2018-2019年初中人教版七年级数学上册2.2整式的加减(二)导学案
七年级数学上册 第2章《整式的加减》导学案(新版)新人教版

【课后作 业】 (一 )必做题 1.计算 (1)
1 1 1 2 ab a 2 a 2 ( ab ) 3 4 3 3
(2) (3a ab 7) (4a 2ab 7)
2 2
(3 ) ( 2 x
第 2 章《整式的加减》
学习目标: 1.进一步熟悉去括号、合并同类项法则. 2.熟练掌握整式的加减运算,并能进行化简求值. 学习重点:整式的加减. 学 习难点:化简求值. 【学前准备】 计算:①
2x 2 y 3xy 3x 2 y 2xy 1
②
a (2a b) 2(a 2b)
【评价】 准确程度评价 书写整洁程度评价 【课后反思】 优 优 良 良 中 中 差 差
【导入】 【自主学习,合作交流】 计算: (1) 2 x 3 y 5x 4 y (2) 8a 7b 4a 5b
3.求
2 1 1 3 1 x 2( x y 2 ) ( x y 2 ) 的值,其中 x=-2, y . 3 2 3 2 3
【当堂测试】
1.计算: (1) 3xy 4 xy (2 xy)
(2) ( x 2x 2 5) (4x 2 3 6x)
2.已知 A= 3x 2 4xy 2 y 2 , B x 2 2xy 5 y 2 ,求 A-B
3.先化简,再求值: 5(3x2 y xy 2 ) ( xy 2 3x2 y) ,其中 x
2
1 1 3 x ) 4( x x 2 ) 2 2
(4) 3x [7 x (4 x 3) 2 x ]
2 2
(二)选做题 1.已知多项式 a 2a 的值是 3,求 4 2a 4a 的值.
2.2整式的加减(2)-人教版七年级数学上册导学案

2.2整式的加减(2)备课时间: 授课时间: 授课班级:学习目标:1、知识与技能:进一步理解合并同类项的概念,掌握合并同类项的法则;会利用合并同类项知识,求多项式的值.2、过程与方法:经历概念的形成过程和法则的探究过程,体会数学的简洁美.3、情感态度与价值观:激发探究热情,培养学习兴趣.学习重点:合并同类项的法则.学习难点:利用合并同类项知识,求多项式的值.学习方法:自主、合作、探究、展示.学习过程:一、自主学习:1、_________________________叫做同类项.如_____与______,0与_______. 合并同类项的法则是________________________________________.2、请同学们围绕着“怎样求多项式的值?为什么要合并同类项?”这些问题,自学课本第65页例题2开始到66页“练习”为止.(1)用数值代替多项式里的字母,按多项式指明的运算,计算后所得的结果,叫做多项式的值。
(2)求多项式的值的步骤是:______________________________________.3、教材66页练习2,3题做在此:4、求下列多项式的值:222732256,x x x x x 其中 2.x二、合作探究,交流展示:1、多项式-3x 2y-10x 3+6x 3y+3x 2y-6x 3y+7x 3-2的值( )A 、与x 、y 都有关;B 、只与x 有关;C 、只与x 有关;D 、与x 、y 都无关。
2、已知63m n 12x y x y 3与是同类项,则多项式29m 5mn 17的值为( )A 、-1;B 、-2;C 、-3;D 、-4.3、求代数式222232252 1.x xy y xy x xy y 的值其中22, 1.7xy三、拓展延伸:若把(s +t)、(s -t)分别看作一个整体,合并下面式子中的同类项:2(s -t)+3(s -t)2-5(s -t)-8(s -t)2+s -t 。
人教版七年级数学上册同步备课 2.2 整式的加减(第3课时)整式的加减(导学案)

2.2 整式的加减(第3课时)整式的加减导学案1. 熟练进行整式的加减运算.2. 能根据题意列出式子,表示问题中的数量关系.3. 会求代数式的值.★知识点:整式的加减整式的加减法运算的实质是“合并同类项”,需要应用到去括号、加法和乘法的运算律等. 合并同类项是整式加减运算的基础,也是以后学习解方程、解不等式的基础.合并同类项的根据是加法的交换律、结合律及乘法的分配律.相关知识.去括号是数式运算重要的基础知识和基本方法,在今后代数式运算、分解因式、解方程(组)与不等式(组)等问题中经常用到.1. 在解决实际问题的过程中,常常需要将若干个整式相加减,而整式的加减可以归纳为和.2. 一般地,几个整式相加减,如果有括号就先,然后再.问题:如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为:.交换这个两位数的十位数字和个位数字,得到的数是:.将这两个数相加:.追问1:在上面的两个问题中,分别涉及了整式的什么运算?说说你是如何运算的?例1:计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).针对训练:求多项式4-5x2+3x与-2x+7x2-3的和.变式训练:求上述两多项式的差.例2:一种笔记本的单价是x元,圆珠笔的单价是y元. 小红买这种笔记本3本,买圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支.买这些笔记本和圆珠笔,小红和小明一共花费多少钱?例3:做大小两个长方体纸盒,尺寸如下(单位:cm):(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比小纸盒多用料多少平方厘米?例4:求22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭的值,其中x =-2,23y =.1. 已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( )A. -5x -1B. 5x +1C. -13x -1D. 13x +12. 长方形的一边长等于3a +2b ,另一边比它大a -b ,那么这个长方形的周长是() A. 14a +6b B. 7a +3b C. 10a +10b D. 12a +8b3. 若A 是一个二次二项式,B 是一个五次五项式,则B -A 一定是( )A. 二次多项式B. 三次多项式C. 五次三项式D. 五次多项式4. 多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3的和不含二次项,则m为()A. 2B. -2C. 4D. -45. 已知A=3a2-2a+1,B=5a2-3a+2,则2A-3B= .6. 若mn=m+3,则2mn+3m-5mn+10= .7. 计算:(1)-53ab3+2a3b-92a2b-ab3-12a2b-a3b;(2)(7m2-4mn-n2)-(2m2-mn+2n2);(3)-3(3x+2y)-0.3(6y-5x);(4)(13a3-2a-6)-12(12a3-4a-7).有这样一道题“当a=2,b=-2时,求多项式3a3b3-12a2b+b-(4a3b3-14a2b-b2)+(a3b3+14a2b)-2b2+3的值”,小明做题时把a=2错抄成a=-2,小红没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.1.(2022•包头)若一个多项式加上3xy+2y2-8,结果得2xy+3y2-5,则这个多项式为.2.(2022•吉林)下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.3.(2022•湖北)先化简,再求值:4xy-2xy-(-3xy),其中x=2,y=-1.如何进行整式的加减,你能谈谈学完本节课的收获吗?【参考答案】1. 去括号;合并同类项;2. 去括号;合并同类项.例1:解:(1)(2x-3y)+(5x+4y)=2x -3y +5x +4y=7x +y .(2)(8a -7b )-(4a -5b )=8a -7b -4a +5b=4a -2b .针对训练:解:(4-5x 2+3x )+(-2x +7x 2-3)=4-5x 2+3x -2x +7x 2-3=(-5x 2+7x 2)+(3x -2x )+(4-3)=2x 2+x +1.变式训练:-12x 2+5x +7.例2:解:小红买笔记本和圆珠笔共花费(3x +2y )元,小明买笔记本和圆珠笔共花费(4x +3y )元. 小红和小明一共花费(单位:元)(3x +2y )+(4x +3y )=3x +2y +4x +3y=7x +5y .例3:解:(1)小纸盒的表面积是(2ab +2bc +2ca )cm 2大纸盒的表面积是(6ab +8bc +6ca )cm 2做这两个纸盒共用料(2ab +2bc +2ca )+(6ab +8bc +6ca )=2ab +2bc +2ca +6ab +8bc +6ca=8ab +10bc +8ca (cm 2)(2)做大纸盒比做小纸盒多用料(6ab +8bc +6ca )-(2ab +2bc +2ca )=6ab +8bc +6ca -2ab -2bc -2ca=4ab +6bc +4ca (cm 2)例4:解:22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭=22123122323x x y x y -+-+ =-3x +y 2.当x =-2,23y =时, 原式=2244(3)(2)66399⎛⎫-⨯-+=+= ⎪⎝⎭.1. A ;2. A ;3. D ;4. C ;5. -9a 2+5a -4;6. 1;7.(1)-83ab 3+a 3b -5a 2b ;(2)5m 2-3mn -3n 2; (3)-7.5x -7.8y ;(4)315122a -.解:将原多项式化简后,得-b 2+b +3.因为这个式子的值与a 的取值无关,所以即使把a 抄错,最后的结果都会一样.1.【解答】解:由题意得,这个多项式为:(2xy +3y 2-5)-(3xy +2y 2-8)=2xy +3y 2-5-3xy -2y 2+8=y 2-xy +3.故答案为:y 2-xy +3.2.【解答】解:由题知,m(A)-6(m+1)= m2+6m-6m-6= m2-6,因为m2+6m= m (m+6),所以A为:m+6,故答案为:m2-6.3.【解答】解:4xy-2xy-(-3xy)=4xy-2xy+3xy=5xy,当x=2,y=-1时,原式=5×2×(-1)=-10.。
七年级初一数学上册第二章整式的加减整式的加减导学案新人教版

课题 2.2.1整式的加减 (1)德育目标:、通过师生合作,体验教学活动充满着探索性和创造性,从而体会到学习中的成就感。
学习目的:1、理解同类项和合并同类项的概念2、掌握合并同类项的法则,并会运用该法则;学习重点:合并同类项、同类项的概念学习难点:根据同类项概念在多项式中找同类项学习过程:一、课堂引入: 运用有理数的运算律计算100×2+252×2=____________100×(-2)+252×(-2)=____________二、自学课本 P62-P63探究,小组探讨乘法分配律在计算中的运用 由课本问题引出: 1、填空 (1)100t+252t=( )t(2)3x 2+2x 2= ( )x 2 (3)3ab 2—4ab 2=( )ab 2归纳: ___________________________________________,叫做同类项,几个常数项也是同类项。
__________________________,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的____,且___________ 不变。
理解同类项:两个相同①所含字母相同;②相同字母的指数分别相同;两者缺一不可;两个无关:(1)、同类项与系数大小无关;(2)、同类项与它们所含相同字母的顺序无关.三、例题讲解:例1:判断下列各组中的两项是否是同类项①-5ab 3与3a 3b , ②x 3与53, ③-xy 2z 与12zy 2x ,④3xy 与3x , ⑤53与35, ⑥3mn 与33mn例2:合并下列各式的同类项: (1)xy 2-51xy 2 (2)-3x 2y+2x 2y+3xy 2-2xy 2(3)4a 2+3b 2+2ab-4a 2-4b 2(4)4x 2+2x+7+3x-8x 2-2例3、当K 取何值时,y x y xk23-与是同类项?分析:要使y x y x k23-与是同类项,必须满足什么条件?四、当堂训练: (A 组) 1、下列两式是同类项的是( )A .32xyz 与32xy B. x1 与2x C.0.5x 3y 2和7x 2y 3 D.5m 2n 与-4 n m 22、下面计算正确的是( )A.3x 2-x 2=3B.3a 2+2a 3=5a 5C.3+x=3xD.-0.25ab+41ba=0 3、计算: (1)12x -20x ; (2)x+7x-5x ; (3)-5a+0.3a-2.7a ;(4)31y -32y +2y ; (5)-6ab+ba+8ab ; (6)10y 2-0.5y 2(B 组)4、请你在下面的横线上填上适当的内容,使两个单项式构成同类项。
2019年七年级数学上册 第二章 整式的加减导学案(新版)新人教版 .doc

学习重点:利用去括号、合并同类项进行整式的加减运算;
学习难点:根据实际问题中的数量关系列出算式,并求出结果;
导学方法:自主合作探究
课时:1课时
导学过程
(1) 2x2- 3x+1与-3x2+5x-7的和;
(2)-x2+3xy-2y2与-2x2+4x y-y2的差;
(3)一个多项式加上5x2+4x-1得-8x2+6x+2,求这个多项式;
3、求值:2a2-b2+(2b2-a2)-(a2+2b2),其中a=1/3,b=3.
3、合作探究
共享本组同学的收获,汇报各自疑惑。
七、板书设计:
第二章整式的加减
1.合并同类项定义、法则;
2.去括号法则。
八、课后反思:
2019年七年级数学上册第二章整式的加减导学案(新版)新人教版
课题:第二章小结序号:26
学习目标:
1、知识和技能:理解整式的加减实质就是去括号,合并同类项,其结果仍然是整式;掌握学 生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤;能够正确地进行整式的加减运算.
2、过程和方法:经历用字母表示数量关系的过程,发展符号感;培养用代数的方法解决实际生活中的问题的能力和口头表达能力.
一、课前预习:
1.整式的加减实际上就是______________________.
2.整式的加减的步骤,一般分为_____________________.
3.整式加减的结果是__________或_______(单项式或多项式).结果更简单,体现我们数学中的简洁美.
七年级数学上册 第二章 整式的加减 2.2 整式的加减 整

整式的加减运算【学习目标】1.通过实际情境体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.2.通过实例认识到数学是解决实际问题和进行交流的重要工具.【学习重点】正确进行整式的加减.【学习难点】总结出整式加减的一般步骤.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.注意:在去括号时,可先去小括号,再去中括号,再去大括号.步骤:1.根据题意列出式子;2.将所有的式子进行化简.情景导入生成问题化简并回答下列问题.(1)(x+y)-(2x-3);解:原式=x+y-2x+3=-x+y+3;(2)2(a2-2b2)-3(2a2+b2).解:原式=2a2-4b2-6a2-3b2=-4a2-7b2.以上化简实际进行了哪些运算?怎样进行整式的加减运算?自学互研 生成能力知识模块一 整式加减的运算法则【自主学习】学习教材P 67例6的解法.【合作探究】计算下列各题并归纳整式加减的一般步骤:(1)(-x +2x 2+5)+(4x 2-3-6x );解:原式=-x +2x 2+5+4x 2-3-6x =6x 2-7x +2;(2)(8a -7b )-3(4a -5b );解:原式=8a -7b -12a +15b =-4a +8b ;(3)3x 2-[7x -(4x -3)-2x 2].解:原式=3x 2-[7x -4x +3-2x 2]= 3x 2-7x +4x -3+2x 2=5x 2-3x -3. 归纳:几个整式相加减,如果有括号就先去括号,然后再合并同类项.知识模块二 实际问题中整式的加减【自主学习】学习教材P 68例7和例8的解法.【合作探究】某公园的成人票价是20元/张,儿童票价是8元/张,甲旅行团有x 名成人和y 名儿童;乙旅行团的成人数是甲旅行团的2倍,儿童数是甲旅行团的12,求两个旅行团的门票总费用是多少? 解:由题意列式得,(20x +8y )+⎝⎛⎭⎪⎫20×2x +8×12y =20x +8y +40x +4y =60x +12y .答:两个旅行团的门票总费用是(60x +12y )元.提示:先将式子化简,再代入数值进行计算比较简便.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.归纳:1.在实际问题中,我们先仔细读题,然后根据题意列出含字母的式子,最后我们利用整式的加减法则化简;2.几个整式相加减,如果有括号就先去括号,然后再合并同类项.知识模块三整式的化简求值【自主学习】学习教材P69例9的解法.【合作探究】先化简,再求值:3a-{-2b+[a-(4a-3b)]},其中a=-1,b=3.解:原式=3a-[-2b+(a-4a+3b)]=3a-(-2b+a-4a+3b)=3a+2b-a+4a-3b=6a-b.当a=-1,b=3时,原式=6×(-1)-3=-9.变式:已知A=a2+b,B=-2a2-b,求2A-B的值,其中a=-2,b=1.解:2A-B=2(a2+b)-(-2a2-b)=2a2+2b+2a2+b=4a2+3b.当a=-2,b=1时,原式=4×(-2)2+3×1=19.交流展示生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一整式加减的运算法则知识模块二实际问题中整式的加减知识模块三整式的化简求值检测反馈达成目标【当堂检测】1.已知有一整式与2x 2+5x -2的和为2x 2+5x +4,则这个整式是( B )A .2B .6C .10x +6D .4x 2+10x +22.若(3x 2-3x +2)-(-x 2+3x -3)=Ax 2-Bx +C ,则A 、B 、C 的值为( D )A .4,-6,5B .4,0,-1C .2,0,5D .4,6,53.已知|a +2|与(2b -1)2互为相反数,求多项式2(6a 2-3ab -2b 2)-3(2a 2-5ab -4b 2)的值. 解:∵|a+2|与(2b -1)2互为相反数,∴|a +2|+|2b -1|2=0,即a =-2,b =12.2(6a 2-3ab -2b 2)-3(2a 2-5ab -4b 2)=12a 2-6ab -4b 2-6a 2+15ab +12b 2=6a 2+9ab +8b 2.当a =-2,b =12时,原式=6×(-2)2+9×(-2)×12+8×⎝ ⎛⎭⎪⎫122=24-9+2=17.【课后检测】见学生用书课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
人教版七年级数学上册 导学案:2.2 第3课时 整式的加减【精品】
第二章整式的加减...,去括号后原括号内各项的符号与原来的符号;.支钢笔和5本字典作为礼a元,字请你计________元;元;小亮和小莹共花【自主归纳】整式的加减运算归结为__________、_____________,运算结果____________.三、自学自测1.求单项式22xy-,25x y,22x y2.求2x xy+-3146-+与2x xy一、要点探究探究点1:整式的加减问题1:如果用a,b以表示为.个数相加:+ =结论:这些和都是_________问题2:例如:原三位数728规律并验证它吗?任意一个三位数可以表示成设原三位数为100a+10b+c(100a+10b+c)-( 100c+10b+a)= 100a+10b+c-100c-10b-a=99a-99c=99(a-c)例1 计算:(1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)例2 求多项式3x 2+5x 与多项式-6x 2+2x-3的和与差.总结归纳:整式的加减运算归结为_________、______________,运算结果仍是______.运算结果,常将多项式的某个字母(如x )的降幂(升幂)排列.探究点2:整式的加减的应用例3 一种笔记本的单价是x 元,圆珠笔的单价是y 元.小红买这种笔记本3本,买圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支.买这些笔记本和圆珠笔,小红和小明一共花费多少钱?例4 做大小两个长方体纸盒,尺寸如下(单位:cm ):(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比小纸盒多用料多少平方厘米?总结归纳:通过上面的学习,你能得到整式加减的运算法则吗?一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.例5 求2211312()()2323x x y x y --+-+的值,其中32,2=-=y x【针对训练】39x x +的和等于341x x +-,则这个多项式是( ) A .51x -- B .51x + C .131x -- D .131x +2.长方形的一边长等于3a +2b ,另一边比它大a -b ,那么这个长方形的周长是( ) A.14a +6b B.7a +3b C.10a +10b D.12a +8b3.若A 是一个二次二项式,B 是一个五次五项式,则B -A 一定是( ) A.二次多项式 B.三次多项式 C.五次三项式 D. 五次多项式4.多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 为( ) A.2 B.-2 C.4 D.-45.已知 错误!未找到引用源。
人教版七年级数学上册导学案:2.2 整式的加减(第2课时)
七年级数学上册导学案课题 2.2 整式的加减(第2课时)课型讲授课主备审核学习目标1.初步掌握添括号法则。
2.会运用添括号法则进行多项式变项。
3.理解“去括号”与“添括号”的辩证关系。
学习重点去括号法则,准确应用法则将整式化简。
学习难点括号前面是“-”号去括号时,括号内各项变号容易产生错误。
预习案1.合并同类项:(1)(2)(3)(4)2. 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号_____;3.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号_____;4. ①2(4a+b)-3(a-2b) ②(V船-V水)-(V船-V水)③(x-3y)-(x-3y) ④(5c+3d)-(5c-3d)行课案1.(1)8a+2b+(5a-b) (2) (5a-3b)-3(a2-2b)解:原式=8a+2b+5a-b解:原式=5a-3b-3a2+6b =13a+b =-3a2+5a+3b2.两船同一港口同时出发反面而行,甲船顺水,乙船逆水,两船静水中的速度都是50千米/时,水流速度是a千米/时.求:①顺水航速为多少,逆水航速为多少?②2小时后两船相距多远?③2小时后甲船比乙船多航多少千米?①解:顺水航速=船速+水速=(50+a)千米/时逆水航速=船速-水速=(50-a)千米/时②解:2小时后两船相距2(50+a)+2(50-a)=100+2a+100-2a=200千米③解:2小时后甲船比乙船多航行20(50+a)-2(50-a)=100+2a-100+2a=4a千米课堂巩固:1.下列各题合并同类项的结果对不对?若不对,请改正。
(1)2x2+3x2=5x4; (2)3x+2y=5xy;(3)7x2-3x2=4; (4)9a2b-9b a2=0。
2.合并下列多项式中的同类项:①2a2b-3a2b+0.5a2b;②a3-a2b+a b2+a2b-a b2+b3;③5(x+y)3-2(x-y)4-2(x+y)3+(y-x)4。
2.2整式的加减(2)
七年级数学 编号:SX-14-07-028《2.2整式的加减》导学案(2)编写人:许结华 审核人: 编写时间:2014.10.11班级: 组名: 姓名: 完成等级: 更正等级 【学习目标】1.能运用运算律探究去括号法则,并且利用去括号法则将整式化简.2.经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则. 【学习重点】去括号法则,准确应用法则将整式化简.【学习难点】括号前面是“-”号去括号时,括号内各项变号容易产生错误. 【知识链接】:1.计算:(1)100×(1-0.97)= (2)0.37×2011+2011×0.67=2.-3=( ) ×3;-a=( ) ×a【学习过程】:问题一:在很多问题中,我们需要将式子中的括号去掉,该怎样去呢? 利用分配律,去掉下面各式中的括号,并比较去掉括号后各项的符号有无变化:+120(t -0.5)= ; -120(t -0.5)= ;-5(a-5)= ; +(x-3)= ;-(x-3)= ;-x (a-1)= 。
你能发现去括号时符号变化的规律吗?注意事项(1)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;(2)括号内原有几项去掉括号后仍有几项. 问题二:化简:(1)()()19y-32y 13++; ; (2)a-(2a+b) -2(a-2b); 解:问题三. (1)水库中水位第一天连续下降了a 小时,每小时平均下降2cm ;第二天连续上升了a 小时,每小时平均上升0.5cm ,这两天水位总的变化情况如何?(2)某商店有5袋大米,每袋大米为x 千克。
上午卖出3袋,下午又购进同样包装的大米4袋。
进货后这个商店有大米多少千克? 解:【基础达标】1.教材P67页练习1:解:2.教材P67页练习2:解:3、去括号-[a-(b-c)].(提示:去多重括号,有两种方法,一是由内向外,一是由外向内.) 解法1:原式= - (a )= ; 解法2:原式= -a+(b-c)= .4、两个多项式的和是5x 2-3x+2,其中一个多项式是-x 2+3x -4,则另一个多项式是 。
人教版七年级数学上册导学案:2.2整式的加减
课题:整式的加减教学目标1.了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项,能先合并同类项化简后求值。
2.经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力。
3.掌握规范解题步骤,养成良好的学习习惯。
重点难点重点:理解同类项的概念。
难点:根据同类项的概念在多项式中找同类项。
导学过程预习导航阅读课本第 62 页至 65 页的部分,完成以下问题.收获和疑惑活动一【新课引入】事实上,100t+252t与100×2+252×2和100×(-2)+252×(-2)有相同的结构,都是两个数分别与同一个数相乘的和,这里t表示同一个因数,因此根据分配律也应该有:100t+252t=(100+252)t=352t.1、填空(1)100t-252t=( )t (2)3x2+2x2=( )x2 (3)3ab2-4ab2=( )ab2小组讨论:上述运算有什么共同特点,你能从中得出什么规律?(鼓励学生用自己语言表述)对于上面的(1)、(2)、(3),都逆用乘法对加法的分配律100t-252t=(100-252)t=-152t 3x2+2x2=(3+2)x2=5x2 3ab2-4ab2=(3-4)ab2=-a b2这就是说,上面的三个多项式都可以合并为一个单项式。
讨论:具备什么特点的多项式可以合并呢?像这样,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
预习导航活动二【探究新知】判断下列各组中的两项是否是同类项:(1) -5ab3与3a3b ( ) (2)3xy与3x ( ) (3) -5m2n3与2n3m2( )(4)53与35() (5) x3与53 ( )因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并。
例如:4x2+2x+7+3x-8x2-2 (找出多项式中的同类项)=4x2-8x2+2x+3x+7-2 (交换律)=(4x2-8x2 )+(2x+3x)+(7-2) (结合律)=(4-8)x2 +(2+3)x+(7-2) (分配律)=-4x2+5x+5把多项式中的同类项合并成一项,叫做合并同类项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标
1.能运用运算律探究去括号法则,并且利用去括号法则将整式化简。
2.经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。
3.培养学生主动探究、合作交流的意识,严谨治学的学习态度。
重点难点
重点:去括号法则,准确应用法则将整式化简
全品中考网
(1)2小时后两船相距多远?(2)2小时后甲船比乙船多航行多少千米?
3.
活动五
【小结】
说说你学习本节课的收获.
【作业设计】
1.课本第70页习题2.2第2题.
2.下列各式化简正确的是()。
A.a-(2a-b+c)=-a-b+c B.(a+b)-(-b+c)=a+2b+c
C.3a-[5b-(2c-a)]=2a-5b+2c D.a-(b+c)-d=a-b+c-d
冻土地段与非冻土地段相差100t-120(t-0.5)千米②
上面的式子①、②都带有括号,它们应如何化简?
100t+120(t-0.5)=100t+=
100t-120(t-0.5)=100t=
我们知道,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别为:
+120(t-0.5)=③-120(t-0.5)=④
难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误
导学过程
预习导航
阅读课本第65页至67页的部分,完成以下问题.
收获和疑惑
活动一
【新课引入】
1.下列各组式子中是同类项的是().
A.-2a与a2B.2a2b与3ab2C.5ab2c与-b2ac D.- ab2和4ab2c
2、思考
⑴6个人+4个人=⑵6只羊+4只羊=⑶6个人+4只羊=
3.下b+c)=a2-a+b-c B.5+a-2(3a-5)=5+a-6a+5
C.3a- (3a2- 2a)=3a-a2+ a D.a3-[(a2-(-b))=a3-a2-b
4.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.(一般地,先去小括号,再去中括号。)
活动三
【讨论交流】
1.你能说出去括号时符号变化的规律吗?
预习导航
活动四
【解决问题】
例1:教材例1.
解:
【巩固练习】
1.课本第67页练习第1、2题.
2.化简下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b);
3.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.
3.合并同类项:
(1) (2) (3) (4)
预习导航
活动二
【探究新知】
1.利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?
现在我们来看本章引言中的问题
在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米①
比较③、④两式,你能发现去括号时符号变化的规律吗?
归纳去括号的法则:
法则1:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
法则2:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3);
去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.