数字信号处理实验二

合集下载

数字信号处理 实验报告 实验二 应用快速傅立叶变换对信号进行频谱分析

数字信号处理 实验报告  实验二 应用快速傅立叶变换对信号进行频谱分析

数字信号处理实验报告实验二应用快速傅立叶变换对信号进行频谱分析2011年12月7日一、实验目的1、通过本实验,进一步加深对DFT 算法原理合基本性质的理解,熟悉FFT 算法 原理和FFT 子程序的应用。

2、掌握应用FFT 对信号进行频谱分析的方法。

3、通过本实验进一步掌握频域采样定理。

4、了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT 。

二、实验原理与方法1、一个连续时间信号)(t x a 的频谱可以用它的傅立叶变换表示()()j t a a X j x t e dt +∞-Ω-∞Ω=⎰2、对信号进行理想采样,得到采样序列()()a x n x nT =3、以T 为采样周期,对)(n x 进行Z 变换()()n X z x n z +∞--∞=∑4、当ωj ez =时,得到序列傅立叶变换SFT()()j j n X e x n e ωω+∞--∞=∑5、ω为数字角频率sT F ωΩ=Ω=6、已经知道:12()[()]j a m X e X j T T Tωωπ+∞-∞=-∑ ( 2-6 )7、序列的频谱是原模拟信号的周期延拓,即可以通过分析序列的频谱,得到相应连续信号的频谱。

(信号为有限带宽,采样满足Nyquist 定理)8、无线长序列可以用有限长序列来逼近,对于有限长序列可以使用离散傅立叶变换(DFT )。

可以很好的反映序列的频域特性,且易于快速算法在计算机上实现。

当序列()x n 的长度为N 时,它的离散傅里叶变换为:1()[()]()N knN n X k DFT x n x n W-===∑ 其中2jNN W eπ-=,它的反变换定义为:101()[()]()N knN k x n IDFT X k X k W N --===∑比较Z 变换式 ( 2-3 ) 和DFT 式 ( 2-7 ),令kN z W -=则1()()[()]|kNN nkN N Z W X z x n W DFT x n ---====∑ 因此有()()|kNz W X k X z -==k N W -是Z 平面单位圆上幅角为2kNπω=的点,也即是将单位圆N 等分后的第k 点。

数字信号处理实验报告(实验二)

数字信号处理实验报告(实验二)

实验二 时域采样与频域采样1. 实验目的:(1) 掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息。

(2) 掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

(3) 会用MATLAB 语言进行时域抽样与信号重建的方法,以及频域抽样与恢复时程序的编写方法。

2. 实验原理:了解时域采样定理的要点,理解理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系,了解频域采样定理的要点,掌握这两个采样理论的结论:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。

3. 实验内容:(1)时域采样理论的验证。

给定模拟信号,)()sin()(0t u t Ae t x t a Ω=-α式中A=444.128,α=502π,0Ω=502πrad/s(2)用DFT(FFT)求该模拟信号的幅频特性,选取三种采样频率,以验证时域采样理论。

(3)编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示。

观察分析频谱混叠失真。

(4)频域采样理论的验证。

给定信号如下:⎪⎩⎪⎨⎧≤≤-≤≤+=其它02614271301)(n n n n n x(5)编写程序分别对频谱函数()FT[()]j X e x n ω=在区间]2,0[π上等间隔采样32和16点,得到)()(1632k X k X 和,再分别对)()(1632k X k X 和进行32点和16点IFFT ,得到)()(1632n x n x 和。

(6)分别画出()j X e ω、)()(1632k X k X 和的幅度谱,并绘图显示x(n)、)()(1632n x n x 和的波形,进行对比和分析,验证总结频域采样理论。

4. 思考题:如果序列x(n)的长度为M ,希望得到其频谱()j X e ω在]2,0[π上的N 点等间隔采样,当N<M 时, 如何用一次最少点数的DFT 得到该频谱采样?答:将长序列分段分段计算,这种分段处理方法有重叠相加法和重叠保留法两种。

数字信号处理第二版(实验二) 信号的采样与重建

数字信号处理第二版(实验二) 信号的采样与重建

实验二信号的采样与重建一,实验目的(1)通过观察采样信号的混叠现象,进一步理解奈奎斯特采样频率的意义。

(2)通过实验,了解数字信号采样转换过程中的频率特征。

(3)对实际的音频文件作内插和抽取操作,体会低通滤波器在内插和抽取中的作用。

二,实验内容(1)采样混叠,对一个模拟信号Va(t)进行等间采样,采样频率为200HZ,得到离散时间信号V(n).Va(t)由频率为30Hz,150Hz,170Hz,250Hz,330Hz的5个正弦信号的加权和构成。

Va(t)=6cos(60pi*t)+3sin(300pi*t)+2cos(340pi*t)+4cos(500pi*t )+10sin(660pi*t)观察采样后信号的混叠效应。

程序:clear,close all,t=0:0.1:20;Ts=1/2;n=0:Ts:20;V=8*cos(0.3*pi*t)+5*cos(0.5*pi*t+0.6435)-10*sin(0.7*pi*t);Vn=8*cos(0.3*pi*n)+5*cos(0.5*pi*n+0.6435)-10*sin(0.7*pi*n);subplot(221)plot(t,V),grid on,subplot(222)stem(n,Vn,'.'),gridon,05101520-40-200204005101520-40-2002040(2)输入信号X(n)为归一化频率f1=0.043,f2=0.31的两个正弦信号相加而成,N=100,按因子M=2作抽取:(1)不适用低通滤波器;(2)使用低通滤波器。

分别显示输入输出序列在时域和频域中的特性。

程序:clear;N=100; M=2;f1=0.043; f2=0.31; n=0:N-1;x=sin(2*pi*f1*n)+sin(2*pi*f2*n); y1=x(1:2:100);y2=decimate(x,M,'fir'); figure(1);stem(n,x(1:N));title('input sequence'); xlabel('n');ylabel('fudu'); figure(2); n=0:N/2-1; stem(n,y1);title('output sequence without LP'); xlabel('n');ylabel('fudu'); figure(3); m=0:N/M-1;stem(m,y2(1:N/M));title('output sequence with LP'); xlabel('n');ylabel('fudu'); figure(4);[h,w]=freqz(x);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the input sequence'); xlabel('w');ylabel('fudu'); figure(5);[h,w]=freqz(y1);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP'); xlabel('w');ylabel('fudu'); figure(6);[h,w]=freqz(y2);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP'); xlabel('w');ylabel('fudu');0102030405060708090100-2-1.5-1-0.500.511.52input sequencenf u d u05101520253035404550-2-1.5-1-0.500.511.52output sequence without LPnf u d u05101520253035404550-1.5-1-0.50.511.5output sequence with LPnf u d u0.511.522.533.505101520253035404550frequency spectrum of the input sequencewf u d u00.51 1.52 2.53 3.551015202530frequency spectrum of the output sequence without LPwf u d u00.51 1.52 2.53 3.5510152025frequency spectrum of the output sequence without LPwf u d u(3)输入信号X(n)为归一化频率f1=0.043,f2=0.31的两个正弦信号相加而成,长度N=50,内插因子为2.(1)不适用低通滤波器;(2)使用低通滤波器。

数字信号处理实验报告(二)

数字信号处理实验报告(二)

数字信号处理第二次实验报告学院:信息工程学院班级:2012级电子信息工程*班姓名:学号:20125507**指导老师:实验四:IIR数字滤波器设计及软件实现一、实验目的1、熟悉双线性变换设计IIR滤波器的原理与方法2、掌握IIR滤波器的MATLAB实现方法二、实验原理简述IIR数字滤波器间接法基本设计过程:1、将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;2、设计过渡模拟滤波器;3、将过渡模拟滤波器系统函数转换成数字滤波器的系统函数三、程序与图形1、%-----------------信号产生函数mstg---------------function st=mstg %功能函数的写法%产生信号序列向量st,并显示st的时域波形和频谱%st=mstg 返回三路调幅信号相加形成的混合信号,长度N=1600N=1600 %N为信号st的长度。

Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz,Tp为采样时间t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;fc1=Fs/10; %第1路调幅信号的载波频率fc1=1000Hz,fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hzfc2=Fs/20; %第2路调幅信号的载波频率fc2=500Hzfm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hzfc3=Fs/40; %第3路调幅信号的载波频率fc3=250Hz,fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hzxt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号st=xt1+xt2+xt3; %三路调幅信号相加fxt=fft(st,N); %计算信号st的频谱%-------绘制st的时域波形和幅频特性曲线-----subplot(2,1,1)plot(t,st);grid;xlabel('t/s');ylabel('s(t)');axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形')subplot(2,1,2)stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱') axis([0,Fs/5,0,1.2]);xlabel('f/Hz');ylabel('幅度')-10123t/ss (t )(b) s(t)的频谱f/Hz幅度2、%-------实验4-2--------- clear all;close allFs=10000;T=1/Fs; %采样频率%调用信号产生函数mstg 产生由三路抑制载波调幅信号相加构成的复合信号st st=mstg;fp=280;fs=450; %下面wp,ws,为fp,fs 的归一化值范围为0-1wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF 指标(低通滤波器的通、阻带边界频)[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord 计算椭圆DF 阶数N 和通带截止频率wp[B,A]=ellip(N,rp,rs,wp); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A);y1t=filter(B,A,st); %滤波器软件实现 figure(2);subplot(2,1,1); plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y1t)-1)*T; plot(t,y1t);%axis([0,1,-80,0])-10123t/ss (t )(b) s(t)的频谱f/Hz幅度-80-60-40-20000.020.040.060.080.10.120.140.16-1-0.500.511.53、%-------实验4-3---------fpl=440;fpu=560;fsl=275;fsu=900;wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord 计算椭圆DF 阶数N 和通带截止频率wp[B,A]=ellip(N,rp,rs,wp); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A); y2t=filter(B,A,st);figure(3);subplot(2,1,1);plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y2t)-1)*T; plot(t,y2t);00.20.40.60.81-80-60-40-20000.020.040.060.080.10.120.140.16-2-10124、%-------实验4-4--------- fp=900;fs=550;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF 指标(低通滤波器的通、阻带边界频)[N,wp]=ellipord(wp,ws,rp,rs);%调用ellipord 算椭圆DF 阶数N 通带截止频率 [B,A]=ellip(N,rp,rs,wp,'high'); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A); y3t=filter(B,A,st);figure(4);subplot(2,1,1); plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y3t)-1)*T; plot(t,y3t);-80-60-40-20000.020.040.060.080.10.120.140.16-2-1012四、实验结果分析由图可见,三个分离滤波器指标参数选取正确,损耗函数曲线达到所给指标。

数字信号处理 实验二

数字信号处理  实验二

实验二离散时间信号时域表示一、实验类型:验证性实验二、实验目的1)掌握序列的产生方法;2)熟悉关于序列的简单运算;3)序列及其运算结果的可视化表示。

三、实验内容和步骤1)编写sy2_1.m程序文件,生成单位抽样序列和单位阶跃序列(n=-10~20),用图形显示。

2)编写sy2_2.m程序文件,生成一个实数值的指数序列(n=0~35,a=1.2),用图形显示。

3)编写sy2_3.m程序文件,生成扫频正弦序列X(n)=cos(pi*n2/200)(n=0~100),用图形显示。

4)编写sy2_4,m程序文件以实现下列功能:用rand函数随机产生噪声,加在一个已知的确定信号上,然后采用三点滑动平均算法y(n)=1/3(x[n-1]+x[n]+x[n+1])实现信号的平滑,用图形显示平滑后的信号。

四、实验结果及分析1)单位阶跃 sy2_1.mn=-10:20;y=[zeros(1,10),1,ones(1,20)];stem(n,y);2) 单位抽样sy2_1_1.mn=-10:20;y=[zeros(1,10),1,zeros(1,20)]; stem(n,y);3) 扫频正弦序列sy2_3.mn=0:1:100;f=cos(pi*n.^2/200);stem(n,f);4)指数序列sy2_2.mn=0:35;a=1.2;y=a.^n;stem(n,y);5)sy2_4.mN=128n=1:N;x=0.5-rand(1,N);stem(n,x);y=1.5*sin(60*pi*n*0.001); z=x+y;plot(n,z);-2-1.5-1-0.50.511.52五、问题思考:Legend 命令的作用是什么?解:添加AXES 里每条线的标识。

数字信号处理-实验二-FFT频谱分析

数字信号处理-实验二-FFT频谱分析

实验三:用FFT对信号作频谱分析10.3.1实验指导1.实验目的学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT。

2.实验原理用FFT对信号作频谱分析是学习数字信号处理的重要内容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D和分析误差。

频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是2 /N,因此要求2 /N D。

可以根据此式选择FFT的变换区间N。

误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时离散谱的包络才能逼近于连续谱,因此N要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT,得到的离散谱才能代表周期信号的频谱。

如果不知道信号周期,可以尽量选择信号的观察时间长一些。

对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。

如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。

3•实验步骤及内容(1)对以下序列进行谱分析。

X1 (n) RHn)n 1, 0 n 3X2 (n) 8 n, 4 n 70 ,其它n4 n, 0 n 3X3( n) n 3, 4 n 70, 其它n选择FFT的变换区间N为8和16两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(2)对以下周期序列进行谱分析。

x4(n) cos—n44x5(n) cos( n/4) cos( n/8)选择FFT的变换区间N为8和16两种情况分别对以上序列进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(3)对模拟周期信号进行谱分析x6(t) cos8 t cos16 t cos20 t选择采样频率F s 64Hz ,变换区间N=16,32,64 三种情况进行谱分析。

数字信号处理实验报告一二

数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。

也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

(完整版)数字信号处理实验二

(完整版)数字信号处理实验二
xlabel('时间序号n'); ylabel('振幅');
y = filter(num,den,x,ic);
yt = a*y1 + b*y2;
d = y - yt;
subplot(3,1,1)
stem(n,y);
ylabel('振幅');
title('加权输入: a \cdot x_{1}[n] + b \cdot x_{2}[n]的输出');
subplot(3,1,2)
%扫频信号通过2.1系统:
clf;
n = 0:100;
s1 = cos(2*pi*0.05*n);
s2 = cos(2*pi*0.47*n);
a = pi/2/100;
b = 0;
arg = a*n.*n + b*n;
x = cos(arg);
M = input('滤波器所需的长度=');
num = ones(1,M);
三、实验器材及软件
1.微型计算机1台
2. MATLAB 7.0软件
四、实验原理
1.三点平滑滤波器是一个线性时不变的有限冲激响应系统,将输出延时一个抽样周期,可得到三点平滑滤波器的因果表达式,生成的滤波器表示为
归纳上式可得
此式表示了一个因果M点平滑FIR滤波器。
2.对线性离散时间系统,若y1[n]和y2[n]分别是输入序列x1[n]和x2[n]的响应,则输入
plot(n, y);
axis([0, 100, -2, 2]);
xlabel('时间序号 n'); ylabel('振幅');
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对输入x[n]滤波,求得y1[n] 。

y[n]和y1[n]有差别吗?为什么要使用对x[n]补零后得到的x1[n]作为输入来产生y1[n] ?三、实验器材及软件1•微型计算机1台2. MATLAB 7.0 软件四、实验原理1.三点平滑滤波器是一个线性时不变的有限冲激响应系统,将输出延时一个抽样周期,可得到三点平滑滤波器的因果表达式,生成的滤波器表示为y[n] 1-(x[ n] x[n 1] x[n 2]) 3归纳上式可得1 M 1y[n] x[n k]IVI k 0此式表示了一个因果M点平滑FIR滤波器2.对线性离散时间系统,若y1[n]和y2[n]分别是输入序列xqn]和X2[n]的响应,则输入x[n] xdn] X2【n]的输出响应为y[n] yd n] y2【n]则系统称为线性系统。

3.对于离散时不变系统,若y1[n]是x1[n]的响应,则输入x[n]=x 1[n-n o]的输出响应为y[n]=y qn-n o]则称系统为时不变系统。

五、实验步骤2.1 首先利用MATLA产生一个高频正弦信号和一个低频正弦信号,利用两个信个信号,再对输出信号进行分析。

2.2 在2.1的基础上编写num=ones[1-1],运行程序得出结论。

2.4 分别用扫频信号通过2.1、2.2的系统,进行比较分析。

2.7 分别计算出y1[n]和y2[n],得到yt[n];再利用filter 函数求得y[n],计算差值输出,比较y[n]和yt[n]。

2.20根据impz函数的调用方式,得到num = [0.9 -0.45 0.35 0.002] den = [1 0.71 -0.46 -0.62] ,再调用impz 函数,画出图像。

2.23首先产生序列x[n],把它作为四阶系统的输入,生成y[n]。

然后将同样的输入x[n]应用到第一级得到y1[n]。

接着用相同的方法得到y2[n]。

最后求得两者的差,并画出图像。

2.28分别用conv函数和filter 函数求得输出,进行图像比较。

六、实验记录(数据、图表、波形、程序等)2.1 对M=2运行上述程序,生成输入x[n]=s1[n]+s2[n] 的输出信号。

输入x[n] 的哪个分量被该离散时间系统抑制?% Program P2_1clf;n = 0:100;si = cos(2*pi*0.05* n); s2 = cos(2*pi*0.47* n); x = s1+s2;M = input('滤波器所需的长度 =');num = on es(1,M); y = filter( num,1,x)/M; subplot(2,2,1); plot( n, s1); axis([0, 100, -2, 2]);xlabel('时间序号 n' ); ylabel('振幅'); title('信号 #1'); subplot(2,2,2); plot (n, s2); axis([0, 100, -2, 2]);xlabel('时间序号 n' ); ylabel('振幅'); title('信号 #2'); subplot(2,2,3); plot (n, x);axis([0, 100, -2, 2]);xlabel('时间序号 n' ); ylabel('振幅'); title('输入信号'); subplot(2,2,4); plot (n, y);axis([0, 100, -2, 2]);xlabel('时间序号 n' ); ylabel('振幅'); title('输岀信号'); axis;2.2 若线性时不变系统由 y[n]=0.5(x[n]+x[n-1])变成-2-20 1.5 1 0.5幅0 -0.5 -1 -1.5 信号#110 20 30 4050时间序号60 n70 80 90 100幅信号#2时间序号n2 1.5 10.5 幅 0振-0.5-1 -1.5 10 2030 输入信号405060 70 80 90 100时间序号n输出信号y[n]=0.5(x[n]-x[n-1]) ,对输入 x[n]=s1[n]+s2[n] 的影响是什么?在 M=2的基础上,线性时不变系统由y[n]=0.5(x[n]+x[n-1])变成y[n]=0.5(x[n]-x[n-1]) ,则在 MATLA 上,程序 P2.1 更改:num 可以直接表示为 num=[1-1],通用的表达式为:num=[1 -ones(1,M-1)]。

得到图像为2.4 修改程序P2.1,用一个长度为101、最低频率为0、最咼频率为0.5的扫 频正弦信号作为输入信号(见程序 P1.7),计算其输出信号。

你能用该系统对扫频信 号的响应来解释习题Q2.1和习题Q2.2的结果吗?%日频信号通过 2.1系统: elf; n = 0:100;s1 = cos(2*pi*0.05* n); s2 = cos(2*pi*0.47* n); a = pi/2/100; b = 0;arg = a*n *n + b*n; x = cos(arg);M = input('滤波器所需的长度 ='); num = on es(1,M);信号#12 ---------------------------- .——2 If-1 ” _1-20 100 -2 100-20 210 -1 -2 010050 时间序号n 输出信号1 0信号#210 50 时间序号n 输入信号-1 50100 时间序号nIf50时间序号ny = filter( num,1,x)/M; subplot(2,2,1); plot( n, s1); axis([0, 100, -2, 2]);xlabel('时间序号 n' ); ylabel('振幅'); title('信号 #1'); subplot(2,2,2); plot (n, s2); axis([0, 100, -2, 2]);xlabel('时间序号 n' ); ylabel('振幅'); title('信号 #2'); subplot(2,2,3); plot (n, x);axis([0, 100, -2, 2]);xlabel('时间序号 n' ); ylabel('振幅'); title('输入信号'); subplot(2,2,4); plot (n, y);axis([0, 100, -2, 2]);xlabel('时间序号 n' ); ylabel('振幅'); title('输岀信号'); axis;2 1 0 -1 -2 050100时间序号n%日频信号通过2.2系统: clf; n = 0:100;s1 = cos(2*pi*0.05* n); s2 = cos(2*pi*0.47* n);2 1 0 -1 -20 50100信号#1幅 振2 10 -1 -2 050100时间序号n 输入信号幅 振2 10 -1 -2 050100时间序号n 输出信号时间序号na = pi/2/100;b = 0;arg = a*n.*n + b*n;x = cos(arg);M = input('滤波器所需的长度=');num = [1 -1];y = filter( num,1,x)/M; subplot(2,2,1);plot( n, s1);axis([0, 100, -2, 2]);xlabel('时间序号n' ); ylabel('振幅'); title('信号#1'); subplot(2,2,2);plot (n, s2);axis([0, 100, -2, 2]);xlabel('时间序号n' ); ylabel('振幅'); title('信号#2'); subplot(2,2,3);plot (n, x);axis([0, 100, -2, 2]);xlabel('时间序号n' ); ylabel('振幅'); title('输入信号'); subplot(2,2,4);plot (n, y);axis([0, 100, -2, 2]);xlabel('时间序号n' ); ylabel('振幅'); title('输岀信号'); axis;幅振21-1-20 50 100时间序号n输入信号2 r ------------------------- -------------------------- r幅振21-1-2信号#2-2 1------------------------- ■------------------------ 10 50 10021-1-20 50 100时间序号n 输出信号时间序号n0 50 100时间序号n加权输出:a y 1[n] + b y 2[n]x 10-15差信号2.12运行程序P2.4并比较输出序列y[n]和yd[n-10]。

这两个系列之间有什么 关系?该系统是时不变系统吗?% Program P2_4 elf ;n = 0:40; D = 10;a = 3.0;b = -2;x = a*cos(2*pi*0.1* n) + b*cos(2*pi*0.4* n); xd = [zeros(1,D) x];num = [2.2403 2.4908 2.2403]; den = [1 -0.4 0.75]; ic = [0 0];y = filter( num,de n,x,ic); yd = filter( num,de n, xd,ic); d = y - yd(1+D:41+D); subplot(3,1,1) stem( n,y); ylabel('振幅'); title('输岀 y[n]' ); grid;subplot(3,1,2) stem( n, yd(1:41)); ylabel('振幅');title(['由于延时输入 x[n' , num2str(D),']的输岀’]);grid; subplot(3,1,3) stem( n,d);xlabel('时间序号 n' ); ylabel('振幅’); title('差值信号');grid;幅 振5 10 1520 25303540时间序号n50输出y[n]-5011.I 1 -t at 心tLi.1 1 <.1「6..:厂丁 1 "1'J.1 r* i.1」j1亠inr l-1 )7Tin由于延时输入x[n10]的输出50-50差值信号2.19运行程序P2.5,生成式(2.15)所给离散时间系统的冲激响应% Program P2_5elf;N = 40;num = [2.2403 2.4908 2.2403];den = [1 -0.4 0.75];y = impz( num,de n, N);stem(y);xlabel('时间序号n' ); ylabel('振幅'); title('冲激响应');grid;冲激响应幅振2.20修改程序P2.5,产生如下因果线性时不变系统的冲激响应的前45个样本:y[n] 0.71 y[ n 1] 0.46y[ n 2] 0.62 y[ n 3]0.9x[ n] 0.45x[n 1] 0.35x[n 2] 0.002x[ n 3]Cif;N = 45;num = [0.9 -0.45 0.35 0.002]; den = [1 0.71 -0.46 -0.62];y = impz( num,de n, N);stem(y);xlabel('时间序号n' ); ylabel('振幅'); title('冲激响应');grid;2.23运行程序P2.6,计算输出序列y[n]和y2[n]以及差值信号d[n] 。

相关文档
最新文档