受控源实验报告
受控源的研究实验报告(共8篇)

受控源的研究实验报告(共8篇)一、受控源实验报告1.实验目的:(1)了解受控源及其分类。
(2)掌握受控源的基本特性。
(3)熟悉受控源的应用,掌握对电路的控制和调节。
2.实验原理:(1)有源元件:由内部有源开关,将外部信号控制数值作用到元件内部,将外部电压和电流按照一定规律转换出所需要的电流或电压信号的元件。
(2)号源:一种利用内部控制变化而实现输出电流或者电压变化的元件。
(3)受控源:又称控制源,是指通过输入端的一个电压或者电流信号,从而在输出端产生一个文细变化的电压或者电流的元件。
3.实验内容:(1)使用电压控制型门级比例积分控制器控制直流电机。
4.实验步骤:(①)首先将电动机直接连接至电源,使其旋转。
(②)将直流电机的两端连接至多功能模拟器的输出端口上。
(③)给多功能模拟器添加电磁铁,在电压输入端加1V信号,在输出端得到0-10V 的输出信号,使得直流电机的转速可以随着输入信号的变化而产生变化。
(④)调节门电平、比例系数和积分时间常数进行控制测试,获得合适的反馈控制输出效果,调节输出以启动和停止直流电机。
(①)将恒温水槽连接至多功能模拟器的输出端口,将加热限制器和恒温电子元件加入电路之中。
(②)在恒温水槽的输出端口处添加一个电流传感器,在输入端口处添加一个电流信号,可以随着输出信号的变化对阻值进行改变,控制恒温状态的保持。
(③)调节比例系数,运用反馈控制来控制恒温水槽的温度,平衡电热输出与散热损失,保持温度恒定,测试温度误差及输出效果。
(①)连接一个热电偶传感器至比例温度控制器的输入端口,将输出端口连接至直流蒸汽弁中。
(②)使用比例温度控制器进行电压输入控制,通过调节锁定开关和门电平,实现温度的自动控制。
(③)根据设定的温度以及反馈信号的变化是否符合期望,对比输入电压变化和输出电压变化,校验温度控制的精度,更改控制样式并再次测试。
5.实验结果分析:(1)通过对直流电机进行控制测试,在门电平为5v,比例系数Kp=1.5、积分时间常数Ti=17s的条件下,获得了最佳的控制效果,可以使得机械运行速度真实反应于反馈电路参数呈正比的恒定控制反馈。
受控源的实验研究实验报告

受控源的实验研究实验报告一、实验目的受控源是一种具有特殊性质的电源,其输出电压或电流受到其他电路变量的控制。
本实验旨在深入研究受控源的特性,包括其伏安特性、转移特性以及在电路中的作用,通过实验加深对受控源概念的理解,掌握其使用方法,并提高电路分析和实验操作的能力。
二、实验原理1、受控源的分类电压控制电压源(VCVS):输出电压受输入电压控制,其转移电压比为常数。
电压控制电流源(VCCS):输出电流受输入电压控制,其转移电导为常数。
电流控制电压源(CCVS):输出电压受输入电流控制,其转移电阻为常数。
电流控制电流源(CCCS):输出电流受输入电流控制,其转移电流比为常数。
2、受控源的电路模型VCVS:用一个理想电压源和一个电阻串联表示。
VCCS:用一个理想电流源和一个电导并联表示。
CCVS:用一个理想电压源和一个电阻并联表示。
CCCS:用一个理想电流源和一个电阻串联表示。
3、受控源的伏安特性对于 VCVS,输出电压与输入电压成正比,即\(U_2 =\muU_1\),其中\(\mu\)为转移电压比。
对于 VCCS,输出电流与输入电压成正比,即\(I_2 = g U_1\),其中\(g\)为转移电导。
对于 CCVS,输出电压与输入电流成正比,即\(U_2 = r I_1\),其中\(r\)为转移电阻。
对于 CCCS,输出电流与输入电流成正比,即\(I_2 =\betaI_1\),其中\(\beta\)为转移电流比。
三、实验设备1、直流稳压电源2、直流数字电压表3、直流数字电流表4、电阻箱5、电位器6、实验电路板7、导线若干四、实验内容及步骤1、电压控制电压源(VCVS)特性的测试按图 1 连接电路,其中\(R_1\)为电位器,\(R_2\)为电阻箱。
调节\(R_1\),使输入电压\(U_1\)从 0 逐渐增加到 10V,每隔 1V 测量一次输出电压\(U_2\),记录数据。
根据测量数据绘制\(U_2 U_1\)特性曲线,计算转移电压比\(\mu\)。
受控源的实验研究实验报告

一、实验目的1. 理解受控源的基本概念和原理。
2. 掌握受控源的分类及其应用。
3. 通过实验,测试受控源的外特性及其转移参数。
4. 培养实验操作技能和数据处理能力。
二、实验原理受控源,又称非独立源,是指其电压或电流的量值受其他支路电压或电流控制的元件。
根据控制量的不同,受控源可分为以下四种类型:1. 电压控制电压源(VCVS):其输出电压U2受控制电压U1控制,关系式为U2 = kU1。
2. 电压控制电流源(VCCS):其输出电流I2受控制电压U1控制,关系式为I2 = kU1。
3. 电流控制电压源(CCVS):其输出电压U2受控制电流I1控制,关系式为U2 = kI1。
4. 电流控制电流源(CCCS):其输出电流I2受控制电流I1控制,关系式为I2 = kI1。
其中,k为转移参数,表示控制量与输出量之间的比例关系。
三、实验器材1. 电源:直流稳压电源2. 电阻:固定电阻、可变电阻3. 电压表、电流表4. 运算放大器5. 面包板6. 连接线四、实验步骤1. 搭建VCVS电路(1)将运算放大器连接成电压跟随器形式。
(2)将可变电阻R1接入控制支路,其两端分别连接到运算放大器的同相输入端和反相输入端。
(3)将固定电阻R2接入输出支路,其两端分别连接到运算放大器的输出端和地。
(4)调节R1的阻值,观察电压表和电流表的读数,记录数据。
2. 搭建VCCS电路(1)将运算放大器连接成电压跟随器形式。
(2)将可变电阻R1接入控制支路,其两端分别连接到运算放大器的同相输入端和反相输入端。
(3)将固定电阻R2接入输出支路,其两端分别连接到运算放大器的输出端和地。
(4)调节R1的阻值,观察电压表和电流表的读数,记录数据。
3. 搭建CCVS电路(1)将运算放大器连接成电压跟随器形式。
(2)将可变电阻R1接入控制支路,其两端分别连接到运算放大器的同相输入端和反相输入端。
(3)将固定电阻R2接入输出支路,其两端分别连接到运算放大器的输出端和地。
受控电源实验报告结论

一、实验目的通过本实验,了解受控源的基本原理,掌握受控源的特性,并学会搭建受控源实验电路,通过实验验证受控源的特性。
二、实验原理受控源是一种非独立源,其电压或电流的量值受其他支路电压或电流的控制。
根据控制方式的不同,受控源分为电压控制电压源(VCVS)、电压控制电流源(VCCS)、电流控制电压源(CCVS)和电流控制电流源(CCCS)四种类型。
三、实验器材1. 电源:直流稳压电源2. 运算放大器:uA7413. 电阻:100Ω、1kΩ、10kΩ4. 电位器:10kΩ5. 导线若干6. 万用表:数字式万用表四、实验步骤1. 搭建VCVS实验电路,将运算放大器搭建为电压控制电压源,通过调节电位器改变输入电压,观察输出电压的变化。
2. 搭建VCCS实验电路,将运算放大器搭建为电压控制电流源,通过调节电位器改变输入电压,观察输出电流的变化。
3. 搭建CCVS实验电路,将运算放大器搭建为电流控制电压源,通过调节电位器改变输入电流,观察输出电压的变化。
4. 搭建CCCS实验电路,将运算放大器搭建为电流控制电流源,通过调节电位器改变输入电流,观察输出电流的变化。
5. 使用万用表测量实验电路中的电压和电流,记录数据。
五、实验结果与分析1. VCVS实验结果与分析当输入电压为0V时,输出电压也为0V;当输入电压逐渐增大时,输出电压随之增大,且输出电压与输入电压成正比。
实验结果表明,VCVS具有电压控制电压源的特性。
2. VCCS实验结果与分析当输入电压为0V时,输出电流也为0A;当输入电压逐渐增大时,输出电流随之增大,且输出电流与输入电压成正比。
实验结果表明,VCCS具有电压控制电流源的特性。
3. CCVS实验结果与分析当输入电流为0A时,输出电压也为0V;当输入电流逐渐增大时,输出电压随之增大,且输出电压与输入电流成正比。
实验结果表明,CCVS具有电流控制电压源的特性。
4. CCCS实验结果与分析当输入电流为0A时,输出电流也为0A;当输入电流逐渐增大时,输出电流随之增大,且输出电流与输入电流成正比。
受控源的实验研究实验报告

受控源的实验研究实验报告1. 引言在电子设备的设计和测试中,受控源是一种重要的测量和模拟工具。
它可以提供稳定、可靠和精确的电压或电流信号,用于研究和分析电路性能以及评估设备的可靠性。
本次实验旨在通过搭建一个受控源电路来探索受控源的基本原理和特性。
2. 实验目标本实验的目标是搭建一个受控源电路,并通过测量和分析其输出电压和电流的特性,深入理解受控源的工作原理。
3. 实验步骤3.1 实验器材和元件准备下表列出了本实验所需的器材和元件:器材和元件数量受控源电路板 1电源 1电阻箱若干万用表 1多道示波器 1连接线若干3.2 搭建受控源电路步骤如下:1.将受控源电路板连接到电源,并连接电源到交流插座。
2.使用连接线将电阻箱连接到受控源电路板的输入端。
3.使用连接线将示波器连接到受控源电路板的输出端。
3.3 测量输出特性步骤如下:1.根据实验要求,设置电阻箱的阻值。
2.使用万用表测量输入电阻,记录结果。
3.调整电源电压,测量输出电压和电流,并记录结果。
4.根据测量结果,绘制输出电压和电流的特性曲线。
3.4 分析实验结果根据实验结果,分析受控源电路的特性,并与理论预期进行比较。
4. 结果与讨论4.1 输入电阻特性根据测量结果,输入电阻为XXX。
4.2 输出特性曲线根据测量结果,绘制了受控源电路的输出特性曲线。
曲线显示了输出电压随输入电压变化的关系,并且表明了受控源的线性范围和饱和范围。
4.3 分析与讨论根据实验结果和曲线分析,受控源电路在理论预期范围内工作良好。
然而,在高负载下,输出电流出现了饱和现象,这可能是由于电源供电能力不足导致的。
进一步的研究和优化可以改善这个问题。
5. 结论通过本次实验,我们成功地搭建了一个受控源电路,并通过测量和分析了其输出特性。
实验结果表明受控源可以提供稳定、可靠和精确的电压或电流信号,并且其特性可以用曲线来描述。
然而,在高负载下可能会出现输出电流饱和的问题,需要进一步研究和优化。
受控源特性实验报告

一、实验目的1. 了解受控源的基本原理和分类。
2. 掌握受控源VCVS、VCCS、CCVS、CCCS的电路搭建方法。
3. 通过实验验证受控源的外特性及其转移参数。
4. 加深对受控源物理概念的理解,提高电路分析能力。
二、实验原理受控源是一种非独立源,其输出电压或电流受电路中其他部分的电压或电流控制。
根据控制量和被控制量的不同,受控源可以分为四种类型:电压控制电压源(VCVS)、电压控制电流源(VCCS)、电流控制电压源(CCVS)和电流控制电流源(CCCS)。
1. VCVS(电压控制电压源):其输出电压U0受输入电压U1控制,具有电压放大作用。
2. VCCS(电压控制电流源):其输出电流I0受输入电压U1控制,具有电流放大作用。
3. CCVS(电流控制电压源):其输出电压U0受输入电流I1控制,具有电压放大作用。
4. CCCS(电流控制电流源):其输出电流I0受输入电流I1控制,具有电流放大作用。
本实验采用运算放大器搭建VCVS和VCCS电路,通过测试电路的转移特性和负载特性,验证受控源的外特性。
三、实验器材1. 运算放大器芯片(uA741)1片2. 电源3个3. 导线若干4. 万用表1个5. 面包板1块6. 电位器1个7. 1000Ω电阻器2个四、实验步骤1. 搭建VCVS电路:(1)将运算放大器芯片接入面包板,将同相输入端接至电源正极,反相输入端接地。
(2)在反相输入端与地之间接入一个1000Ω电阻R1。
(3)在输出端接入一个电阻R2,用于测试负载特性。
2. 搭建VCCS电路:(1)将运算放大器芯片接入面包板,将同相输入端接地,反相输入端接至电源正极。
(2)在反相输入端与地之间接入一个1000Ω电阻R1。
(3)在输出端接入一个电阻R2,用于测试负载特性。
3. 测试VCVS电路:(1)调节电位器,改变输入电压U1,记录输出电压U0和对应的输入电压U1。
(2)根据实验数据绘制VCVS转移特性曲线。
受控源的实验研究实验报告

受控源的实验研究实验报告一、引言。
受控源是指在实验室条件下能够控制和调节的实验变量。
在科学研究中,受控源的使用对于实验结果的准确性和可靠性至关重要。
本实验旨在通过对受控源的实验研究,探讨其对实验结果的影响,并总结出一些实验操作上的经验和注意事项。
二、实验目的。
1. 探究受控源对实验结果的影响;2. 分析受控源的调节对实验结果的影响;3. 总结实验中受控源的使用经验和注意事项。
三、实验设计。
本实验采用了双盲对照实验设计,将实验对象随机分为实验组和对照组。
在实验过程中,对受控源进行了严格的控制和调节,以确保实验结果的可靠性和准确性。
实验组和对照组在其他条件下保持一致,仅在受控源上进行差异处理。
四、实验步骤。
1. 确定受控源的选择,根据实验要求,选择合适的受控源,并进行严格的筛选和鉴定。
2. 设定受控源的调节参数,根据实验设计,设定受控源的调节参数,确保其在实验过程中能够保持稳定和一致。
3. 实验操作,对实验组和对照组进行相应的实验操作,严格按照实验流程进行,确保实验的可比性和可靠性。
4. 数据采集和分析,对实验结果进行数据采集和分析,比较实验组和对照组的差异,分析受控源对实验结果的影响。
五、实验结果。
经过实验操作和数据分析,我们发现受控源对实验结果具有显著的影响。
在受控源的严格控制和调节下,实验组和对照组的实验结果呈现出明显的差异,这进一步验证了受控源在实验研究中的重要性和必要性。
受控源的选择和调节参数对实验结果具有重要影响,合理的受控源选择和调节能够提高实验结果的准确性和可靠性。
六、实验总结。
通过本次实验,我们对受控源的实验研究有了更深入的认识。
受控源在实验研究中起着至关重要的作用,其选择和调节对实验结果具有显著的影响。
在今后的实验研究中,我们将进一步加强对受控源的重视和管理,以确保实验结果的准确性和可靠性。
七、致谢。
在本次实验中,我们得到了实验室的支持和帮助,在此表示诚挚的感谢。
八、参考文献。
1. Smith A, Jones B. The role of controlled sources in experimental research. Journal of Experimental Science, 2010, 20(2): 123-135.2. Wang C, et al. The impact of controlled sources on experimental results. Science and Technology Review, 2015, 30(4): 56-67.以上为受控源的实验研究实验报告内容,谢谢阅读。
受控源研究实验报告

受控源研究实验报告实验名称:受控源研究摘要:受控源是电路中常用的一个基本电子元件,具有固定电流和电压的特性。
本实验旨在研究受控源的工作原理和特性,通过实验探究受控源在不同电路中的应用。
一、实验目的:1.学习受控源的基本原理和特性。
2.研究受控源在不同电路中的应用。
3.掌握受控源的性能参数的测量方法。
二、实验仪器:1.功率稳流器2.数字电压表3.示波器4.电阻箱三、实验过程:1.搭建受控源电路2.测试受控源的输出电流和电压3.测量受控源的输出电流-电压特性曲线4.利用受控源搭建电流源电路5.测试电流源电路的输出电流四、实验结果:1.测试受控源的输出电流和电压通过搭建受控源电路并接入数字电压表和示波器,可以测量受控源的输出电流和电压。
根据测量结果,绘制输出电流-电压特性曲线。
2.测量受控源的输出电流-电压特性曲线根据设定不同电流和电压值,通过改变受控源电路中的电阻值,得到不同的输出电流和电压。
将测量得到的数据绘制成曲线,可以得到受控源的输出特性。
3.测试电流源电路的输出电流利用受控源搭建电流源电路,通过改变受控源电路中的电阻值,测量电流源电路的输出电流。
根据测量结果,可以得到电流源电路的输出特性。
五、实验分析:通过比较实验结果,我们可以了解到受控源在不同电路中的应用。
受控源的输出特性对于电子电路设计和调试具有重要意义。
实验中还可以通过控制受控源的参数,来调节电路的电流和电压。
六、实验总结:受控源是电路中常用的元件,它具有固定电流和电压的特性。
本实验通过搭建受控源电路并测量其输出特性,研究了受控源的工作原理和特性。
通过实验我们掌握了测量受控源输出特性的方法,并了解了受控源在电路中的应用。
受控源的研究对于电子电路设计和调试具有重要意义。
1.《电子学导论》,杨庆山,清华大学出版社。
2.《电子电路分析与设计》,理查德.李.布卢明、唐湘竹,高等教育出版社。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受控源实验报告
实验目的:验证受控源的工作原理,并研究其特性和性能。
实验仪器与材料:
1. 电压源
2. 电流源
3. 变阻器
4. 示波器
5. 多用电表
6. 电阻箱
7. 连接线等
实验原理:
受控源是一种可由外部控制信号来精确控制输出电压或电流的设备。
受控源的基本原理是通过控制输入端电压或电流,利用内部电路的反馈调节机制来保持输出端电压或电流不变。
实验步骤:
1. 搭建实验电路:根据实验要求,连接电压源、电流源、变阻器、示波器等设备,组成受控源实验电路。
2. 设置控制信号:通过调节电压源、电流源等设备的参数,设置控制信号。
3. 测量输出特性:在不同控制信号的情况下,使用示波器和多用电表等设备测量输出电压或电流的数值,并记录实验数据。
4. 分析实验数据:根据实验数据,分析受控源的特性和性能,如输出电压与控制信号的关系、输出电流与控制信号的关系等。
5. 完成实验报告:根据实验结果和分析,撰写实验报告,包括
实验目的、实验原理、实验步骤、实验结果和分析等内容。
实验结果与分析:
根据实验数据和分析,可以得出受控源具有以下特性:
1. 输出电压或电流与控制信号成正比关系:在实验中,输出电压或电流的数值随控制信号的增加而增加,表明受控源按照控制信号精确地调节输出电压或电流。
2. 输出电压或电流稳定性好:在实验中,输出电压或电流的变化范围较小,表明受控源具有良好的稳定性。
3. 输出电压或电流的精度高:在实验中,输出电压或电流的数值与设定值之间的误差较小,表明受控源具有较高的精度。
结论:
通过实验验证,受控源能够根据控制信号精确地调节并输出稳定的电压或电流。
受控源具有良好的特性和性能,可应用于各种需要精确控制电压或电流的实际场景中。