第7讲 高中数学分布列与数学期望(解析版)
2023年高考数学复习----《求概率及随机变量的分布列与期望》规律方法与典型例题讲解

2023年高考数学复习----《求概率及随机变量的分布列与期望》规律方法与典型例题讲解【规律方法】求离散型随机变量的分布列及期望的一般步骤:(1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布等,可结合其对应的概率计算公式及期望计算公式,简化计算)【典型例题】例1.(2022·陕西宝鸡·统考一模)甲、乙两个代表队各有3名选手参加对抗赛.比赛规定:甲队的1,2,3号选手与乙队的1,2,3号选手按编号顺序各比赛一场,某队连赢3场,则获胜,否则由甲队的1号对乙队的2号,甲队的2号对乙队的1号加赛两场,胜场多者最后获胜(每场比赛只有胜或负两种结果).已知甲队的1号对乙队的1,2号选手的胜率分别是0.5,0.6,甲队的2号对乙队的1,2号选手的胜率都是0.5,甲队的3号对乙队的3号选手的胜率也是0.5,假设每场比赛结果相互独立.(1)求甲队仅比赛3场获胜的概率;(2)已知每场比赛胜者可获得200个积分,求甲队队员获得的积分数之和X的分布列及期望.【解析】(1)甲队1,2,3号选手与乙队1,2,3号选手比赛获胜的概率分别为0.5,0.5,0.5,,⨯⨯=;甲队比赛3场获胜的概率为P=0.50.50.50.125(2)X所以可能取得值为0,200,400,600,800;()3500.50.12P X ===,()31213200C 0.50.500..540.5600.07.5P X ==⨯=⨯⨯=⨯,()()11233332400C 0.50.60.50.40.55C 0.50.40.5 2.1050.50.262.P X ==⨯+⨯⨯⨯=⨯+⨯=⨯⨯, ()()31323333 6000.5C 0.50.60.5C 0.50.60.50.40.5 3.40.50.425P X ==+⨯⨯+⨯⨯+⨯=⨯=, ()2333800C 0.50.605.50.900.112.5P X ===⨯⨯=⨯.即所以()00.1252000.0754000.26256000.4258000.1125465E X =⨯+⨯+⨯+⨯+⨯=. 例2.(2022春·云南昆明·高三云南师大附中校考阶段练习)我校举办“学党史”知识测试活动,每位教师3次测试机会,规定按顺序测试,一旦测试合格就不必参加以后的测试,否则3次测试都要参加.甲教师3次测试每次合格的概率组成一个公差为18的等差数列,他第一次测试合格的概率不超过12,且他直到第二次测试才合格的概率为932,乙教师3次测试每次测试合格的概率均为23,每位教师参加的每次测试是否合格相互独立. (1)求甲教师第一次参加测试就合格的概率P ;(2)设甲教师参加测试的次数为m ,乙教师参加测试的次数为n ,求m n ξ=+的分布列.【解析】(1)由甲教师3次测试每次合格的概率组成一个公差为18的等差数列,又甲教师第一次参加测试就合格的概率为P ,故而甲教师参加第二、三次测试合格的概率分别是18P +、14P +,由题意知,19(1)832P P ⎛⎫−+= ⎪⎝⎭,解得14P =或58P =(舍),所以甲教师第一次参加测试就合格的概率为14.(2)由(1)知甲教师参加第二、三次测试合格的概率分别是38、12, 由题意知,ξ的可能取值为2,3,4,5,6,由题意可知121(2)(1,1)436P P m n ξ=====⨯=, 11233235(3)(1,2)(2,1)433483144P P m n P m n ξ⎛⎫⎛⎫====+===⨯⨯+⨯⨯= ⎪ ⎪⎝⎭⎝⎭, (4)(1,3)(2,2)(3,1)P P m n P m n P m n ξ====+==+==1113312352584334833483144⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯⨯+⨯⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, (5)(2,3)(3,2)P P m n P m n ξ====+==33113512134833483396⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 35115(6)(3,3)483396P P m n ξ⎛⎫⎛⎫=====⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭,所以ξ的分布列为:例3.(2022春·云南曲靖·高三校联考阶段练习)受新冠肺炎疫情的影响,某商场的销售额受到了不同程度的冲击,为刺激消费,该商场开展一项促销活动,凡在商场消费金额满300元的顾客可以免费抽奖一次,抽奖的规则如下:在不透明箱子中装有除颜色外其他都相同的10个小球,其中:红色小球1个,白色小球3个,黄色小球6个,顾客从箱子中依次不放回地摸出3个球,根据摸出球的颜色情况分别进行兑奖.将顾客摸出的3个球的颜色分成以下四种情况:A :1个红球2个白球;B :3个白球;C :恰有1个黄球;D :至少两个黄球,若四种情况按发生的机会从小到大的顺序分别对应一等奖,二等奖,三等奖,不中奖. (1)写出顾客分别获一、二、三等奖时所对应的概率;(2)已知顾客摸出的第一个球是白球,求该顾客获得二等奖的概率;(3)若五名顾客每人抽奖一次,且彼此是否中奖相互独立.记中奖的人数为X ,求X 的分布列和期望.【解析】(1)由题意可得:()()23331010C 3111,C 12040C 120P A P B =====, ()1264310C C 363=C 12010P C ==,2()1()()()3P D P A P B P C =−−−=所以中一等奖的概率为1120,二等奖的概率为140,三等奖的概率为310 (2)记事件E 为顾客摸出的第一个球是白球,事件F 为顾客获得二等奖,则()111229C C 1C 18P FE ==∣. (3)由(1)知一名顾客中奖的概率为113112040103P =++=. 由题意可得,15,3X B ⎛⎫ ⎪⎝⎭,所以()()5512C 1,2,3,4,533i ii P X i i −⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则分布列为()15533E X =⨯=。
分布列和数学期望教师版

分布列和数学期望教师版
,
一般来说,概率分布和数学期望是统计学中重要的概念,二者都有统一的概念,即定义随机变量取起来特定的概率。
概率分布的内容描述的是该概率大小,数学期望则对概率分布做了平均处理,描述的是统计平均值,从而给出随机变量比例和同一事件发生次数的有效参数。
首先来了解一下概率分布,概率分布表示的是某一实验事件发生可能性的大小关系,一般来说,它表示一系列不同事件发生的概率。
概率分布有几种常用的分类,可以按照要用到的变量的取值范围分类,例如离散型概率分布和连续型概率分布;根据实验中的事件分类,可以分为事件的实验型概率分布和不发生事件的实验型概率分布;也可以根据实验的类型来分类,例如抛硬币实验的贝叶斯概率分布、回报分布和条件概率分布等。
而当涉及到数学期望时,则是要研究随机变量X的总体期望,也就是把概率分布中X 取值各个概率乘以相应的数值,取平均数得出一个数值,这就是随机变量X的数学期望,也称为期望值或期望。
数学期望是衡量随机变量X发生次数大小和未来与过去的联系的参数,它是反映某一随机变量取某种值的可能性以及它取这种值时的数值的参数。
有了上面的认识,我们可以说,概率分布和数学期望是统计概念中最重要的概念,它们能够帮助我们估算实验事件发生可能性的大小关系,以及随机变量取某种值的可能性以及它取这种值时的数值。
第七章随机变量及其分布列章末总结-高二数学教材配套教学课件(人教A版2019选择性必修第三册)

=
=
2
.
3
=
4
,
15
典例分析
(2)因为有放回地依次取出3个球,每次取出之前暗箱的情况没有变化,所以每
次取球互不影响,
6
3
所以第 1 次取出的是白球,第 3 次取到黑球的概率为10 = 5.
4
2
2
(3)依题意,每次取到白球的概率为10 = 5,且每次互不影响,故ξ~B 3, 5 ,
例1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.
解: 设“第1次抽到理科题”为事件 A ,“第2次抽到理科题”为事件 B ,则“第1次和第2次都抽
这时称 X 服从二项分布,记为 X~B(n,p).
当 X~B(n,p)时,E(X)=np,D(X)=np(1-p).
知识梳理
要点四 超几何分布
(1) 若随机变量 X 服从超几何分布,则满足如下条件:
①该试验是不放回地抽取 n 次;
②随机变量 X 表示抽取到的次品件数(或类似事件),反之亦然.
(2)一般地,设有 N 件产品,其中次品的件数分别为 M,(M≤N),从中任取 n(n≤N)
<
>
/m
<
>
/m
<
典例分析
(2)因为 n(AB) =
>
m
<
A23
= 6 ,所以 P(AB) =
>
/m
<
>
m
第七课时 随机变量及其分布 期望和方差

第五讲 随机变量及其分布期望和方差一、离散型随机变量:1、定义:所有取值可以一一列出的随机变量2、分布列:X 为可能取到的值,P 为对应的概率,概率总和为1件产品中,任取n 件,其中恰有X 件次品的概率(1)取到的次品数X 的分布列; (2)至少取到一件次品的概率。
练习:在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同,一次从中摸出5个球,至少摸到3个红球就中奖,球中奖的概率。
5、条件概率:事件A 发生的情况下,事件B 发生的概率叫做条件概率,记作)|(A B P (1))()()|(A P AB P A B P =(2)若事件B 和C 是互斥事件,则)|()|()|(A C P A B P A C B P +=例题1:在5道题中有3道理科题和2道文科题,如果不放回的依次取2道题,求: (1)第一次抽到理科题的概率;(2)第一次和第二次都抽到理科题的概率;(3)在第一次抽到理科题的条件下,第二次抽到理科题的概率。
6、二项分布:在n 次独立的重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则n k p p C k X P kn k k n 2,1,0,)1()(=-==-,记作),(~p n B X 。
例题3:某射手每次击中目标的概率为0.8,求这名射手在10次射击中, (1)恰有8次击中目标的概率; (2)至少有8次击中目标的概率。
二、均值与方差:1、均值:(或者数学期望)n n 2211 (1)两点分布:p X E =)( (2)二项分布:np X E =)( (3)b X aE b aX E +=+)()(2、方差:∑=-=ni i ip x E x X D 12))(()((1)两点分布:)1()(p p X D -=(2)二项分布:)1()(p np X D -= (3))()(2X D a b aX D =+ 三、正态分布: 1、0),,(,21)(222)(,>+∞-∞∈=--σπσϕσμσμx e x x 图像为正态分布密度曲线,简称正态曲线,记作),(~2σμN X 2、μ:均值;σ:标准差3、特点:(1)曲线位于x 轴上方,与x 轴不相交; (2)曲线是单峰的, 它关于μ=x 对称; (3)曲线在μ=x 处取得峰值πσ21;(4)曲线与x 轴之间的面积为1. (5)dx x a X a P a a)()(,⎰+-=+≤<-μμσμϕμμ.9974.0)33(,9544.0)22(,6826.0)(=+≤<-=+≤<-=+≤<-σμσμσμσμσμσμX P X P X P★高考真题演练:(2017年文科4/理2)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是( )A.41 B.8π C.21 D.4π(2016年文科3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )65.31.21.31.D C B A(2016年理科4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )43.32.21.31.D C B A(2016年理19)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(2015年文科4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为201.101.51.310.D C B A (2014年理18)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s . (i )利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .若Z ~2(,)N μδ,则()P Z μδμδ-<<+=0.6826,(22)P Z μδμδ-<<+=0.9544.(2013年文科3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )61.41.31.21.D C B A(2013年理19)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果3=n ,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果4=n ,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为21,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望。
离散型随机变量的分布列与期望和方差

离散型随机变量的分布列与期望和方差考点一:离散型随机变量的分布列 若离散型随机变量X 的分布列为(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量 (2)方差:称D (X )=∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,其算术平方根()X D 为随机变量X 的标准差.(3)均值与方差的性质 1.E(aX +b)=aE(X)+b. 2.D(aX +b)=a2D(X)(a ,b 为常数). 考点二:超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k=0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,如果随机变量X 的分布列具有下表形式,考点三:二项分布二项分布;在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 基础练习1.在某公司的两次投标工作中,每次中标可以获利14万元,没有中标损失成本费8000元.若每次中标的概率为0.7,每次投标相互独立,设公司这两次投标盈利为X 万元,则EX =( ) A .18.12B .18.22C .19.12D .19.222.设服从二项分布B (n ,p )的随机变量X 的期望与方差分别是10和8,则n ,p 的值分别是( ) A .B .C .D .3.已知X 的分布列为X ﹣1 0 1 P且Y =aX +3,E (Y )=,则a 为( ) A .1B .2C .3D .44.设随机变量X ∼N(1,δ2),且P(X>2)=51,则P(0<X<1)=___.5.已知离散型随机变量x 的取值为0,1,2,且()()(),2,1,410b x p a x p x p ======若()1=X E ,则 ()=X D .6.若随机变量,且,,则当 .(用数字作答)7.已知随机变量X 满足(23)7E X +=,(23)16D X +=,则下列选项正确的是( ) A .7()2E X =,13()2D X = B .()2E X =,()4D X = C .()2E X =,()8D X = D .7()4E X =,()8D X = 超几何分布VS 二项分布1.“莞马”活动中的α机器人一度成为新闻热点,为检测其质量,从一生产流水线上抽取20件该产品,其中合格产品有15件,不合格的产品有5件.(1)现从这20件产品中任意抽取2件,记不合格的产品数为X ,求X 的分布列及数学期望;(2)用频率估计概率,现从流水线中任意抽取三个机器人,记ξ为合格机器人与不合格机器人的件数差的绝对值,求ξ的分布列及数学期望.2.某经销商从沿海城市水产养殖厂购进一批某海鱼,随机抽取50~(,)X B n p 52EX =54DX =(1)P X ==条作为样本进行统计,按海鱼重量(克)得到如图的频率分布直方图:(1)若经销商购进这批海鱼100千克,试估计这批海鱼有多少条(同一组中的数据用该区间的中点值作代表);(2)根据市场行情,该海鱼按重量可分为三个等级,如下表:若经销商以这50条海鱼的样本数据来估计这批海鱼的总体数据,视频率为概率.现从这批海鱼中随机抽取3条,记抽到二等品的条数为X ,求x 的分布列和数学期望.3.假设某种人寿保险规定,投保人没活过65岁,保险公司要赔偿10万元;若投保人活过65岁,则保险公司不赔偿,但要给投保人一次性支付4万元已知购买此种人寿保险的每个投保人能活过65岁的概率都为0.9,随机抽取4个投保人,设其中活过65岁的人数为X ,保险公司支出给这4人的总金额为Y 万元(参考数据:40.90.6561=) (1)指出X 服从的分布并写出Y 与X 的关系; (2)求(22)≥P Y .(结果保留3位小数)考点四:正太分布1.已知随机变量ξ服从正态分布)9,5(N ,若)2()2(-<=+>c p c p ξξ,则c 的值为( )A .4B .5C .6D .72.已知随机变量服从正态分布即,且,若随机变量,则( )A .0.3413B .0.3174C .0.1587D .0.15863.已知随机变量X ∼N (2,1),其正态分布密度曲线如图所示,若向长方形OABC 中随机投掷1点,则该点恰好落在阴影部分的概率为( )A .0.1359B .0.7282C .0.8641D .0.932054.某市高三年级第二次质量检测的数学成绩X 近似服从正态分布N (82,σ2),且P (74<X <82)=0.42.已知我市某校有800人参加此次考试,据此估计该校数学成绩不低于90分的人数为( ) A .64B .81C .100D .1215.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(1)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标Z 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .X 2~(,)X N μσ()0.6826P X μσμσ-<≤+=~(5,1)X N (6)P X ≥=①利用该正态分布,求(187.8212.2)P Z <<;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求()E X .12.2≈.若2(,)Z N μσ~,则()0.6826P Z μσμσ-<<+=,(22)P Z μσμσ-<<+0.9544=.。
新教材高中数学第七章二项分布与超几何分布:超几何分布pptx课件新人教A版选择性必修第三册

夯 实 双 基
1.判断正误(正确的画“√”,错误的画“×”)
(1)超几何分布的模型是有放回的抽样.( × )
(2)超几何分布的总体里只有两类物品.( √ )
(3)二项分布与超几何分布是同一种分布.( × )
(4)在超几何分布中,随机变量X取值的最大值是M.( × )
2.在10个村庄中,有4个村庄交通不方便,若用随机变量X表示任
分布列和期望E(X)的值.
方法归纳
求超几何分布的分布列的步骤
巩固训练2 从4名男生和3名女生中任选3人参加辩论比赛,设随机
变量X表示所选3人中女生的人数.
(1)求X的分布列;
(2)求X的均值.
题型 3 超几何分布与二项分布的区别
例3 [2022·山东济南高二期末]某试验机床生产了12个电子元件,其
100
20×40
X的数学期望为E(X)=
=8.
100Leabharlann 个红球的概率是()
37
17
A.
B.
42
10
C.
21
42
17
D.
21
答案:C
41 52
10
解析:p= 3 = .故选C.
9
21
4.已知100件产品中有10件次品,从中任取3件,则任意取出的3件
产品中次品数的数学期望为________.
0.3
解析:次品数服从超几何分布,则E(X)=3×
10
=0.3.
机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布
−
−
列为P(X=k)=
,k=m,m+1,m+2,…,r.其中n,N,
M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则
高中数学课件-期望

提
知
升
初 求η的分布列的繁琐计算,简化了解题过程.
探
基
础
【规范解答】E(η)=E(3ξ-3)=3E(ξ)-3
自
主
课 =3×(200×0.12+220×0.18+240×0.20+260×0.20+
演
堂
练
互 动
280×0.18+300×0.12)-3=3×250-3=747(元).
课
探
后
究 所以这个月出租车行驶一天收费均值为747元.
初
探 即用数字来说明问题.数字期望反映了随机变量取值的平均水 基 础
平.用它来刻画、比较和描述取值的平均情况,在一些实际问
自
主
课 堂
题中有重要的价值.因此,需要用期望来解决这一问题.
演 练
互
动
课
探
后
究
巩
固
作
业
规
范
课
警
前 【规范解答】设来领奖的人数
示
新
提
知 ξ=k,(k=0,1,2,…,3 000),所以
变量,司机收费为η(元),则η=3ξ-3,
警 示
新 知
已知出租车一天内可能的行车路程(单位:
提 升
初
探 km)及概率如下
基
础
自
主
课
演
堂
练
互
动
课
探
后
究
巩
求出租车行驶一天收费的均值.
固
作
业
规
范
课 【审题指导】利用公式E(aX+b)=aE(X)+b,将求
警
高三数学分布列和期望

课时考点19 统计-----随机变量的分布列和期望高考考纲透析:等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差高考风向标:离散型随机变量的分布列、期望和方差热点题型1 n 次独立重复试验的分布列和期望 [样题1] (2005年高考·全国卷II ·理19)甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001)本题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力。
解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P (ξ=3)=330.60.40.28+= 比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜。
因而P (ξ=4)=2230.60.40.6C ⨯⨯⨯+2230.40.60.40.3744C ⨯⨯⨯=比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜。
因而P (ξ=5)=22240.60.40.6C ⨯⨯⨯+22240.40.60.40.3456C ⨯⨯⨯=所以ξ的概率分布为ξ的期望E ξ=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=4.0656变式新题型1.(2005年高考·浙江卷·理19)袋子A 中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是31.(Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率. (Ⅱ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i) 求恰好摸5次停止的概率; (ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E ξ.解:(Ⅰ) 333512140333243C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(Ⅱ)(i )2224121833381C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ii)随机变量ξ的取值为0,1,2,3,;由n 次独立重复试验概率公式()()1n kkkn n P k C p p -=-,得()50513*******P C ξ⎛⎫==⨯-=⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭ ()323511173133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭(或()328021731243243P ξ+⨯==-=) 随机变量ξ的分布列是ξ的数学期望是32808017131012324324324324381E ξ=⨯+⨯+⨯+⨯=热点题型2 随机变量ξ的取值范围及分布列[样题2]在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:(Ⅰ)该顾客中奖的概率;(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望ξE . 解法一:(Ⅰ)324515121026=-=-=C C I P ,即该顾客中奖的概率为32.(Ⅱ)ξ的所有可能值为:0,10,20,50,60(元)..151)60(,152)50(,151)20(,52)10(,31)0(2101311210161121023210161321026===============C C C P C C C P C C P C C C P C C P ξξξξξ且故ξ有分布列:从而期望.161516015250151205210310=⨯+⨯+⨯+⨯+⨯=ξE 解法二:(Ⅰ),324530)(210241614==+=C C C C P (Ⅱ)ξ的分布列求法同解法一由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值ξE =2×8=16(元).变式新题型2.假设一种机器在一个工作日内发生故障的概率为0 2,若一周5个工作日内无故障,可获利润10万元;仅有一个工作日发生故障可获利润5万元;仅有两个工作日发生故障不获利也不亏损;有三个或三个以上工作日发生故障就要亏损2万元 求:(Ⅰ)一周5个工作日内恰有两个工作日发生故障的概率(保留两位有效数字); (Ⅱ)一周5个工作日内利润的期望(保留两位有效数字)解:以ξ表示一周5个工作日内机器发生故障的天数,则ξ~B (5,0 2)).5,4,3,2,1,0(8.02.0)(55=⨯⨯==-k C k P k k k ξ (Ⅰ).21.08.02.0)2(3225≈⨯⨯==C P ξ(Ⅱ)以η表示利润,则η的所有可能取值为10,5,0,-2.328.08.0)0()10(5≈====ξηP P.410.08.02.0)1()5(4115≈⨯⨯====C P P ξη .205.08.02.0)2()0(3225≈⨯⨯====C P P ξη.7()2(≥=-=ξηP P的概率分布为利润的期望=10×0 328+5×(万元)[样题3] (2005年高考·江西卷·理19)A 、B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止.设ξ表示游戏终止时掷硬币的次数.(1)求ξ的取值范围; (2)求ξ的数学期望E ξ.解:(1)设正面出现的次数为m ,反面出现的次数为n ,则⎪⎩⎪⎨⎧≤≤=+=-915||ξξn m n m ,可得:.9,7,5:;9,7,22,7;7,6,11,6;5,5,00,5的所有可能取值为所以时或当时或当时或当ξξξξ===============n m n m n m n m n m n m(2);645)21(2)7(;161322)21(2)5(7155=====⨯==C P P ξξ .322756455964571615;64556451611)9(=⨯+⨯+⨯==--==ξξE P变式新题型3.某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进行下一组练习,否则一直打完5发子弹后才能进入下一组练习.若该射手在某组练习中射击命中一次,并且他射击一次命中率为0.8,(1)求在这一组练习中耗用子弹ξ的分布列.(2)求在完成连续两组练习后,恰好共耗用了4发子弹的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7讲 分布列与数学期望高考预测一:求概率及随机变量的分布列的基本类型 类型一:利用古典概型求概率1.10月1日,某品牌的两款最新手机(记为W 型号,T 型号)同时投放市场,手机厂商为了解这两款手机的销售情况,在10月1日当天,随机调查了5个手机店中这两款手机的销量(单位:部),得到如表(Ⅰ)若在10月1日当天,从A ,B 这两个手机店售出的新款手机中分别随机抽取1部,求抽取的2部手机中至少有1部为W 型号手机的概率;(Ⅱ)现从这5个手机店中任选3个举行促销活动,用X 表示其中W 型号手机销量超过T 型号手机销量的手机店的个数,求随机变量X 的分布列和数学期望;(Ⅲ)经测算,W 型号手机的销售成本η(百元)与销量ξ(部)满足关系34ηξ=+.若表中W 型号手机销量的方差20(0)S m m =>,试给出表中5个手机店的W 型号手机销售成本的方差2S 的值.(用m 表示,结论不要求证明)【解析】解:()I 设事件1M 为从A 店售出的手机中随机抽取1部手机,抽取的手机为W 型号手机, 设事件2M 为从A 店售出的手机中随机抽取1部手机,抽取的手机为W 型号手机, 则事件1M ,2M 相互独立,且161()6123P M ==+,262()695P M ==+, ∴抽取的2部手机中至少有1部为W 型号手机的概率为13221233535355P =⨯+⨯+⨯=. ()II 由表格可知W 型号手机销售量超过T 型号手机的店有2个,故X 的可能取值有0,1,2.且33351(0)10C P X C ===,1223353(1)5C C P X C ===,2123353(2)10C C P X C ===. X ∴的分布列为:数学期望为1336()012105105E X =⨯+⨯+⨯=. 20()()III D s m ξ==,34ηξ=+,2()9()9S D D m ηξ∴===.2.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望()E ξ;(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)【解析】解:(1)由图知:在50名服药患者中,有15名患者指标y 的值小于60, 答:从服药的50名患者中随机选出一人,此人指标小于60的概率为: 1535010p ==. (2)由图知:A 、C 两人指标x 的值大于1.7,而B 、D 两人则小于1.7,可知在四人中随机选项出的2人中指标x 的值大于1.7的人数ξ的可能取值为0,1,2,2411(0)6P C ξ===, 1122242(1)3C C P C ξ===,2411(2)6P C ξ===, ξ∴的分布列如下:答:121()0121636E ξ=⨯+⨯+⨯=.(3)答:由图知100名患者中服药者指标y 数据的方差比未服药者指标y 数据的方差大.3.已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和数学期望.【解析】解:(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,则P (A )1123252332010A A A ⨯===; (2)X 的可能取值为200,300,400,222521(200)2010A P X A ====, 311232323562323(300)6010A C C A P X A ++⨯⨯====, 133(400)1(200)(300)110105P X P X P X ==-=-==--=;所以X 的分布列为:数学期望为13320030040035010105EX =⨯+⨯+⨯=. 类型二:利用相互独立事件的概率乘法公式和互斥事件概率加法公式求概率 4.电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“1k ξ=”表示第k 类电影得到人们喜欢.“0k ξ=”表示第k 类电影没有得到人们喜欢(1k =,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.【解析】解:(Ⅰ)设事件A 表示“从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影”,总的电影部数为140503002008005102000+++++=部, 第四类电影中获得好评的电影有:2000.2550⨯=部,∴从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的频率为:P (A )500.0252000==. (Ⅱ)设事件B 表示“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”, 第四类获得好评的有:2000.2550⨯=部, 第五类获得好评的有:8000.2160⨯=部,则从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率:P (B )50(800160)(20050)1600.35200800⨯-+-⨯==⨯.(Ⅲ)由题意知,定义随机变量如下:0,1,k k k ξ⎧=⎨⎩第类电影没有得到人们喜欢第类电影得到人们喜欢,则k ξ服从两点分布,则六类电影的分布列及方差计算如下: 第一类电影:1()10.400.60.4E ξ=⨯+⨯=,221()(10.4)0.4(00.4)0.60.24D ξ=-⨯+-⨯=.第二类电影:2()10.200.80.2E ξ=⨯+⨯=,222()(10.2)0.2(00.2)0.80.16D ξ=-⨯+-⨯=.第三类电影:3()10.1500.850.15E ξ=⨯+⨯=,223()(10.15)0.15(00.15)0.850.1275D ξ=-⨯+-⨯=.第四类电影:4()10.2500.750.25E ξ=⨯+⨯=,224()(10.25)0.25(00.25)0.750.1875D ξ=-⨯+-⨯=.第五类电影:5()10.200.80.2E ξ=⨯+⨯=,225()(10.2)0.2(00.2)0.80.16D ξ=-⨯+-⨯=.第六类电影:6()10.100.90.1E ξ=⨯+⨯=,225()(10.1)0.1(00.1)0.90.09D ξ=-⨯+-⨯=.∴方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系为:632541D D D D D D ξξξξξξ<<=<<.5.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)设甲同学上学期间的三天中7:30之前到校的天数为X ,求0X =,1X =,2X =,3X =时的概率(0)P X =,(1)P X =,(2)P X =,(3)P X =.(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【解析】解:(1)321(0)(1)327P X ==-=,123222(1)(1)339P X C ==-=, 223224(2)()(1)339P X C ==-=,33328(3)()327P X C ===. (2)设乙同学上学期间的三天中在7:30之前到校的天数为Y , 则1(0)(0)27P Y P X ====,2(1)(1)9P Y P X ====, 4(2)(2)9P Y P X ====,8(3)(3)27P Y P X ====, 418220()(2)(0)(3)(1)927279243P M P X P Y P X P Y ∴===+===⨯+⨯=. 类型三:利用条件概率公式求概率6.如图所示,质点P 在正方形ABCD 的四个顶点上按逆时针方向前进.现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字.质点P 从A 点出发,规则如下:当正方体上底面出现的数字是1,质点P 前进一步(如由A 到)B ;当正方体上底面出现的数字是2,质点P 前两步(如由A 到)C ,当正方体上底面出现的数字是3,质点P 前进三步(如由A 到)D .在质点P 转一圈之前连续投掷,若超过一圈,则投掷终止.(1)求点P 恰好返回到A 点的概率;(2)在点P 转一圈恰能返回到A 点的所有结果中,用随机变量ξ表示点P 恰能返回到A 点的投掷次数,求ξ的分布列及数学期望.【解析】解:(1)投掷一次正方体玩具,因每个数字在上底面出现是等可能的,故其概率12163P ==. 易知只投掷一次不可能返回到A 点.①若投掷两次质点P 就恰好能返回到A 点,则上底面出现的两个数字,应依次为:(1,3)、(3,1)、(2,2)三种结果,其概率为2211()333P =⨯=.②若投掷三次质点P 恰能返回到A 点,则上底面出现的三个数字,应依次为:(1,1,2)、(1,2,1)、(2,1,1)三种结果,其概率为3311()339P =⨯=. ③若投掷四次质点P 恰能返回到A 点,则上底面出现的四个数字应依次为:(1,1,1,1),其概率为4411()381P ==.所以,质点P 恰好返回到A 点的概率为:23411137398181P P P P =++=++=. (2)由(1)知,质点P 转一圈恰能返回到A 点的所有结果共有以上问题中的7种情况, 且ξ的可能取值为2,3,4. 则1273(2)373781P ξ===,199(3)373781P ξ===,1181(4)373781P ξ===,故ξ的分布列为:所以,27918523437373737E ξ=⨯+⨯+⨯=.7.根据以往的经验,某工程施工期间的降水量X (单位:)mm 对工期的影响如下表:300700X <700900X<9002 6 10历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9,求:()I 工期延误天数Y 的均值与方差;(Ⅱ)在降水量X 至少是300的条件下,工期延误不超过6天的概率.【解析】()I 由题意,(300)0.3P X <=,(300700)(700)(300)0.70.30.4P X P X P X <=<-<=-=,(700900)(900)(700)0.90.70.2P X P X P X <=<-<=-=,(900)10.90.1P X =-=Y 的分布列为()00.320.460.2100.13E Y ∴=⨯+⨯+⨯+⨯=2222()(03)0.3(23)0.4(63)0.2(103)0.19.8D Y =-⨯+-⨯+-⨯+-⨯=∴工期延误天数Y 的均值为3,方差为9.8;(Ⅱ)(300)1(300)0.7P X P X =-<=,(300900)(900)(300)0.90.30.6P X P X P X <=<-<=-= 由条件概率可得(300900)0.66(6|300)(300)0.77P X P Y X P X <===.类型四:利用统计图表中的数据求概率8.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:C)︒有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解析】解:(1)由题意知X 的可能取值为200,300,500,216(200)0.290P X +===, 36(300)0.490P X ===,2574(500)0.490P X ++===, X ∴的分布列为:(2)由题意知这种酸奶一天的需求量至多为500瓶,至少为200瓶,∴只需考虑200500n ,当300500n 时,若最高气温不低于25,则642Y n n n =-=;若最高气温位于区间[20,25),则63002(300)412002Y n n n =⨯+--=-; 若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-, 20.4(12002)0.4(8002)0.26400.4EY n n n n ∴=⨯+-⨯+-⨯=-,当200300n 时,若最高气温不低于20,则642Y n n n =-=,若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-, 2(0.40.4)(8002)0.2160 1.2EY n n n ∴=⨯++-⨯=+.300n ∴=时,Y 的数学期望达到最大值,最大值为520元.9.某贫困地区共有1500户居民,其中平原地区1050户,山区450户.为调查该地区2017年家庭收入情况,从而更好地实施“精准扶贫”,采用分层抽样的方法,收集了150户家庭2017年年收入的样本数据(单位:万元).(1)应收集多少户山区家庭的样本数据?(2)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为(0,0.5],(0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3].如果将频率视为概率,估计该地区2017年家庭收入超过1.5万元的概率;(3)样本数据中,有5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有90%的把握认为“该地区2017年家庭年收入与地区有关”?附:2()()()()()n ad bc K a b c d a c b d -=++++02)k【解析】解:(1)由已知可得每户居民被抽取的概率为0.1,故应收集手机4500.145⨯=户山区家庭的样本数据.(2)由直方图可知该地区2017年家庭年收入超过1.5万元的概率约为(0.5000.3000.100)0.50.45++⨯=. (3)样本数据中,年收入超过2万元的户数为(0.3000.100)0.515030+⨯⨯=户. 而样本数据中,有5户山区家庭的年收入超过2万元,故列联表如下:所以22150(2540580)200 3.175 2.706301201054563K ⨯-⨯==≈>⨯⨯⨯,∴有90%的把握认为“该地区2017年家庭年收入与地区有关”.高考预测二:超几何分布和二项分布 类型一:超几何分布10.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中分别抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ()i 用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望;()ii 设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率. 【解析】解:(Ⅰ)单位甲、乙、丙三个部门的员工人数分别为24,16,16.人数比为:3:2:2, 从中抽取7人现,应从甲、乙、丙三个部门的员工中分别抽取3,2,2人.(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ()i 用X 表示抽取的3人中睡眠不足的员工人数,随机变量X 的取值为:0,1,2,3,34337()k kC C P X k C -⋅==,0k =,1,2,3. 所以随机变量的分布列为:随机变量X 的数学期望11218412()0123353535357E X =⨯+⨯+⨯+⨯=; ()ii 设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”, 设事件B 为:抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人,事件C 为抽取的3人中, 睡眠充足的员工有2人,睡眠不足的员工有1人, 则:A BC =,且P (B )(2)P X ==,P (C )(1)P X ==,故P (A )6()(2)(1)7P B C P X P X ===+==. 所以事件A 发生的概率:67. 11. 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物. 2.5PM 日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.石景山古城地区2013年2月6日至15日每天的 2.5PM 监测数据如茎叶图所示.(1)小陈在此期间的某天曾经来此地旅游,求当天 2.5PM 日均监测数据未超标的概率;(2)从所给10天的数据中任意抽取三天数据,记ξ表示抽到 2.5PM 监测数据超标的天数,求ξ的分布列及期望.【解析】解:(1)记“当天 2.5PM 日均监测数据未超标”为事件A , 因为有24+天 2.5PM 日均值在75微克/立方米以下, 故P (A )243105+==. (2)ξ的可能值为0,1,2,3.由茎叶图可知:空气质量为一级的有2天,空气质量为二级的有4天,只有这6天空气质量不超标,而其余4天都超标.363101(0)6C P C ξ===,21643101(1)2C C P C ξ===,12643103(2)10C C P C ξ===,343101(3)30C P C ξ===. ξ的分布列如下表:1131601236210305E ξ∴=⨯+⨯+⨯+⨯=.类型二:二项分布12.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有1个红球,则获得二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中或一等奖的次数为X ,求X 的分布列、数学期望和方差.【解析】解:(1)设顾客抽奖1次能中奖的概率为P.116511101037111010C C P C C =-=-=,(2)设该顾客在一次抽奖中获一等奖的概率为1P ,1145112101015C C P C C ==, 故而1?(3,)5X B .3464(0)()5125P X ∴===,1231448(1)()55125P X C ===, 2231412(2)()55125P X C ===,311(3)()5125P X ===. 故X 的分布列为数学期望13()355E X ==,方差1412()35525D X ==. 13.近年来,空气质量成为人们越来越关注的话题,空气质量指数(,)AirQualityIndex AQI 是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.环保部门记录了2017年某月哈尔滨市10天的AQI 的茎叶图如下:(1)利用该样本估计该地本月空气质量优良(100)AQI 的天数;(按这个月总共30天计算)(2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究,求抽取的2天中至少有一天空气质量是优的概率;(3)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.【解析】解:(1)从茎叶图中可发现该样本中空气质量优的天数为2,空气质量良的天数为4, 故该样本中空气质量优良的频率为63105=,从而估计该月空气质量优良的天数为330185⨯=(2)现工作人员从这10天中空气质量为优良的日子里随机抽取2天进行某项研究, 基本事件总数2615n C ==,抽取的2天中至少有一天空气质量是优的对立事件是抽取的2天中至少有一天空气质量都不是优,∴抽取的2天中至少有一天空气质量是优的概率:2426315C p C =-=.(3)由(1)估计某天空气质量优良的概率为35,ξ∴的所有可能取值为0,1,2,3,且3~(3,)5B ξ,328(0)()5125P ξ===, 1233236(1)()55125P C ξ===, 2233254(2)()55125P C ξ===, 3327(3)()5125P ξ===, 故ξ的分布列为:3~(3,)5B ξ,33 1.85E ξ=⨯=.高考预测三:概率与其他知识点交汇 类型一:以其他知识为载体14.已知正四棱锥PABCD 的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按下列方式定义随机变量ξ的值:若这两条棱所在的直线相交,则ξ的值是这两条棱所在直线的夹角大小(弧度制); 若这两条棱所在的直线平行,则0ξ=;若这两条棱所在的直线异面,则ξ的值是这两条棱所在直线所成角的大小(弧度制). (1)求(0)P ξ=的值;(2)求随机变量ξ的分布列及数学期望()E ξ.【解析】解:(1)根据题意,该四棱锥的四个侧面均为等边三角形,底面为正方形,PAC ∆,PBD ∆为等腰直角三角形.ξ的可能取值为:0,3π,2π, 在这个正四棱锥的8条棱中任取两条基本事件总数2828n C ==种情况, 当0ξ=时有2种,当3πξ=时有342420⨯+⨯=种,当2πξ=时有246+=种.21(0)2814P ξ∴===. (2)21(0)2814P ξ===. 205()3287P πξ===,63()22814P πξ===.随机变量ξ的分布列如下表:15329()0143721484E ξ=⨯+⨯+⨯=. 15.从集合{1M =,2,3,4,5,6,7,8,9}中抽取三个不同的元素构成子集1{a ,2a ,3}a . (1)求对任意的i 和(1j i =,2,3,1j =,2,3,)i j ≠满足||2i j a a -的概率;(2)若1a ,2a ,3a 成等差数列,设其公差为(0)ξξ>,求随机变量ξ的分布列与数学期望()E ξ.【解析】解:(1)由题意知基本事件数为3984C =, 而满足条件||2i j a a -,即取出的元素不相邻,则用插空法有3735C =种,故所求事件的概率为3558412P ==; (2)分析1a ,2a ,3a 成等差数列的情况:1ξ=的情况有7种:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},{7,8,9},2ξ=的情况有5种:{1,3,5},{2,4,6},{3,5,7},{4,6,8},{5,7,9}. 3ξ=的情况有3种:{1,4,7},{2,5,8},{3,6,9}.4ξ=的情况有1种:{1,5,9}.故ξ的分布列如下:所以753115()1234161615168E ξ=⨯+⨯+⨯+⨯=. 类型二:构造递推关系求概率问题16.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0i p i =,1,⋯,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11(1i i i i p ap bp cp i -+=++=,2,⋯,7),其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. ()i 证明:1{}(0i i p p i +-=,1,2,⋯,7)为等比数列; ()ii 求4p ,并根据4p 的值解释这种试验方案的合理性.【解析】(1)解:X 的所有可能取值为1-,0,1.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--,(1)(1)P X αβ==-,X ∴的分布列为:(2)()i 证明:0.5α=,0.8β=,∴由(1)得,0.4a =,0.5b =,0.1c =.因此110.40.50.1(1i i i i p p p p i -+=++=,2,⋯,7), 故110.1()0.4()i i i i p p p p +--=-,即11()4()i i i i p p p p +--=-, 又1010p p p -=≠,1{}(0i i p p i +∴-=,1,2,⋯,7)为公比为4,首项为1p 的等比数列;()ii 解:由()i 可得,881887761001(14)41()()()143p p p p p p p p p p --=-+-+⋯+-+==-,81p =,18341p ∴=-, 444332*********()()()()3257p p p p p p p p p p p -∴=-+-+-+-+==. 4p 表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理. 17.从原点出发的某质点M ,按向量(0,1)a =移动的概率为23,按向量(0,2)b =移动的概率为13,设M 可到达点(0,)(1n n =,2,3,)⋯的概率为n P . (1)求1P 和2P 的值;(2)求证:2111()3n n n n P P P P +++-=--;(3)求n P 的表达式.【解析】解:(1)123P =,22217()339P =+= (2)证明:M 点到达点(0,2)n +有两种情况 ①从点(0,1)n +按向量(0,1)a =移动 ②从点(0,)n 按向量(0,2)b =移动∴212133n n n P P P ++=+ ∴2111()3n n n n P P P P +++-=-- 问题得证.(3)数列1{}n n P P +-是以21P P -为首项,13-为公比的等比数列 1111211111()()()()3933n n n n n P P P P --++-=--=-=- 11()3n n n P P -∴-=-又因为111221()()()n n n n n P P P P P P P P ----=-+-+⋯+-12111()()()333n n -=-+-+⋯+-111[1()]123n -=-- 11n n P P P P ∴=-+∴113()434n n P =⨯-+. 类型三:利用导数研究概率问题18.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为(01)p p <<,且各件产品是否为不合格品相互独立. (1)记20件产品中恰有2件不合格品的概率为()f p ,求()()f p f p 的最大值点0p (即()f p 取最大值时对应的p 的值).(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值,已知每件产品的检验费用为3元,若有不合格品进入用户手中,则工厂要对每件不合格品支付28元的赔偿费用()i 若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用之和记为X 求()E X ; ()ii 以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解析】解:(1)记20件产品中恰有2件不合格品的概率为()f p ,则221820()(1)f p C p p =-,2182172172020()[2(1)18(1)]2(1)(110)f p C p p p p C p p p ∴'=---=--,令()0f p '=,得0.1p =, 当(0,0.1)p ∈时,()0f p '>, 当(0.1,1)p ∈时,()0f p '<, f ∴()p 的最大值点00.1p =.(2)()i 由(1)知0.1p =,令Y 表示余下的180件产品中的不合格品数,依题意知~(180,0.1)Y B ,20328X Y =⨯+,即6028X Y =+,()(6028)6028()60281800.1564E X E Y E Y ∴=+=+=+⨯⨯=.()ii 如果对余下的产品作检验,由这一箱产品所需要的检验费为600元, ()564600E X =<,∴应该对余下的产品不进行检验.19.某有机水果种植基地试验种植的某水果在售卖前要成箱包装,每箱80个,每一箱水果在交付顾客之前要按约定标准对水果作检测,如检测出不合格品,则更换为合格品.检测时,先从这一箱水果中任取10个作检测,再根据检测结果决定是否对余下的所有水果作检测.设每个水果为不合格品的概率都为(01)p p <<,且各个水果是否为不合格品相互独立.(Ⅰ)记10个水果中恰有2个不合格品的概率为()f p ,求()f p 取最大值时p 的值0p ;(Ⅱ)现对一箱水果检验了10个,结果恰有2个不合格,以(Ⅰ)中确定的0p 作为p 的值.已知每个水果的检测费用为1.5元,若有不合格水果进入顾客手中,则种植基地要对每个不合格水果支付a 元的赔偿费用(*)a N ∈.(ⅰ)若不对该箱余下的水果作检验,这一箱水果的检验费用与赔偿费用的和记为X ,求EX ;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,当种植基地要对每个不合格水果支付的赔偿费用至少为多少元时,将促使种植基地对这箱余下的所有水果作检验?【解析】解:(Ⅰ)记10个水果中恰有2个不合格的概率为()f p ,则22810()(1)f p C p p =-,282710()[2(1)8(1)]f p C p p p p ∴'=---,由()0f p '=,得0.2p =.且当(0,0.2)p ∈时()0f p '>,当(0.2,1)p ∈时,()0f p '<, ()f p ∴的最大值点00.2p =.(Ⅱ)由(Ⅰ)知00.2p =.(ⅰ)令Y 表示余下的70个水果中的不合格数,依题意~(70,0.2)Y B ,10 1.515X aY aY =⨯+=+. ()(15)15()15700.21514E X E aY aE Y a a ∴=+=+=+⨯⨯=+.(ⅱ)如果对余下的水果作检验,则这箱水果的检验费为120元, 由1514120a +>,得1057.514a >=,且*a N ∈, ∴当种植基地要对每个不合格水果支付的赔偿费用至少为8元时,将促使种植基地对这箱余下的所有水果作检验.高考预测三:决策问题20.某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购买机器时,可以额外购买这种零件作为备件,每个300元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得到下面柱状图.以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(1)求X 的分布列;(2)若要求()0.5P X n ,试确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【解析】解:(1)每台机器更换的易损零件数为8,9,10,11,记事件1A 为第一台机器3年内换掉7i +个零件(1i =,2,3,4),记事件1B 为第二台机器3年内换掉7i +个零件(1i =,2,3,4),由题知134134()()()()()()0.2P A P A P A P B P B P B ======,22()()0.4P A P B ==,则X 的可能的取值为16,17,18,19,20,21,22, 11(16)()()0.20.20.04P X P A P B ===⨯=;1221(17)()()()()0.20.40.40.20.16P X P A P B P A P B ==+=⨯+⨯=;132231(18)()()()()()()0.20.20.20.20.40.40.24P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=;14233241(19)()()()()()()()()0.20.20.20.20.40.20.20.40.24P X P A P B P A P B P A P B P A P B ==+++=⨯+⨯+⨯+⨯=;243342(20)()()()()()()0.40.20.20.40.20.20.2P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=;3443(21)()()()()0.20.20.20.20.08P X P A P B P A P B ==+=⨯+⨯=; 44(22)()()0.20.20.04P X P A P B ===⨯=.从而X 的分布列为(2)要()0.5P x n ,0.040.160.240.5++<,0.040.160.240.240.5+++, 则n 的最小值为19;(3)购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用,当19n =时,费用的期望为193005000.210000.0815000.045940⨯+⨯+⨯+⨯=元, 当20n =时,费用的期望为203005000.0810000.046080⨯+⨯+⨯=元, 若要费用最少,所以应选用19n =. 高考预测四:正态分布21.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:)cm .根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. 下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,0.212s ==≈,其中i x 为抽取的第i 个零件的尺寸,1i =,2,⋯,16.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.9974P Z μσμσ-<<+=,160.99740.9592≈,0.09.【解析】解:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此,16(1)1(0)10.99740.0408P X P X =-==-≈;(2)由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=, 由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外, 因此需对当天的生产过程进行检查, 剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22, 剩下数据的平均数为1(169.979.22)10.0215⨯-=, 因此μ的估计值为10.02,162221160.212169.971591.134i i x ==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22, 剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈.因此σ0.09.22.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图频率分布直方图:(1)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标Z 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s①利用该正态分布,求(187.8212.2)P Z <<②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用 ①的结果,求EX2.44≈,若2~(,)z n μσ,则()0.6826p Z μσμσ-<<+=,(22)0.9544p Z μσμσ-<<+=.【解析】解:(1)抽取产品的质量指标值的样本平均数为:1700.021800.091900.222000.332100.242200.082300.02200x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,样本方差2s 分别为:2222222(30)0.02(20)0.09(10)0.2200.33100.24200.08300.02150s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯=.(Ⅱ)()i 由(Ⅰ)知~(200,150)Z N ,从而(187.8212.2)(20012.220012.2)0.6826P Z P Z <<=-<<+=;()ii 由()i 知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,。