中国药科大学生物化学各章复习要点

合集下载

中国药科大学现代生化药物复习资料(适用于期末、研究生入学考试)

中国药科大学现代生化药物复习资料(适用于期末、研究生入学考试)

•现代生化药学复习提要第一章 PCR1 PCR的英文全称:Polymerase chain reaction 聚合酶链式反应2 PCR是发明者:Kary Mullis 美国科学家 1985申请专利。

Perkin-Elmer Cetus公司第一台PCR扩增仪。

3 PCR的基本原理是什么?以拟扩增的DNA分子为模板,以一对分别与模板互补的寡核苷酸片段为引物,在DNA聚合酶的作用下,按照办保留复制到机制沿着模板链延伸直至完成新的DNA合成。

A.混合模板DNA,四种核糖的三磷酸盐和DNA聚合酶,加入过量的2种DNA引物,与模板中需要的序列的起始和结束区域结合。

B.加热反应液至94℃以使模板DNA的双链变成单链(变性)C.冷却至50℃,引物与模板DNA的单链结合(退火)D.升温至72℃,DNA聚合酶催化DNA复制以产生双螺旋DNA(延伸)E.重复步骤2-4至满意为止4 PCR反应的产物中一般会生成几种长度不同的产物?反应结束时他们的含量分别是怎样的?一种是与预期长度的片度,一种是比预期长度长的多的产物。

目的产物以指数级数2n增加;另一种产物以几何级数 2n增加,在总产物中所占的比重很小,可以忽略。

5 一般PCR反应中包括几种基本成份?它们的功能分别是什么?7种:模板DNA、特异性引物、热稳定DNA聚合酶、脱氧核苷三磷酸(dNTP)、二价阳离子、缓冲液及一价阳离子、石蜡油○1模板DNA:是待扩增序列的核酸,不能混有任何蛋白酶、核酸酶、TaqDNA聚合酶抑制剂、结合DNA的蛋白。

○2特异性引物:引物是靶DNA的3’端和5’端特异性结合的寡核苷酸片段,是决定PCR特异性的关键。

引物是决定PCR扩增片断的长度、位置和结果的关键。

引物设计的必要条件:与引物互补的靶DNA序列必须是已知的。

○3热稳定DNA聚合酶:○1聚合作用(5’→3’)、○23’→5’的外切酶活力、○35’→3’的外切酶活力○4脱氧核苷三磷酸(dNTP):原料。

完整版)生物化学知识点重点整理

完整版)生物化学知识点重点整理

完整版)生物化学知识点重点整理生物分子本章节将介绍生物分子的基本概念和特征,包括蛋白质、核酸、多糖和脂质的结构和功能。

本章节将讨论酶在生化反应中的作用机制和催化过程。

包括酶的分类、酶动力学和酶抑制剂等内容。

本章节将介绍生物体内的代谢途径,包括糖代谢、脂肪代谢和蛋白质代谢等重要过程。

本章节将探讨生物能量转化的过程,包括光合作用和呼吸作用等机制,以及相关的能量产生和消耗。

本章节将介绍生物体内遗传信息的传递过程,包括DNA复制、RNA转录和蛋白质翻译等重要步骤。

DNA复制DNA复制是遗传信息传递的第一步。

在细胞分裂过程中,DNA分子能够准确地复制自身,并将遗传信息传递给下一代细胞。

复制过程中,双链DNA分离,每条链作为模板合成新的互补链,形成两个完全一样的DNA分子。

RNA转录RNA转录是将DNA中的遗传信息转录成RNA的过程。

在细胞核中,RNA聚合酶将DNA作为模板合成RNA分子。

转录的产物是一条与DNA互补的RNA链,它可以是信使RNA(mRNA)、转移RNA(tRNA)或核糖体RNA(rRNA),这些RNA分子携带着遗传信息参与到蛋白质的合成过程中。

蛋白质翻译蛋白质翻译是将RNA中的遗传信息翻译成氨基酸序列,从而合成蛋白质的过程。

蛋白质翻译发生在细胞质的核糖体上,通过配对规则,每个三个核苷酸对应一个特定的氨基酸,从而组成特定的蛋白质。

翻译过程可分为启动、延伸和终止三个阶段。

以上是生物体内遗传信息的传递过程的重要步骤。

深入了解这些过程有助于理解生物体内的遗传机制和生命周期的维持。

本章节将讨论基因调控的机制和影响因素,包括转录因子、表观遗传学和信号转导等内容。

本章节将探讨生物化学与人体健康的关系,包括营养物质、药物代谢和疾病发生机制等相关内容。

本章节将探讨生物化学与人体健康的关系,包括营养物质、药物代谢和疾病发生机制等相关内容。

大一生物化学第二、三、五、七、八、章知识点总结

大一生物化学第二、三、五、七、八、章知识点总结

第二章:核酸化学①D-核糖①嘌呤:腺嘌呤、鸟嘌呤(逆时针编号)1、戊糖2、碱基②D-2-脱氧核糖②嘧啶:胞嘧啶、尿嘧啶、胸腺嘧啶(顺时针编号)3、磷酸核糖核苷:腺苷、鸟苷、尿苷、4、核苷:一个戊糖和一个碱基结合形成核苷胞苷脱氧核糖核苷:脱氧腺苷、脱氧鸟苷、脱氧胸苷、脱氧胞苷①核糖核苷酸:(x苷-5’-单磷酸)5、核苷酸:(核酸是核苷的磷酸酯)腺苷酸(AMP)、尿苷酸(UMP) /(5’-AMP)一个戊糖、一个碱基和一个磷酸组成鸟苷酸(GMP)、胞苷酸(CMP)②脱氧核糖核苷酸:(脱氧x苷-5’-单磷酸)脱氧腺苷酸(dAMP)、脱氧鸟苷酸(dGMP) /(5’-dAMP)脱氧胞苷酸(dCMP)、脱氧胸苷酸(dTMP)①不游离核苷酸:作为核酸的结构单元1、多磷酸核苷酸:AMP/腺一磷、ADP/腺二磷、ATP/腺三磷、(CMP/CDP/CTP:胞苷x磷酸)(dCMP/dCDP/dCTP:脱氧胞苷x磷酸)2、环式单核苷酸:核苷酸上的磷核苷酸酸与核糖的3’,5’-二羟基②游离核苷酸/核苷酸衍生物:形成双酯环化而成。

它们是传递激素的媒介物,故被称为“二级信使”。

(cGMP:3’,5’- 环鸟苷酸)(cAMP:3’,5’- 环腺酸)3、辅酶类核苷酸:烟酰胺腺嘌呤二核苷酸/NAD烟酰胺腺嘌呤二核苷酸磷酸/NADP3’,5’磷酸二酯键6、核酸:以核苷酸为基本结构单元所构成的生物大分子。

①一级结构:脱氧核苷酸之间的连接方式和排列顺序1、脱氧核苷酸之间的连接方式:以3’,5’磷酸二酯键相连,DNA分子无分支侧链,只能成环状或线状左侧5’,右侧3’2、脱氧核苷酸之间的排列顺序:基因的遗传信息的物质基础就是4种碱基的精确排列顺序。

(1)碱基当量定律:A+G=C+T1、DNA的组成:Chargaff定律:(2)不对称比率:A+TC+G②二级结构:比值与物种有关DNA(1)DNA分子有两条反向平行的多聚核苷酸链组成,一条链的走向3’到5’,另一条5’到3’。

中国药科大学考研药综一710——生化名解

中国药科大学考研药综一710——生化名解

第一章绪论1.生物化学:是生命的化学,是研究生物体的化学组成和生命过程中的化学变化规律的一门科学,它是从分子水平来研究生物体内基本物质的化学组成、结构与生物学功能,阐明生物物质在生命活动变化中的化学变化规律及复杂生命现象本质的一门学科。

2.新陈代谢:生物体不断与外环境进行有规律的物质交换。

是通过消化、吸收、中间代谢和排泄四个阶段来完成的。

3.分子生物学:是现代生物学的带头学科,它主要研究遗传的分子基础,生物大分子的结构与与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能等。

第二章糖的化学4.糖类:多羟基醛或多羟基酮及其聚合物和衍生物的总称。

5.单糖:凡不能被水解成更小分子的糖称为单糖。

是糖类中最简单的一种,是组成糖类物质的基本结构单位。

6.寡糖:是由单糖缩合而成的短链结构,一般含2~6个单糖分子。

7.多糖:由许多单糖分子缩合而成的长链结构,分子量都很大,均无甜味,也无还原性。

8.粘(黏)多糖:粘多糖是一类含氮的不均一多糖,其化学组成通常为糖醛酸和氨基已糖或其衍生物,有的含有硫酸。

如透明质酸,硫酸软骨素,肝素等。

(07年药综二真题)9.结合糖:是指糖和蛋白质、脂质等非糖物质结合的复合分子。

10.糖脂:糖和脂类以共价键结合成的复合物,组成和总体性质以脂为主,糖类通过其还原末端的糖苷键与脂连接。

11. 糖蛋白:是糖与蛋白质以共价键结合的复合分子,其中糖的含量一般小于蛋白质,糖和蛋白质结合的方式有O连接和N连接。

12.脂多糖:是糖与脂类结合形成的复合物,以糖为主体成分,革兰氏阴性菌细胞壁内的脂多糖一般由外低聚糖链、核心多糖及脂质三部分组成。

13.糖苷键:一个糖半缩醛羟基与另一个分子的羟基、氨基或巯基之间缩合形成的缩醛或缩酮键,常见的糖苷键有O-糖苷键和N-糖苷键。

14.Smith降解:将过碘酸氧化产物进行还原,进行酸水解或部分酸水解。

15.糖基化工程:是在深入研究糖蛋白中糖链结构与功能关系的基础上,通过人为的改变(包括增加,删除)调整糖蛋白的表面的糖链而达到改变糖蛋白的生物学功能的目的。

药学本科生物化学各章复习重点

药学本科生物化学各章复习重点

生化复习第四章蛋白质的化学要点汇总蛋白质:多种氨基酸(amino acids)通过肽键相连形成的高分子含氮化合物。

蛋白质具有多样性的生物学功能作为生物催化剂(酶)?代谢调节作用(激素)?免疫保护作用(抗体)?物质的转运和存储(转运蛋白)?运动与支持作用(胶原蛋白)?控制生长和分化(激活或阻遏蛋白)?参与细胞间信息传递(受体)?生物膜的功能(离子泵)?氧化供能(18%)?必需氨基酸:人体不能合成,必需从食物中获取的一类氨基酸。

主要有:苯丙、蛋、缬、苏、异亮、?亮、色、赖8种氨基酸等电点(isoelectric point,pI):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势?及程度相等,成为兼性(两性)离子,呈电中性。

此时溶液的pH值称为该氨基酸的等电点。

蛋白质的一级结构:整条多肽链通过肽键形成的氨基酸残基排列顺序。

?肽键:由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键。

蛋白质二级结构:局部肽链的主链骨架原子通过氢键形成的三维结构,并不涉及氨基酸残基侧链的?构象。

肽单元:参与肽键的6个原子C 、C、O、N、H、 C位于同一平面。

? 21α -螺旋(①右旋;②3.6个AA残基/螺旋;③1个肽单元N-H和第四个肽单元C=O形成氢键;④侧链R在螺旋外侧。

常见如角蛋白,肌红蛋白)β-折叠(①各链伸展使肽平面之间折叠成锯齿状;②各链平行排列通过氢键相连;③各链走向相同或相反;④侧链R在片层上下方;⑤可在分子内或分子间形成。

常见如蚕丝蛋白)基序:也称超二级结构(或模体),在许多蛋白质分子中,可发现2到3个具有二级结构的肽段,在?空间上相互接近,形成一个有规则和具有特定功能的二级结构组合。

如:αα,βαβ,βββ。

结构域:分子量较大的蛋白质常可折叠成多个结构较为紧密且发挥特定生物学功能的区域。

?蛋白质三级结构:整条多肽链通过疏水键、离子键、氢键等形成的三维结构。

有些蛋白质含有二条或多条多肽链,每条肽链都有完整的三级结构,这种多肽链称为蛋白质的亚基。

生物化学复习提纲

生物化学复习提纲

生物化学复习提纲文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]生物化学复习提纲第一章蛋白质化学1. 简述蛋白质的功能:①催化功能-酶②调控功能-激素、基因调控因子③贮存功能-乳、蛋、谷蛋白④转运功能-膜转运蛋白、血红/血清蛋白⑤运动功能-鞭毛、肌肉蛋白⑥结构成分-皮、毛、骨、牙、细胞骨架⑦支架作用-接头蛋白⑧防御功能-免疫球蛋白2. 蛋白质含氮量16%,凯氏定氮法;蛋白质含量 = 每克样品中含氮的克数×凯氏定氮法蛋白质与硫酸和催化剂一同加热消化,分解氨与硫酸结合。

然后碱化蒸馏使氨游离,用硼酸吸收后再以酸滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量3. 酸性氨基酸,碱性氨基酸,芳香族氨基酸,亚氨基酸,含硫氨基酸,含羟基氨基酸酸性氨基酸: Asp、 Glu碱性氨基酸:Arg、Lys、His,另外还有:羟赖氨酸(Hyl)、羟脯氨酸(Hyp)、胱氨酸芳香族氨基酸:Phe、Try、Tyr亚氨基酸:Pro含硫氨基酸:Cys、Met含羟基氨基酸:Ser、Thr4. 必需氨基酸,非必需氨基酸;必需氨基酸:异亮氨酸(Iso)、亮氨酸(Leu)、赖氨酸(Lys)、蛋氨酸(Meth)、苯丙氨酸(Phe)、苏氨酸(Thre)、色氨酸(Try)和缬氨酸(Viline)非必需氨基酸:5. 手性和比旋光度的偏转方向是否有一致性;AA的手性D,L与比旋光度的偏转方向并没有一致性。

6. 具有近紫外光吸收的氨基酸;Tyr/Trp/Phe7. 氨基酸的等电点;①当溶液为某一pH值时,AA主要以兼性离子的形式存在,分子中所含的正负电荷数目正好相等,净电荷为0。

这一pH值即为AA的等电点(pI)。

②在pI时,AA在电场中既不向正极也不向负极移动,即处于两性离子状态。

8;蛋白质的一级结构;蛋白质多肽链的氨基酸排列顺序——蛋白质的一级结构9、肽键中C-N键的性质及肽平面;肽键中C-N键有部分双键性质——不能由旋转组成肽键原处于同平(肽平)10.什么是蛋白质的二级结构,常见的二级结构有哪些,它们有什么特点;⑴①指肽链的主链在空间的排列,或规则的何向、旋转及折叠。

生物化学复习提纲

生物化学基础复习提纲生物化学专业复习提纲第一章糖类本章节包括以下几个知识点1,糖的定义和分类。

2.、葡萄糖代表的单糖的分子结构、分类、重要理化性质。

3,比较三种主要双糖(蔗糖、乳糖、麦芽糖)的组成、连接键的种类及其环状结构。

4,淀粉、糖原、纤维素的组成单位和特有的颜色反应及生物学功能。

5,糖胺聚糖、糖蛋白、蛋白聚糖的定义及键的连接方式。

6,了解糖的生理功能。

,其中必须掌握的重要知识点是第1-4,糖这章很少会出现大题,不过在填空和选择中却每年都会出题,所以大家要注意一下这章中重要知识点,以填空或选择提的形式掌握。

基础阶段,复习时间是从5月份至8月份,对于上面所述的知识点要熟悉,尽量掌握,一些比较零碎的需要加强记忆的知识点,大家最好做一下总结笔记,以便在强化阶段和冲刺阶段较强理解和记忆,得到更好的复习效果。

在复习每一个知识点的过程中,首先要了解知识点,通过反复阅读教材熟悉相应知识点,通过对相应知识点的总结及对应练习题的练习加强对这些知识点的掌握。

当然,在下面的章节中,对于知识点的掌握方法也是一样的,希望大家能尽量按照我所建议的复习要求和方法去做,这样能达到事半功倍的效果。

好,下面就对糖这章的知识点进行一下讲解。

【知识点1】糖的定义和分类:定义糖类是含多羟基的醛或酮类化合物。

化学本质:大多数糖类物质只由C、H、O三种元素组成,单糖的化学本质是多羟基的醛或酮分类:根据分子的结构单元数目,糖可分为单糖、寡糖、多糖。

掌握常见的单糖、寡糖、多糖有哪些【例题1】琼脂和琼脂糖(09)A、主要成分相同,属同多糖B、主要成分不同,属同多糖C、主要成分相同,应用不能代替D、主要成分不同,应用不能代替分析:琼脂糖属于多糖,而琼脂的成分包括琼脂胶和琼脂糖,是一种半乳糖聚合物,不是多糖。

两者主要成分是相同的,两者各有应用上的特点解题:c易错点:区别琼脂和琼脂糖的概念【知识点2】以葡萄糖代表的单糖的分子结构、分类、重要理化性质。

(完整word版)中国药科大学生物化学重点及习题

1第一章蛋白质一、知识要点(一)氨基酸的结构蛋白质是重要的生物大分子,其组成单位是氨基酸。

组成蛋白质的氨基酸有20 种,均为α-氨基酸。

每个氨基酸的α-碳上连接一个羧基,一个氨基,一个氢原子和一个侧链R 基团。

20 种氨基酸结构的差别就在于它们的R 基团结构的不同。

根据20 种氨基酸侧链R 基团的极性,可将其分为四大类:非极性R 基氨基酸(8 种);不带电荷的极性R 基氨基酸(7 种);带负电荷的R 基氨基酸(2 种);带正电荷的R 基氨基酸(3 种)。

(二)氨基酸的性质氨基酸是两性电解质。

由于氨基酸含有酸性的羧基和碱性的氨基,所以既是酸又是碱,是两性电解质。

有些氨基酸的侧链还含有可解离的基团,其带电状况取决于它们的pK 值。

由于不同氨基酸所带的可解离基团不同,所以等电点不同。

除甘氨酸外,其它都有不对称碳原子,所以具有D-型和L-型2 种构型,具有旋光性,天然蛋白质中存在的氨基酸都是L-型的。

酪氨酸、苯丙氨酸和色氨酸具有紫外吸收特性,在280nm 处有最大吸收值,大多数蛋白质都具有这些氨基酸,所以蛋白质在280nm 处也有特征吸收,这是紫外吸收法定量测定蛋白质的基础。

氨基酸的α-羧基和α-氨基具有化学反应性,另外,许多氨基酸的侧链还含有羟基、氨基、羧基等可解离基团,也具有化学反应性。

较重要的化学反应有:(1)茚三酮反应,除脯氨酸外,所有的α-氨基酸都能与茚三酮发生颜色反应,生成蓝紫色化合物,脯氨酸与茚三酮生成黄色化合物。

(2)Sanger 反应,α-NH2 与2,4-二硝基氟苯作用产生相应的DNB-氨基酸。

(3)Edman 反应,α-NH2 与苯异硫氰酸酯作用产生相应的氨基酸的苯氨基硫甲酰衍生物(PIT-氨基酸)。

Sanger 反应和Edmen 反应均可用于蛋白质多肽链N 端氨基酸的测定。

氨基酸通过肽键相互连接而成的化合物称为肽,由2 个氨基酸组成的肽称为二肽,由3 个氨基酸组成的肽称为三肽,少于10 个氨基酸肽称为寡肽,由10 个以上氨基酸组成的肽称为多肽。

大一生物化学第二、三、五、七、八、章知识点总结(word文档物超所值)

第二章:核酸化学①D-核糖①嘌呤:腺嘌呤、鸟嘌呤(逆时针编号)1、戊糖2、碱基②D-2-脱氧核糖②嘧啶:胞嘧啶、尿嘧啶、胸腺嘧啶(顺时针编号)3、磷酸核糖核苷:腺苷、鸟苷、尿苷、4、核苷:一个戊糖和一个碱基结合形成核苷胞苷脱氧核糖核苷:脱氧腺苷、脱氧鸟苷、脱氧胸苷、脱氧胞苷①核糖核苷酸:(x苷-5’-单磷酸)5、核苷酸:(核酸是核苷的磷酸酯)腺苷酸(AMP)、尿苷酸(UMP) /(5’-AMP)一个戊糖、一个碱基和一个磷酸组成鸟苷酸(GMP)、胞苷酸(CMP)②脱氧核糖核苷酸:(脱氧x苷-5’-单磷酸)脱氧腺苷酸(dAMP)、脱氧鸟苷酸(dGMP) /(5’-dAMP)脱氧胞苷酸(dCMP)、脱氧胸苷酸(dTMP)①不游离核苷酸:作为核酸的结构单元1、多磷酸核苷酸:AMP/腺一磷、ADP/腺二磷、ATP/腺三磷、(CMP/CDP/CTP:胞苷x磷酸)(dCMP/dCDP/dCTP:脱氧胞苷x磷酸)2、环式单核苷酸:核苷酸核苷酸上的磷酸与核糖的3’,5’-二羟基②游离核苷酸/核苷酸衍生物:形成双酯环化而成。

它们是传递激素的媒介物,故被称为“二级信使”。

(cGMP:3’,5’- 环鸟苷酸)(cAMP:3’,5’- 环腺酸)3、辅酶类核苷酸:烟酰胺腺嘌呤二核苷酸/NAD烟酰胺腺嘌呤二核苷酸磷酸/NADP3’,5’磷酸二酯键6、核酸:以核苷酸为基本结构单元所构成的生物大分子。

①一级结构:脱氧核苷酸之间的连接方式和排列顺序1、脱氧核苷酸之间的连接方式:以3’,5’磷酸二酯键相连,DNA分子无分支侧链,只能成环状或线状左侧5’,右侧3’2、脱氧核苷酸之间的排列顺序:基因的遗传信息的物质基础就是4种碱基的精确排列顺序。

(1)碱基当量定律:A+G=C+T1、DNA的组成:Chargaff定律:(2)不对称比率:A+TC+G②二级结构:比值与物种有关DNA(1)DNA分子有两条反向平行的多聚核苷酸链组成,一条链的走向3’到5’,另一条5’到3’。

生物化学各章知识点总结

生物化学各章知识点总结一、生物化学基本概念1. 生物化学的基本概念生物化学是在分子水平上研究生物体内各种生物分子之间的相互作用和生物体内生物分子的合成、转化和降解规律的一门学科。

生物体内的生物分子包括蛋白质、核酸、碳水化合物、脂类等,它们是生物体内最基本的能量来源和结构组分。

2. 生物大分子的结构和功能(1)蛋白质是生物体内最重要的大分子,是生命活动的基本组成单元,具有结构、酶、携氧、抗体等生物学功能。

(2)核酸是生物体遗传信息的基本载体,包括DNA和RNA两大类,是生物体的遗传物质,具有储存遗传信息和遗传信息传递的功能。

(3)碳水化合物是生物体内最常见的有机化合物,是生物体内能量转化和物质代谢的主要来源。

(4)脂类是生物体内主要的储存能量的物质,还在细胞膜的结构和功能中起重要作用。

二、蛋白质的结构和功能1. 蛋白质的结构(1)蛋白质的结构级别蛋白质的结构级别包括一级结构、二级结构、三级结构和四级结构。

一级结构是指蛋白质的氨基酸序列,二级结构是指蛋白质的α-螺旋、β-折叠等次级结构,三级结构是指蛋白质的立体构象,四级结构是指蛋白质的多肽链之间的相互作用。

(2)蛋白质的构象变化蛋白质的构象包括原生构象、变性构象和热力学稳定性构象。

蛋白质的构象变化直接影响着蛋白质的功能。

2. 蛋白质的功能蛋白质作为生物体内最主要的功能分子,具有结构、酶、携氧、抗体等多种功能。

其中,酶是蛋白质的主要功能之一,是细胞内代谢调节的主要媒介,参与了生物体内几乎所有的代谢过程。

三、酶的性质和功能1. 酶的结构和功能(1)酶的结构酶是一种大分子蛋白质,其结构由氨基酸残基序列决定,具有特定的三级结构和活性位点。

(2)酶的功能酶是生物体内最主要的催化剂,能够加速生物体内化学反应的进行,参与了生物体内的新陈代谢。

2. 酶的性质(1)酶的活性酶的活性受到多种因素的影响,包括温度、pH值、金属离子等。

(2)酶的抑制酶的活性可以被抑制,包括竞争性抑制、非竞争性抑制等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章蛋白质一、知识要点(一)氨基酸的结构蛋白质是重要的生物大分子,其组成单位是氨基酸。

组成蛋白质的氨基酸有20种,均为α-氨基酸。

每个氨基酸的α-碳上连接一个羧基,一个氨基,一个氢原子和一个侧链R基团。

20种氨基酸结构的差别就在于它们的R基团结构的不同。

根据20种氨基酸侧链R基团的极性,可将其分为四大类:非极性R基氨基酸(8种);不带电荷的极性R 基氨基酸(7种);带负电荷的R基氨基酸(2种);带正电荷的R基氨基酸(3种)。

(二)氨基酸的性质氨基酸是两性电解质。

由于氨基酸含有酸性的羧基和碱性的氨基,所以既是酸又是碱,是两性电解质。

有些氨基酸的侧链还含有可解离的基团,其带电状况取决于它们的pK值。

由于不同氨基酸所带的可解离基团不同,所以等电点不同。

除甘氨酸外,其它都有不对称碳原子,所以具有D-型和L-型2种构型,具有旋光性,天然蛋白质中存在的氨基酸都是L-型的。

酪氨酸、苯丙氨酸和色氨酸具有紫外吸收特性,在280nm处有最大吸收值,大多数蛋白质都具有这些氨基酸,所以蛋白质在280nm处也有特征吸收,这是紫外吸收法定量测定蛋白质的基础。

氨基酸的α-羧基和α-氨基具有化学反应性,另外,许多氨基酸的侧链还含有羟基、氨基、羧基等可解离基团,也具有化学反应性。

较重要的化学反应有:(1)茚三酮反应,除脯氨酸外,所有的α-氨基酸都能与茚三酮发生颜色反应,生成蓝紫色化合物,脯氨酸与茚三酮生成黄色化合物。

(2)Sanger反应,α-NH2与2,4-二硝基氟苯作用产生相应的DNB-氨基酸。

(3)Edman反应,α-NH2与苯异硫氰酸酯作用产生相应的氨基酸的苯氨基硫甲酰衍生物(PIT-氨基酸)。

Sanger反应和Edmen反应均可用于蛋白质多肽链N端氨基酸的测定。

氨基酸通过肽键相互连接而成的化合物称为肽,由2个氨基酸组成的肽称为二肽,由3个氨基酸组成的肽称为三肽,少于10个氨基酸肽称为寡肽,由10个以上氨基酸组成的肽称为多肽。

(三)蛋白质的结构蛋白质是具有特定构象的大分子,为研究方便,将蛋白质结构分为四个结构水平,包括一级结构、二级结构、三级结构和四级结构。

一般将二级结构、三级结构和四级结构称为三维构象或高级结构。

一级结构指蛋白质多肽链中氨基酸的排列顺序。

肽键是蛋白质中氨基酸之间的主要连接方式,即由一个氨基酸的α-氨基和另一个氨基酸的α-之间脱去一分子水相互连接。

肽键具有部分双键的性质,所以整个肽单位是一个刚性的平面结构。

在多肽链的含有游离氨基的一端称为肽链的氨基端或N端,而另一端含有一个游离羧基的一端称为肽链的羧基端或C端。

蛋白质的二级结构是指多肽链骨架盘绕折叠所形成的有规律性的结构。

最基本的二级结构类型有α-螺旋结构和β-折叠结构,此外还有β-转角和自由回转。

右手α-螺旋结构是在纤维蛋白和球蛋白中发现的最常见的二级结构,每圈螺旋含有3.6个氨基酸残基,螺距为0.54nm,螺旋中的每个肽键均参与氢键的形成以维持螺旋的稳定。

β-折叠结构也是一种常见的二级结构,在此结构中,多肽链以较伸展的曲折形式存在,肽链(或肽段)的排列可以有平行和反平行两种方式。

氨基酸之间的轴心距为0.35nm,相邻肽链之间借助氢键彼此连成片层结构。

结构域是介于二级结构和三级结构之间的一种结构层次,是指蛋白质亚基结构中明显分开的紧密球状结构区域。

超二级结构是指蛋白质分子中的多肽链在三维折叠中形成有规则的三级结构聚集体。

蛋白质的三级结构是整个多肽链的三维构象,它是在二级结构的基础上,多肽链进一步折叠卷曲形成复杂的球状分子结构。

具有三级结构的蛋白质一般都是球蛋白,这类蛋白质的多肽链在三维空间中沿多个方向进行盘绕折叠,形成十分紧密的近似球形的结构,分子内部的空间只能容纳少数水分子,几乎所有的极性R基都分布在分子外表面,形成亲水的分子外壳,而非极性的基团则被埋在分子内部,不与水接触。

蛋白质分子中侧链R基团的相互作用对稳定球状蛋白质的三级结构起着重要作用。

蛋白质的四级结构指数条具有独立的三级结构的多肽链通过非共价键相互连接而成的聚合体结构。

在具有四级结构的蛋白质中,每一条具有三级结构的皑链称为亚基或亚单位,缺少一个亚基或亚基单独存在都不具有活性。

四级结构涉及亚基在整个分子中的空间排布以及亚基之间的相互关系。

维持蛋白质空间结构的作用力主要是氢键、离子键、疏水作用力和范德华力等非共价键,又称次级键。

此外,在某些蛋白质中还有二硫键,二硫键在维持蛋白质构象方面也起着重要作用。

蛋白质的空间结构取决于它的一级结构,多肽离岸主链上的氨基酸排列顺序包含了形成复杂的三维结构(即正确的空间结构)所需要的全部信息。

(四)蛋白质结构与功能的关系不同的蛋白质,由于结构不同而具有不同的生物学功能。

蛋白质的生物学功能是蛋白质分子的天然构象所具有的性质,功能与结构密切相关。

1.一级结构与功能的关系蛋白质的一级结构与蛋白质功能有相适应性和统一性,可从以下几个方面说明:(1)一级结构的变异与分子病蛋白质中的氨基酸序列与生物功能密切相关,一级结构的变化往往导致蛋白质生物功能的变化。

如镰刀型细胞贫血症,其病因是血红蛋白基因中的一个核苷酸的突变导致该蛋白分子中β-链第6位谷氨酸被缬氨酸取代。

这个一级结构上的细微差别使患者的血红蛋白分子容易发生凝聚,导致红细胞变成镰刀状,容易破裂引起贫血,即血红蛋白的功能发生了变化。

(2)一级结构与生物进化研究发现,同源蛋白质中有许多位置的氨基酸是相同的,而其它氨基酸差异较大。

如比较不同生物的细胞色素C的一级结构,发现与人类亲缘关系接近,其氨基酸组成的差异越小,亲缘关系越远差异越大。

(3)蛋白质的激活作用在生物体内,有些蛋白质常以前体的形式合成,只有按一定方式裂解除去部分肽链之后才具有生物活性,如酶原的激活。

2.蛋白质空间结构与功能的关系蛋白质的空间结构与功能之间有密切相关性,其特定的空间结构是行使生物功能的基础。

以下两方面均可说明这种相关性。

(1).核糖核酸酶的变性与复性及其功能的丧失与恢复核糖核酸酶是由124个氨基酸组成的一条多肽链,含有四对二硫键,空间构象为球状分子。

将天然核糖核酸酶在8mol/L脲中用β-巯基乙醇处理,则分子内的四对二硫键断裂,分子变成一条松散的肽链,此时酶活性完全丧失。

但用透析法除去β-巯基乙醇和脲后,此酶经氧化又自发地折叠成原有的天然构象,同时酶活性又恢复。

(2)血红蛋白的变构现象血红蛋白是一个四聚体蛋白质,具有氧合功能,可在血液中运输氧。

研究发现,脱氧血红蛋白与氧的亲和力很低,不易与氧结合。

一旦血红蛋白分子中的一个亚基与O2结合,就会引起该亚基构象发生改变,并引起其它三个亚基的构象相继发生变化,使它们易于和氧结合,说明变化后的构象最适合与氧结合。

从以上例子可以看出,只有当蛋白质以特定的适当空间构象存在时才具有生物活性。

(五)蛋白质的重要性质蛋白质是两性电解质,它的酸碱性质取决于肽链上的可解离的R基团。

不同蛋白质所含有的氨基酸的种类、数目不同,所以具有不同的等电点。

当蛋白质所处环境的pH大于pI时,蛋白质分子带负电荷,pH小于pI时,蛋白质带正电荷,pH等于pI时,蛋白质所带净电荷为零,此时溶解度最小。

蛋白质分子表面带有许多亲水基团,使蛋白质成为亲水的胶体溶液。

蛋白质颗粒周围的水化膜(水化层)以及非等电状态时蛋白质颗粒所带的同性电荷的互相排斥是使蛋白质胶体系统稳定的主要因素。

当这些稳定因素被破坏时,蛋白质会产生沉淀。

高浓度中性盐可使蛋白质分子脱水并中和其所带电荷,从而降低蛋白质的溶解度并沉淀析出,即盐析。

但这种作用并不引起蛋白质的变性。

这个性质可用于蛋白质的分离。

蛋白质受到某些物理或化学因素作用时,引起生物活性的丧失,溶解度的降低以及其它性质的改变,这种现象称为蛋白质的变性作用。

变性作用的实质是由于维持蛋白质高级结构的次级键遭到破坏而造成天然构象的解体,但未涉及共价键的断裂。

有些变性是可逆的,有些变性是不可逆的。

当变性条件不剧烈时,变性是可逆的,除去变性因素后,变性蛋白又可从新回复到原有的天然构象,恢复或部分恢复其原有的生物活性,这种现象称为蛋白质的复性。

(六)测定蛋白质分子量的方法1.凝胶过滤法凝胶过滤法分离蛋白质的原理是根据蛋白质分子量的大小。

由于不同排阻范围的葡聚糖凝胶有一特定的蛋白质分子量范围,在此范围内,分子量的对数和洗脱体积之间成线性关系。

因此,用几种已知分子量的蛋白质为标准,进行凝胶层析,以每种蛋白质的洗脱体积对它们的分子量的对数作图,绘制出标准洗脱曲线。

未知蛋白质在同样的条件下进行凝胶层析,根据其所用的洗脱体积,从标准洗脱曲线上可求出此未知蛋白质对应的分子量。

2.SDS-聚丙烯酰胺凝胶电泳法蛋白质在普通聚丙烯酰胺凝胶中的电泳速度取决于蛋白质分子的大小、分子形状和所带电荷的多少。

SDS (十二烷基磺酸钠)是一种去污剂,可使蛋白质变性并解离成亚基。

当蛋白质样品中加入SDS后,SDS 与蛋白质分子结合,使蛋白质分子带上大量的强负电荷,并且使蛋白质分子的形状都变成短棒状,从而消除了蛋白质分子之间原有的带电荷量和分子形状的差异。

这样电泳的速度只取决于蛋白质分子量的大小,蛋白质分子在电泳中的相对迁移率和分子质量的对数成直线关系。

以标准蛋白质分子质量的对数和其相对迁移率作图,得到标准曲线,根据所测样品的相对迁移率,从标准曲线上便可查出其分子质量。

3.沉降法(超速离心法)沉降系数(S)是指单位离心场强度溶质的沉降速度。

S也常用于近似地描述生物大分子的大小。

蛋白质溶液经高速离心分离时,由于比重关系,蛋白质分子趋于下沉,沉降速度与蛋白质颗粒大小成正比,应用光学方法观察离心过程中蛋白质颗粒的沉降行为,可判断出蛋白质的沉降速度。

根据沉降速度可求出沉降系数,将S带入公式,即可计算出蛋白质的分子质量。

二、习题(一)名词解释1.两性离子(dipolarion)2.必需氨基酸(essential amino acid)3.等电点(isoelectric point,pI)4.稀有氨基酸(rare amino acid)5.非蛋白质氨基酸(nonprotein amino acid)6.构型(configuration)7.蛋白质的一级结构(protein primary structure)8.构象(conformation)9.蛋白质的二级结构(protein secondary structure)10.结构域(domain)11.蛋白质的三级结构(protein tertiary structure)12.氢键(hydrogen bond)13.蛋白质的四级结构(protein quaternary structure)14.离子键(ionic bond)15.超二级结构(super-secondary structure)16.疏水键(hydrophobic bond)17.范德华力( van der Waals force)18.盐析(salting out)19.盐溶(salting in)20.蛋白质的变性(denaturation)21.蛋白质的复性(renaturation)22.蛋白质的沉淀作用(precipitation)23.凝胶电泳(gel electrophoresis)24.层析(chromatography)(二)填空题1.蛋白质多肽链中的肽键是通过一个氨基酸的_____基和另一氨基酸的_____基连接而形成的。

相关文档
最新文档