个三角形是否全等.②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维. ③敢于面对教学活动中的困难,能通过合作交流解决遇到的困难. 教学重点理解,掌握三角形全等的条件:“ASA ”“AAS ”. 教学难点 探究出“ASA ”“AAS ”以及它们的应用. 教学过程(师生活动) 创设情境 复习:师:我们已经知道,三角形全等的判定条件有哪些? 生:“SSS ”“SAS ”师:那除了这两个条件,满足另一些条件的两个三角形是否 也可能全等呢?今天我们就来探究三角形全等的另一些条件。
八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)第一章:一元一次方程1.1 认识一元一次方程了解一元一次方程的定义和形式掌握一元一次方程的解法1.2 解一元一次方程学习使用代入法、加减法解一元一次方程练习解不同系数的一元一次方程1.3 应用一元一次方程运用一元一次方程解决实际问题练习列方程解应用题第二章:不等式与不等式组2.1 认识不等式了解不等式的定义和性质学会解不等式2.2 解一元一次不等式学习一元一次不等式的解法练习解不同系数的一元一次不等式2.3 不等式组了解不等式组的概念和解法学会解不等式组第三章:整式的加减3.1 同类项理解同类项的定义和性质学会合并同类项3.2 整式的加减学习整式的加减法则练习整式的加减运算3.3 乘法公式掌握完全平方公式和平方差公式学会应用乘法公式进行整式乘法第四章:函数及其图象4.1 认识函数了解函数的定义和性质学会用图象表示函数4.2 一次函数学习一次函数的定义和图象掌握一次函数的性质和图象的变换4.3 一次函数的应用运用一次函数解决实际问题练习列方程解应用题第五章:平面直角坐标系5.1 平面直角坐标系的定义了解平面直角坐标系的定义和构成学会在坐标系中确定点的位置5.2 坐标轴上的点学习坐标轴上点的特点和表示方法练习坐标轴上点的运算5.3 象限内的点掌握象限内点的坐标特征学会象限内点的坐标运算第六章:数据的收集、整理与描述6.1 数据的收集学习调查方法,掌握收集数据的方式练习使用调查问卷、观察等方法收集数据6.2 数据的整理学习数据的整理方法,如分类、排序等练习使用图表对数据进行整理和展示6.3 数据的描述学习利用统计量描述数据,如平均数、中位数等练习计算和解读统计量,了解数据分布特征第七章:多边形的面积7.1 多边形的定义了解多边形的概念和性质学会多边形的分类和识别7.2 三角形的面积学习三角形面积的计算方法练习计算不同类型的三角形面积7.3 平行四边形和梯形的面积掌握平行四边形和梯形面积的计算方法练习计算平行四边形和梯形面积第八章:概率初步8.1 概率的概念了解概率的定义和性质学会计算简单事件的概率8.2 随机事件的概率学习利用频率估计概率练习计算不同随机事件的概率8.3 概率的加法法则和乘法法则掌握概率的加法法则和乘法法则练习应用概率法则解决实际问题第九章:函数的性质9.1 函数的性质学习函数的单调性、奇偶性、周期性等性质学会运用函数性质解决实际问题9.2 反比例函数学习反比例函数的定义和图象掌握反比例函数的性质和应用9.3 二次函数学习二次函数的定义和图象掌握二次函数的性质和应用第十章:综合复习10.1 复习要点梳理梳理本册书的主要知识点和技能巩固重点,解决疑难问题10.2 复习题训练完成不同难度的复习题,提高解题能力10.3 总复习测试进行全面的复习测试,检验学习成果根据测试结果,制定针对性的改进计划重点和难点解析一、认识一元一次方程:重点关注学生对于方程概念的理解,特别是对“未知数”、“等式”这两个关键词的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章三角形11.1 与三角形有关的线段11.1.1 三角形的边学习目标1.了解三角形的概念,会用符号语言表示三角形.2.通过具体的实践活动理解三角形三边的不等关系.学习过程一、自主学习问题1:观察下面的图片,你能找到哪些我们熟悉的图形?问题2:在小学,我们学过三角形,你了解三角形的哪些性质?二、深化探究探究1:观察三角形的构成,探索三角形的概念问题1:你能画出一个三角形吗?问题2:结合你画的三角形,说明三角形是由什么组成的?问题3:下面的几个图形都是由三条线段组成的,它们都是三角形吗?问题4:什么叫三角形?探究2:自主学习三角形的表示方法及分类阅读教材第2页到第3页探究前内容,回答下列问题.问题1:如图回答以下问题:(1)在三角形中,什么叫边?什么叫内角?什么叫顶点?(2)三角形有几条边?有几个内角?有几个顶点?(3)如何用符号表示三角形ABC?(4)如何用小写字母表示三角形ABC的三条边?问题2:如果将三角形分类,按照边的关系分可以分成几类?按照角的关系又如何分类呢?问题3:如图,找出图中的三角形,用符号表示出来,并指出AB,AD,CD分别是哪个三角形的边.探究3:通过观察实践,理解三角形三边关系问题1:任意画一个△ABC,假设有一只小虫从点B出发,沿三角形的边爬到点C,它有几条线路可以选择?各条线路的长一样吗?问题2:联系三角形的三边,从问题1中你可以得到怎样的结论?问题3:用三条长度分别为5,9,3的线段能组成一个三角形吗?为什么?三、练习巩固练习1:三角形是指()A.由三条线段所组成的封闭图形B.由不在同一直线上的三条直线首尾顺次相接组成的图形C.由不在同一直线上的三条线段首尾顺次相接组成的图形D.由三条线段首尾顺次相接组成的图形练习2:图中有几个三角形?用符号表示这些三角形.练习3.有三根木棒的长度分别为3 cm,6 cm和4 cm,用这些木棒能否围成一个三角形?为什么?练习4:用一条长18 cm的细绳围成一个等腰三角形.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长为4 cm的等腰三角形吗?为什么?四、深化提高练习1:下面各组数中作为线段长不能构成三角形的一组是()A.0.2,0.6,0.7B.5k,7k,10k(k>0)C.m-a,m,m+a(m>a,m>0,a>0)D.22,22,33练习2:小明想要钉一个三边长都是整数的三角形,现在他只有两根分别长4 cm和5 cm的木条,那么第三根木条的长度可以是多少?(写出所有可能结果)练习3:平面上有四个点A,B,C,D,用它们作顶点可以组成几个三角形?参考答案一、自主学习问题1:三角形、四边形等.问题2:三条边;三个内角;具有稳定性;三角形的内角和是180°.二、深化探究探究1:问题1:能问题2:三角形是由三条线段组成的.问题3:只有第(1)个是三角形,其他的都不是.问题4:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.探究2:问题1:组成三角形的三条线段都叫做三角形的边;相邻两边所组成的角叫做三角形的内角,简称三角形的角;相邻两边的公共端点是三角形的顶点.三角形有三条边、三个内角、三个顶点.三角形ABC用符号表示为△ABC.△ABC的边AB为∠C所对的边,可以用顶点C的小写字母c表示,同样,边AC可用b表示,边BC可用a表示.问题2:三角形按照“有几条边相等”可以分为:三角形等边三角形等腰三角形不等边三角形也可以按照边的相等关系分为:三角形不等边三角形等腰三角形底边和腰不相等的等腰三角形等边三角形三角形按照角的关系可以分为:三角形直角三角形锐角三角形钝角三角形问题3:图中共有三个三角形,分别是△ABC,△ABD,△ADC,其中AB既是△ABC的边,也是△ABD的边,AD既是△ABD的边,也是△ADC的边,CD是△ADC的边.探究3:问题1:小虫从点B出发沿三角形的边爬到点C有2条线路:(1)从B→C,即线段BC的长;(2)从B→A→C,即线段BA与线段AC长之和:BA+AC.经过测量可得BA+AC>BC,所以这两条线路的长不一样.根据“两点的所有连线中,线段最短”,说明BA+AC>BC.问题2:三角形两边的和大于第三边.问题3:用三条长度分别为5,9,3的线段不能组成一个三角形,因为5+3<9.三、练习巩固答案:1.C2.共有5个三角形.分别是:△ABC,△BCD,△BCE,△ABE,△CDE.3.能,因为3+4>6.4.解:(1)设底边长为x cm,则腰长2x cm.x+2x+2x=18,解得x=3.6.所以,三边长分别为3.6 cm,7.2 cm,7.2 cm.(2)因为长4 cm的边可能是腰,也可能是底边,所以需要分情况讨论.如果长4 cm的边为底边,设腰长为x cm,则4+2x=18,解得x=7.如果长4 cm的边为腰,设底边长为x cm,则2×4+x=18,解得x=10.因为4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是4 cm的等腰三角形.由以上讨论可知,可以围成一边长是4 cm的等腰三角形.四、深化提高练习1:C练习2:解:第三根木条的长度可以是2 cm,3 cm,4 cm,5 cm,6 cm,7 cm,8 cm.练习3:解:由于题中并没有说明这四个点是否在同一条直线上,所以要分情况讨论.(1)四点共线时,不能组成三角形.(2)三点共线时,可以组成三个三角形.(3)任意三点都不共线时,可以组成四个三角形.第十一章三角形11.1 与三角形有关的线段11.1.2 三角形的高、中线与角平分线学习目标1.了解三角形的高、中线与角平分线的概念.2.准确区分三角形的高、中线与角平分线.3.能够独立完成与三角形的高、中线和角平分线有关的计算.学习过程一、自主学习问题1:数一数,图中共有多少个三角形?请将它们全部用符号表示出来.问题2:利用长为3,5,6,9的四条线段可以组成几个三角形?为什么?问题3:利用△ABC的一条边长为4 cm,面积是24 cm2这两个条件,你能得出什么结论?二、深化探究探究1:通过作图探索三角形的高问题1:你能画出下列三角形的所有的高吗?问题2:根据画高的过程说明什么叫三角形的高?问题3:在这些三角形中你能画出几条高?它们有什么相同点和不同点?问题4:如图所示,如果AD是△ABC的高,你能得到哪些结论?探究2:类比探索三角形的高的过程探索三角形的中线问题1:如图,如果点C是线段AB的中点,你能得到什么结论?问题2:如图,如果点D是线段BC的中点,那么线段AD就称为△ABC的中线.类比三角形的高的概念,试说明什么叫三角形的中线?由三角形的中线能得到什么结论?问题3:画出下列三角形的所有的中线,并讨论说明三角形的中线有什么特点?问题4:如图所示,在△ABC中,AD是△ABC的中线,AE是△ABC的高.试判断△ABD和△ACD的面积有什么关系?为什么?问题5:通过问题4你能发现什么规律?探究3:通过类比的方法探究三角形的角平分线问题1:如图,若OC是∠AOB的平分线,你能得到什么结论?问题2:如图,在△ABC中,如果∠BAC的平分线AD交BC边于点D,我们就称AD是△ABC的角平分线.类比探索三角形的高和中线的过程,你能得到哪些结论?三角形的角平分线与角的角平分线相同吗?为什么?三、练习巩固练习1:如图,在△ABC中画出这个三角形的高BD,中线CE和角平分线BF.练习2:如图,已知AD,BE,CF都是△ABC的中线,则AE==1,BC=2,AF=.练习3:如图,已知AD,BE,CF都是△ABC的角平分线,则∠1=1,∠ ==1,∠ABC=2.练习4:如图,在△ABC中,AC=12 cm,BC=18 cm,△ABC的高AD与BE的比是多少?四、深化提高练习1:如图,在直角三角形中,AC⊥BC,AC=8,BC=6,AB=10,求顶点C到边AB的高.练习2:如图,在△ABC中,AD是角平分线,DE∥AC,DF∥AB.试判断∠3和∠4的关系,并说明理由.练习3:利用所学知识将三角形分成面积相等的四部分.(至少画出4种)参考答案一、自主学习问题1:图中共有5个三角形.它们分别是:△ABC,△ABD,△ACD,△ADE,△CDE.问题2:可以组成2个三角形.从四条线段中任选三条组成三角形,共有四种选法:①3,5,6,②3,5,9,③3,6,9,④5,6,9,其中,满足“三角形两边之和大于第三边”的只有第①,④这两组.问题3:能够求出△ABC的高是12 cm.二、深化探究探究1:通过作图探索三角形的高问题1:能,图略.问题2:从三角形的一个顶点向它的对边所在直线作垂线,连接顶点和垂足之间的线段称为三角形的高.问题3:每个三角形都能画出三条高.相同点是:三角形的三条高交于同一点.不同点是:锐角三角形的高交于三角形内一点,直角三角形的高交于直角的顶点,钝角三角形的高交于三角形外一点.问题4:如果AD是△ABC的高,则有:AD⊥BC于点D,∠ADB=∠ADC=90°.探究2:问题1:AC=BC=1AB.问题2:三角形中连接一个顶点和它对边中的线段称为三角形的中线.如果线段AD是△ABC的中线,那么BD=CD=1BC.问题3:无论哪种三角形,它们都有三条中线,并且这三条中线都会交于一点,这一点都在三角形的内部.问题4:△ABD和△ACD的面积相等.理由:∵AD是△ABC的中线,∴BD=CD.∵AE既是△ABD的高,也是△ACD的高,∴S△ABD=1BD·AE=1CD·AE=S△ACD.∴△ABD和△ACD的面积相等.问题5:三角形的中线将三角形的面积平均分成两份.探究3:问题1:∠AOC=∠BOC=1∠AOB.问题2:三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段称为三角形的角平分线.三角形有三条角平分线,并且这三条角平分线在三角形内交于一点.如果AD是△ABC的角平分线,那么就有∠BAD=∠CAD=1∠BAC.三角形的角平分线与一个角的角平分线不一样,三角形的角平分线是一条线段,有长度,而角的平分线是一条射线,没有长度.三、练习巩固练习1:图略练习2:CE AC BD或CD BF练习3:∠BAC∠3∠ACB∠4或∠ABE练习4:解:由三角形的面积公式得S△ABC=1BC·AD=1AC·BE,所以有1×18×AD=1×12×BE,解得AD∶BE=2∶3.四、深化提高练习1:解:设顶点C到边AB的高为h,由三角形的面积公式可得S△ABC=1AC·BC=1AB·h,所以有1×6×8=1×10h,解得h=4.8.所以顶点C到边AB的高为4.8.练习2:解:∠3=∠4.理由:∵AD平分∠BAC,∴∠1=∠ .又∵DE∥AC,DF∥AB,∴∠1=∠4,∠ =∠3.∴∠3=∠4.练习3:利用三角形中线的性质可得第十一章三角形11.1 与三角形有关的线段11.1.3 三角形的稳定性学习目标1.通过观察和实际操作得到三角形具有稳定性,四边形不具有稳定性.2.体会稳定性与不稳定性在生产、生活中的应用.学习过程一、自主学习问题1:如图,在△ABC中,AD⊥BC,BE=CE,AF是角平分线.那么△ABC的三边有什么关系?根据上述条件,你还能得到什么结论?问题2:在我们的生产和生活中哪里用到了三角形?二、深化探究探究1:通过实际操作探索三角形的稳定性问题1:如图,在盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条.为什么要这样做?问题2:将三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?问题3:将四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?问题4:在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?问题5:经过以上三次实验,你发现了什么规律?探究2:通过生活中的实例感受数学知识在生产和生活中的应用问题1:三角形的稳定性在我们的生产和生活中有哪些应用?问题2:四边形的不稳定性在我们的生产和生活中有哪些应用?三、练习巩固练习:下列图形中哪些具有稳定性?四、深化提高练习:要使四边形木架不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?参考答案一、自主学习问题1:△ABC两边之和大于第三边,还可以得到AD是三角形BC边上的高,AE是三角形BC边上的中线,∠BAF=∠CAF,S△ABE=S△ACE等.问题2:房屋的人字梁、大桥钢架、索道支架、建筑用的三脚架等.二、深化探究探究1:问题1:讨论后,得出各种结论.问题2:动手操作,通过实验得出结论:它的形状不会改变.问题3:动手操作,通过实验得出结论:它的形状会改变.问题4:动手操作,通过实验得出结论:它的形状不会改变.问题5:可以发现,三角形不会变形,即三角形具有稳定性,而四边形不具有稳定性.探究2:问题1:桥梁、起重机、自行车架等.问题2:衣服挂架、放缩尺等.三、练习巩固(1)(4)(6)中的图形具有稳定性.四、深化提高第十一章三角形11.2 与三角形有关的角11.2.1 三角形的内角学习目标1.了解三角形的内角,会用平行线的性质与平角的定义证明三角形内角和等于180°.2.了解辅助线的作用,能准确、规范地利用辅助线进行证明.3.规范推理过程,能够独立完成简单的证明过程.学习过程一、自主学习问题1:如图,在△ABC中,∠A+∠B+∠C等于多少度?问题2:这个结论你是如何得出的?问题3:利用这些方法得出的结论准确吗?二、深化探究探究1:观察三角形的构成,探索三角形的概念问题1:如何用剪拼的方法验证△ABC的内角和等于180°?问题2:在图①、图②中,直线l有什么特点,它存在吗?图①或图②问题3:这种原图形中不存在,我们为了解题需要而自己加上的线被称之为辅助线.利用图①,你能想出证明“三角形内角和等于180°”的方法吗?问题4:利用图①证明三角形内角和定理“三角形内角和等于180°”.问题5:你能利用图②证明“三角形内角和等于180°”吗?探究2:利用所学知识解决基础问题问题1:如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向,从C岛看A、B两岛的视角∠ACB是多少度?问题2:对于上面的问题,你还能想出其他的解法吗?三、练习巩固练习1:说出下列各图中x的值.练习2:下列各组角中哪三个角是同一个三角形的内角?(1)70°,60°,30°,80°;( )110°, 0°,50°,40°;(3)5 °,3 °,58°,90°;(4)36°,108°,36°,7 °.练习3:如图,从A处观测C处时仰角∠CAD=30°,从B处观测C处时仰角∠CBD=45°,从C处观测A,B两处时视角∠ACB是多少度?四、深化提高练习1:思考:(1)一个三角形最多有几个直角,为什么?(2)一个三角形最多有几个钝角,为什么?(3)一个三角形至少有几个锐角,为什么?练习2:已知等腰三角形的两个底角相等,则:(1)如果顶角为80°,那么它的一个底角等于多少度?(2)如果它的一个角为80°,那么它的一个底角等于多少度?练习3:如图,已知∠1=15°,∠ =30°,∠A=50°,求∠BDC的度数.参考答案一、自主学习问题1:∠A+∠B+∠C=180°.问题2:将三角形的每个内角剪下,拼成一个平角,或者用量角器进行测量.问题3:不准确(或准确).二、深化探究探究1:问题1:将△ABC的三个内角分别剪下,再拼成一个平角.如图①、图②.图①或图②问题2:直线l∥BC,直线l不存在,是我们自己画上的.问题3:利用平行的性质和平角的定义可以证明.问题4:已知:△ABC.求证:∠A+∠B+∠C=180°.证明:如图,过点A作直线l,使l∥BC.∵l∥BC,∴∠ =∠4(两直线平行,内错角相等).同理,∠3=∠5.∵∠1,∠4,∠5组成平角,∴∠1+∠4+∠5=180°(平角定义).∴∠1+∠ +∠3=180°(等量代换),即∠BAC+∠B+∠C=180°.问题5:已知:△ABC.求证:∠A+∠B+∠C=180°.证明:如图,延长BC,过点C作直线l,使l∥AB.∵l∥AB,∴∠1=∠4(两直线平行,内错角相等),∠ =∠5(两直线平行,同位角相等).∵∠3,∠4,∠5组成平角,∴∠3+∠4+∠5=180°(平角定义).∴∠3+∠1+∠ =180°(等量代换),即∠A+∠B+∠BCA=180°.探究2:问题1:解:∠CAB=∠BAD-∠CAD=80°-50°=30°.∵AD∥BE,∴∠BAD+∠ABE=180°(两直线平行,同旁内角互补).∴∠ABE=180°-∠BAD=180°-80°=100°,∠ABC=∠ABE-∠EBC=100°-40°=60°.∴在△ABC中,∠ACB=180°-∠ABC-∠CAB=180°-60°-30°=90°.答:从C岛看A,B两岛的视角∠ACB是90°.问题2:解:过点C作CF∥AD.∵CF∥AD,∴∠ACF=∠DAC=50°(两直线平行,内错角相等).∵CF∥BE,∴∠BCF=∠CBE=40°(两直线平行,内错角相等).∴∠ACB=∠ACF+∠BCF=50°+40°=90°.答:从C岛看A,B两岛的视角∠ACB是90°.三、练习巩固练习1:解:图中的x值分别是70,60,30,50.练习2:解:由三角形内角和等于180°可以知道,各组中同一个三角形的内角分别如下:(1)70°,30°,80°;( )110°, 0°,50°;(3)3 °,58°,90°;(4)36°,36°,7 °.练习3:解:由三角形内角和等于180°可以知道,在△ACD中,∠ACD=60°,在△BCD 中,∠BCD=45°.所以∠ACB=∠ACD-∠BCD=60°-45°=15°.四、深化提高练习1:解:(1)一个三角形最多有一个直角.如果一个三角形有两个角是直角,那么三角形的内角和大于180°.这个结果与三角形内角和等于180°矛盾,所以一个三角形最多有一个直角.(2)一个三角形最多有一个钝角.如果一个三角形有两个角是钝角,那么三角形的内角和大于180°.这个结果与三角形内角和等于180°矛盾,所以一个三角形最多有一个钝角.(3)一个三角形至少有两个锐角.如果一个三角形只有一个角是锐角,那么三角形的另外两个角的和一定大于90°且小于180°.将大于90°且小于180°的角分成两个角的话,必定有一个角小于90°,所以一个三角形至少有两个锐角.练习2:解:(1)50°;( )如果80°角是等腰三角形的顶角,那么底角是50°,如果80°角是等腰三角形的底角,那么底角就是80°.练习3:解:由三角形内角和等于180°可知,∠ABC+∠ACB=130°,而∠1+∠ =45°,所以∠DBC+∠DCB=130°-45°=95°,所以∠BDC=105°.第十一章三角形11.2 与三角形有关的角11.2.2 三角形的外角学习目标1.了解三角形外角的概念.2.探索并证明三角形的一个外角等于与它不相邻的两个内角的和.3.运用三角形的一个外角等于与它不相邻的两个内角的和解决简单问题.学习过程一、自主学习问题1:如图,已知BD∥CE,∠A=45°,∠C=65°,求∠1和∠ 的度数.问题2:在问题1中,∠ 被称为三角形的外角,根据∠ 的构成,你能说明什么叫三角形的外角吗?二、深化探究探究1:根据定义探索三角形外角的个数问题1:根据定义,画出三角形的外角.你能画出多少个?问题2:这几个角有什么关系?(位置关系和数量关系)探究2:手脑并用探索三角形外角的性质及外角和问题1:如图,在△ABC中,∠ABC=65°,∠ACB=40°,求∠BAC的度数及三角形的外角∠1,∠ ,∠3的度数.问题2:观察你的结论,你能发现三角形的三个内角与它的外角有什么关系吗?三个外角又有什么关系?问题3:试证明三角形的一个外角等于与它不相邻的两个内角的和.问题4:试证明三角形的外角和等于360°.三、练习巩固练习1:说出下列各图中∠1和∠ 的度数.(1)(2)练习2:如图,∠BDC是的外角,∠BDC=+,∠EFC是的外角,∠EFC=+,∠BFC是的外角,∠BFC=+,∠BFC>.练习3:如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,证明∠BAC>∠B.练习4:如图,点D是△ABC内的一点,连接BD和CD,证明∠BDC>∠A.四、深化提高练习1:如图,在△ABC中,∠ABC与∠ACB的平分线交于点P.试证明∠P=90°+1∠A.练习2:如图,在上题中,如果CP是△ABC外角∠ACD的平分线,那么∠P与∠A有什么关系?试证明你的结论.练习3:如图,在上题中,如果BP,CP分别是∠CBD与∠BCE的平分线,那么∠P与∠A 有什么关系?试证明你的结论.参考答案一、自主学习问题1:由BD∥CE可知,∠1=∠C=65°,由三角形内角和等于180°可知,∠ 的邻补角等于70°,所以∠ =110°.问题2:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.二、深化探究探究1:问题1:如图,可以画出6个外角.问题 :∠1和∠ 是对顶角,∠3和∠4是对顶角,∠5和∠6是对顶角,所以有∠1=∠ ,∠3=∠4,∠5=∠6.探究2:问题1:∠BAC=75°,∠1=105°,∠ =115°,∠3=140°.问题2:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的外角和等于360°.问题3:已知:在△ABC中,∠1是三角形的一个外角.求证:∠1=∠A+∠B.证明:∵∠ACB+∠A+∠B=180°,(三角形的内角和等于180°)∴∠ACB=180°-∠A-∠B.∵∠1与∠ACB是邻补角,∴∠1+∠ACB=180°.∴∠1=180°-∠ACB=180°-(180°-∠A-∠B)=∠A+∠B.问题4:已知:在△ABC中,∠1,∠ ,∠3都是三角形的外角.求证:∠1+∠ +∠3=360°.证明:∵∠1,∠ ,∠3都是三角形的外角,∴∠1=∠ABC+∠ACB.(三角形的一个外角等于与它不相邻的两个内角的和)同理,∠ =∠BAC+∠ACB,∠3=∠BAC+∠ABC.∴∠1+∠ +∠3=∠ABC+∠ACB+∠BAC+∠ACB+∠BAC+∠ABC= (∠BAC+∠ABC+∠ACB).∵∠BAC+∠ABC+∠ACB=180°,(三角形的内角和等于180°)∴∠1+∠ +∠3=2×180°=360°.三、练习巩固练习1:(1)∠1=40°,∠ =140°;( )∠1=80°,∠ =40°.练习 :△ACD∠A∠ACD△BCF∠BCF∠FBC△BDF(△CEF)∠BDF(∠CEF)∠DBF(∠ECF)∠BDF(∠CEF…)练习3:证明:∵CE是∠ACD的平分线,∴∠ACE=∠DCE.(角平分线定义)∵∠DCE是△BCE的外角,∴∠DCE>∠B.(三角形的一个外角大于与它不相邻的任何一个内角)∴∠ACE>∠B.(等量代换)∵∠BAC是△ACE的外角,∴∠BAC>∠ACE.(三角形的一个外角大于与它不相邻的任何一个内角)∴∠BAC>∠B.练习4:证明:延长BD交AC于点E.∵∠BEC是△ABE的外角,∠BDC是△CDE的外角,∴∠BEC>∠A,∠BDC>∠BEC.(三角形的一个外角大于与它不相邻的任何一个内角)∴∠BDC>∠A.四、深化提高练习1:证明:∵BP,CP分别是∠ABC与∠ACB的平分线,∴∠PBC=1∠ABC,∠PCB=1∠ACB.(角平分线定义)∵∠A+∠ABC+∠ACB=180°,∠P+∠PBC+∠PCB=180°,(三角形的内角和等于180°)∴∠ABC+∠ACB=180°-∠A,∠P=180°-(∠PBC+∠PCB).∴∠P=180°-1(∠ABC+∠ACB)=180°-1(180°-∠A)=90°+1∠A.(等量代换) 练习2:解:∠P=1∠A.理由:∵BP,CP分别是∠ABC与∠ACD的平分线,∴∠PBC=1∠ABC,∠PCD=1∠ACD.(角平分线定义)∵∠PCD是△PBC的外角,∠ACD是△ABC的外角,∴∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC.(三角形的一个外角等于与它不相邻的两个内角的和)∴∠P=∠PCD-∠PBC,∠ABC=∠ACD-∠A.∴∠P=1∠ACD-1∠ABC=1(∠ACD-∠ABC)=1[∠ACD-(∠ACD-∠A)]=1∠A.(等量代换)练习3:解:∠P=90°-1∠A.理由:∵BP,CP分别是∠CBD与∠BCE的平分线,∴∠PBC=1∠CBD,∠PCB=1∠BCE.(角平分线定义)∵∠CBD与∠BCE都是△ABC的外角,∴∠CBD=∠A+∠ACB,∠BCE=∠A+∠ABC,(三角形的一个外角等于与它不相邻的两个内角的和)∵∠A+∠ABC+∠ACB=180°,∠P+∠PBC+∠PCB=180°,(三角形的内角和等于180°)∴∠P=180°-(∠PBC+∠PCB),∠ABC+∠ACB=180°-∠A.∴∠P=180°-1(∠CBD+∠BCE)=180°-1[(∠A+∠ACB)+(∠A+∠ABC)]=180°-1[ ∠A+(∠ACB+∠ABC)]=180°-1[ ∠A+(180°-∠A)]=180°-1(180°+∠A)=90°-1∠A.(等量代换)第十一章三角形11.3 多边形及其内角和11.3.1 多边形学习目标1.了解多边形的有关概念.2.了解正多边形的基本性质.学习过程一、自主学习问题:观察下面的图片,你能找到哪些我们熟悉的图形?二、深化探究探究1:观察多边形的构成,类比三角形的有关概念探索多边形的有关概念问题1:观察画多边形的过程,类比三角形的概念,你能说出什么是多边形吗?问题2:观察这个多边形,为什么有一条边是虚线?问题3:根据图示,类比三角形的有关概念,说明什么是多边形的边、顶点、内角、外角和对角线.问题4:三角形有对角线吗?为什么?问题5:回想三角形的表示方法,多边形应如何表示?问题6:如图所示,观察两个图形,找出相同点和不同点.探究2:自主探索正多边形的概念及基本性质问题1:观察下列图形,它们的边、角有什么特点?问题2:像这样的多边形我们称为正多边形.请用自己的语言说明什么是正多边形?问题3:下面的叙述是否正确?(正确的请说明理由,错误的请举出反例.)(1)各个角都相等的多边形叫做正多边形.(2)各条边都相等的多边形叫做正多边形.问题4:由定义可知,正多边形有什么性质?三、练习巩固练习1:判断题.(1)由四条线段首尾顺次相接组成的图形叫四边形.()(2)由不在一条直线上的四条线段首尾顺次相接组成的图形叫四边形.()(3)由不在一条直线上的四条线段首尾顺次相接组成的图形,且其中任何一条线段所在的直线使整个图形都在这条直线的同一侧,叫做四边形.()(4)在同一平面内,由四条线段首尾顺次相接组成的封闭图形叫四边形.()练习2:填空题.(1)连接多边形的线段,叫做多边形的对角线.(2)多边形的任何所在的直线,整个多边形都在这条直线的,这样的多边形叫凸多边形.(3)各个角,各条边的多边形,叫正多边形.(4)一个n边形有条边,个顶点,个内角,个外角.练习3:画出下列多边形的全部对角线.四、深化提高练习1:从一个顶点出发,四边形可以画1条对角线,将四边形分成2个三角形;五边形可以画条对角线,将五边形分成个三角形;六边形可以画条对角线,将六边形分成个三角形……n边形可以画条对角线,将n边形分成个三角形.练习2:填表:参考答案一、自主学习问题:三角形、长方形、正方形、平行四边形、五边形、六边形、八边形等.二、深化探究探究1:问题1:在平面内,由一些线段首尾顺次相接组成的封闭图形叫多边形.问题2:虚线代表的是“不止一条边”,所以这个图形不仅可以代表七边形,也可以代表八边形、九边形等任意一个多边形.问题3:组成多边形的线段叫做多边形的边;相邻两边的交点叫做多边形的顶点;相邻两边的夹角叫做多边形的内角;多边形的边与它邻边的延长线组成的角叫做多边形的外角;连接多边形不相邻的两个顶点的线段叫做多边形的对角线.问题4:三角形没有对角线,因为三角形只有三个顶点,而这三个顶点是两两相邻的,它没有不相邻的顶点,所以没有对角线.问题5:首先给每一个顶点标上一个大写字母,然后写出这个图形是几边形,最后再以一个字母为起点,沿顺时针或逆时针方向将字母按顺序写出.如:四边形ABCD,五边形ABCDE,n边形A1A2A3…A n等.问题6:相同点是这两个图形都有五条边,都是五边形.不同点是左边图形有一个内角大于180°,而右边图形的每个内角都小于180°.探究2:问题1:它们的边都相等,它们的角也都相等.问题2:各个角都相等,各条边都相等的多边形叫做正多边形.问题3:这两种说法都不正确.反例:(1)长方形的各个角都相等,但不是正四边形.(2)菱形的各条边都相等,但不是正四边形.问题4:正多边形的各个角都相等,各条边都相等.三、练习巩固练习1:(1)×(2)×(3)×(4)√练习2:(1)不相邻的两个顶点(2)一条边同一侧(3)都相等都相等(4)n n n n练习3:四、深化提高练习1:2334(n-3)(n-2)练习2:。