贵阳市2014-2015年九年级数学期末考试试题及答案

合集下载

2015年贵州省贵阳市中考数学试卷(含详细答案)

2015年贵州省贵阳市中考数学试卷(含详细答案)

数学试卷 第1页(共34页) 数学试卷 第2页(共34页)绝密★启用前贵州省贵阳市2015年初中毕业生学业考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算:34-+的结果等于( ) A .7B .7-C .1D .1-2.如图,1∠的内错角是 ( ) A .2∠ B .3∠ C .4∠D .5∠3.2015年5月份在贵阳召开了国际大数据产业博览会,据统计,到5月28日为止,来观展的人数已突破64000人次,64000这个数用科学记数法可表示为6.410n ⨯,则n 的值是( ) A .3B .4C .5D .6 4.如图,一个空心圆柱体,其左视图正确的是()A .B .C .D .5.小红根据2014年4~10月本班同学去孔子学堂听中国传统文化讲座的人数,绘制了如图所示的折线统计图,图中统计数据的众数是( )A .46B .42C .32D .276.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是( ) A .2:3BC .4:9D .8:277.王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出150条鱼,将它们作上标记,然后放回鱼塘.经过一段时间后,再从中随机捕捞300条鱼,其中有标记的鱼有30条,请估计鱼塘里鱼的数量大约有( ) A .1500条B .1600条C .1700条D .3000条8.如图,点E ,F 在AC 上,AD BC =,DF BE =,要使ADF CBE △≌△,还需要添加的一个条件是( ) A .A C ∠=∠ B .D B ∠=∠ C .AD BC ∥D .DF BE ∥9.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y (元)与通话时间x (分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①1l 描述的是无月租费的收费方式; ②2l 描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共34页) 数学试卷 第4页(共34页)其中,正确结论的个数是( ) A .0B .1C .2D .3 10.已知二次函数223y x x =-++,当2x ≥时,y 的取值范围是( ) A .3y ≥ B .3y ≤ C .3y >D .3y <第Ⅱ卷(非选择题 共120分)二、填空题(本大题共5小题,每小题4分,共20分.请把答案填写在题中的横线上)11.方程组12,2x y y +=⎧⎨=⎩的解为 .12.如图,四边形ABCD 是O 的内接正方形,若正方形的面积等于4,则O 的面积等于 .13.分式22aa a+化简的结果为 . 14.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是 .15.小明把半径为1的光盘、直尺和三角尺形状的纸片按如图所示放置于桌面上,此时,光盘与AB ,CD 分别相切于点N ,M .现从如图所示的位置开始,将光盘在直尺边上沿着CD 向右滚动到再次与AB 相切时,光盘的圆心经过的距离是 .三、解答题(本大题共10小题,共100分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)先化简,再求值:23(1)(1)(1)x x x x x +-+-+,其中2x =.17.(本小题满分10分)近年来,随着创建“生态文明城市”活动的开展,我市的社会知名度越来越高,吸引了很多外地游客,某旅行社对5月份本社接待外地游客来我市各景点旅游的人数作了一次抽样调查,并将调查结果绘制成如下两幅不完整的统计图表:游客人数条形统计图(1)此次共调查 人,并补全条形统计图;(2)由上表提供的数据可以制成扇形统计图,求“南江大峡谷”所对的圆心角的度数;(3)该旅行社预计7月份接待来我市的游客有2500人,根据以上信息,请你估计去黔数学试卷 第5页(共34页) 数学试卷 第6页(共34页)灵山公园的游客大约有多少人.18.(本小题满分10分)如图,在Rt ABC △中,90ACB ∠=,D 为AB 的中点,且AE CD ∥,CE AB ∥. (1)证明:四边形ADCE 是菱形;(2)若60B ∠=,6BC =,求菱形ADCE 的高.(计算结果保留根号)19.(本小题满分10分)在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.20.(本小题满分10分)小华为了测量楼房AB 的高度,他从楼底的B 处沿着斜坡向上行走20m ,到达坡顶D 处.已知斜坡的坡角为15︒.(以下计算结果精确到0.1m ) (1)求小华此时与地面的垂直距离CD 的值;(2)小华的身高ED 是1.6m ,他站在坡顶看楼顶A 处的仰角为,求楼房AB 的高度.21.(本小题满分8分)某校为了增强学生对中华优秀传统文化的理解,决定购买一批相关的书籍.据了解,经典著作的单价比传说故事的单价多8元,用12000元购买经典著作与用8000元购买传说故事的本数相同,这两类书籍的单价各是多少元?数学试卷 第7页(共34页) 数学试卷 第8页(共34页)22.(本小题满分10分)如图,一次函数y x m =+的图象与反比例函数ky x=的图象相交于(2,1)A ,B 两点. (1)求出反比例函数与一次函数的表达式;(2)请直接写出B 点的坐标,并指出使反比例函数值大于一次函数值的x 的取值范围.23.(本小题满分10分) 如图,O 是ABC △的外接圆,AB 是O 的直径,FO AB ⊥,垂足为点O ,连接AF并延长交O 于点D ,连接OD 交BC 于点E ,30B ∠=,FO =. (1)求AC 的长度;(2)求图中阴影部分的面积.(计算结果保留根号)24.(本小题满分12分)如图,经过点(04)C -,的抛物线2(0)y ax bx c a =++≠与x 轴相交于(2,0)A -,B 两点.(1)a 0,24b ac - 0(填“>”或“<”); (2)若该抛物线关于直线2x =对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC ,E 是抛物线上一动点,过点E 作AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E 的坐标;若不存在,请说明理由.25.(本小题满分12分)如图,在矩形纸片ABCD 中,4AB =,12AD =,将矩形纸片折叠,使点C 落在AD 边上的点M 处,折痕为PE ,此时3PD =. (1)求MP 的值;(2)在AB 边上有一个动点F ,且不与点A ,B 重合.当AF 等于多少时,MEF △的周长最小?(3)若点G ,Q 是AB 边上的两个动点,且不与点A ,B 重合,2GQ =.当四边形MEGQ 的周长最小时,求最小周长值.(计算结果保留根号)5 / 17贵州省贵阳市2015年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】根据“异号两数相加,取 绝对值较大的加数的符号,并用较大的数的绝对值减去较小的数的绝对值”,得341-+=,故选B. 【考点】有理数的加法 2.【答案】D【解析】两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,图中1∠的内错角是5∠,故选D. 【考点】内错角的定义 3.【答案】B【解析】科学记数法是将一个数写成10⨯n a 的形式,其中110≤<a ,n 为整数.当原数的绝对值大于等于10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值小于1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零),故选B. 【考点】科学记数法 4.【答案】B【解析】左视图是从物体左侧看到的物体的形状,看不见的棱或母线用虚线表示,故选B. 【考点】三视图 5.【答案】C【解析】众数是一组数据中出现次数最多的数,在这组数据中32出现了3次,是出现次数最多的数,故众数是32,故选C. 【考点】众数 6.【答案】C【解析】因为相似三角形的面积比等于相似比的平方,所以面积比224=()39=,故选C.【考点】相似三角形的性质数学试卷 第11页(共34页)数学试卷 第12页(共34页)7.【答案】A【解析】从鱼塘随机捕捞300条鱼,其中有标记的鱼有30条,则捕到有标记的鱼的概率大约是301=30010,设鱼塘里约有鱼n 条,根据概率公式即得150110=n ,解得1500=n ,故选A. 【考点】用样本估计总体 8.【答案】B【解析】由条件可知△ADF 和△CBE 已有两边对应相等,若它们全等,则需说明“第三边对应相等”即“(SSS)=AF CE ”或“两边的夹角对应相等”即“(SAS)∠=∠D B ”,故选B. 【考点】全等三角形的判定 9.【答案】D【解析】由图象可知当0=x 时,10=y ,220=y ,所以1l 描述的是无月租费的收费方式,2l 描述的是有月租费的收费方式,①②正确;由图象可知当500=x 时,12>y y ,所以有月租费的收费方式省钱,③正确,故选D.【考点】一次函数图象的应用 10.【答案】B【解析】因为二次函数23=-++y x x 的对称轴是直线1=x ,拋物线的开口向下,所以在对称轴右侧,即1>x 时,y 随x 的增大而减小.因为当2=x 时,222233=-+⨯+=y ,所以当21≥>x 时,3≤y ,故选B. 【考点】二次函数的图象和性质第Ⅱ卷二、填空题 11.【答案】102=⎧⎨=⎩,x y 【解析】原方程即122+=⎧⎨=⎩①,②,x y y 将②式代入①式得212+=x ,解得10=x ,故原方程的解是102.=⎧⎨=⎩,x y【考点】解二元一次方程组 12.【答案】2π【解析】连接AC ,因为正方形的面积是4,则正方形的边长是2,对角线=AC 因为AC 是O 的直径,所以O的半径2==ACr O 的面积22=ππ(2)2π==r .7 / 17【考点】圆的内接正多边形的性质13.【答案】12+a【解析】将分式的分子、分母先分解因式,然后约去相同的因式,故212(2)2==+++a a a a a a a .【考点】分式的化简14.【答案】15【解析】因为直角三角形的两条直角边长是2和1,所以小正方形的边长是21=1-,根据勾股定理,大正方1,大正方形的面积是5=,故飞镖小正方形区域的概率1=5=小正方形的面积大正方形的面积p .【考点】勾股定理,概率的计算 15.【解析】如图,光盘的圆心经过的距离'==+OO MG BM BG ,连接OM ,ON ,OB ,'O G ,'O H ,'O B .因为BA ,BC 是O 的切线,所以1302∠=∠=︒OBM ABE ,在Rt △OBM中,tan60===︒OM BM .因为BA ,BD 是'O 的切线,所以1602'∠=∠=︒O BC ABC ,在Rt '△O BG中,tan60'===︒O G BG ,所以光盘的圆心经过的距离'==+==OO MG BM BG【考点】切线的性质,解直角三角形,动圆问题 三、解答题16.【答案】解:原式2233=1-+-+x x x x2=21-x ,当2=x 时,原式22217=⨯-=x .数学试卷 第15页(共34页)数学试卷 第16页(共34页)【考点】整式的化简、求值 17.【答案】(1)400, 补全条形统计图(如图)(2)3600.21=75.6⨯.(3)1162500=725400⨯(人).答:去黔灵山公园的人数大约为725人. 【解析】(1)400, 补全条形统计图(如图)(2)3600.21=75.6︒⨯︒.(3)1162500=725400⨯(人).答:去黔灵山公园的人数大约为725人.【考点】统计表与条形统计图的意义,样本估计总体 18.【答案】解:(1)证明:∵∥AE CD ,∥CE AB , 又∴四边形ADCE 是平行四边形, 又∵90∠=︒ACB ,D 是AB 的终点 ∴==CD BD AD ,∴平行四边形ADCE 是菱形.9 / 17(2)解:过点D 作⊥DF CE ,垂足为点F ,如图所示: DF 即为菱形ADCE 的高, ∵60∠=︒B ,=CD BD , ∴△BCD 是等边三角形,∴60∠=∠=︒BDC BCD ,6==CD BC , ∵∥CE AB ,∴60∠=∠=︒DCE BDC , 又∵6==CD BC ,∴在Rt △CDF中,sin606=︒==DF CD【解析】(1)证明:∵∥AE CD ,∥CE AB , 又∴四边形ADCE 是平行四边形, 又∵90∠=︒ACB ,D 是AB 的终点 ∴==CD BD AD , ∴平行四边形ADCE 是菱形.(2)解:过点D 作⊥DF CE ,垂足为点F ,如图所示: DF 即为菱形ADCE 的高, ∵60∠=︒B ,=CD BD , ∴△BCD 是等边三角形,∴60∠=∠=︒BDC BCD ,6==CD BC , ∵∥CE AB ,∴60∠=∠=︒DCE BDC , 又∵6==CD BC ,∴在Rt △CDF中,sin606=︒==DF CD数学试卷 第19页(共34页)数学试卷 第20页(共34页)【考点】菱形的判定与性质19.【答案】(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,共有3种情况,而选中小丽的情况只有一种,所以P (恰好选中小丽)13=;列表或画树状图正确;所有可能出现的情况有12种,其中恰好选中小敏、小洁两位同学组合的情况有两种,所以P (小敏,小洁)21126==.【解析】(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,共有3种情况,而选中小丽的情况只有一种,所以P (恰好选中小丽)13=;所有可能出现的情况有12种,其中恰好选中小敏、小洁两位同学组合的情况有两种,所以P (小敏,小洁)21126==. 【考点】列表法与树状图法20.【答案】(1)在Rt △BCD 中,15∠=︒CBD ,20=BD ,∴sin15=︒CD BD ,∴ 5.2≈CD (m ).答:小华与地面的垂直距离CD 的值是5.2m.(2)在Rt △AFE 中,45∠=AEF ,∴==AF EF BC ,由(1)知,cos1519.3=︒≈BC BD (m ),∴19.3 1.6 5.226.1=++≈++=AB AF DE CD (m ).答:楼房AB 的高度是26.1m.【解析】(1)在Rt △BCD 中,15∠=︒CBD ,20=BD ,∴sin15=︒CD BD ,∴ 5.2=CD (m ).答:小华与地面的垂直距离CD 的值是5.2m ;(2)在Rt △AFE 中,∵45∠=︒AEF ,∴==AF EF BC ,由(1)知,cos1519.3=︒≈BC BD (m ),∴19.3 1.6 5.226.1=++=++=AB AF DE CD (m )答:楼房AB 的高度是26.1m.【考点】解直角三角形的应用-仰角俯角问题,解直角三角形的应用-坡度坡角问题21.【答案】解:设传说故事的单价为x 元,则经典著作的单价为(8)+x 元.由题意,得8000120008=+x x , 解得16=x ,经检验16=x 是原方程的解,824+=x .答:传说故事的单价为16元,经典著作的单价为24元.【解析】设传说故事的单价为x 元,则经典著作的单价为(8)+x 元. 由题意,得8000120008=+x x , 解得16=x ,经检验16=x 是原方程的解,824+=x ,答:传说故事的单价为16元,经典著作的单价为24元.【考点】四点共圆,直线与圆的位置关系及证明,分式方程的应用22.【答案】解:(1)将(2,1)A 代入=k y x中,得212=⨯=k , ∴反比例函数的表达式为2=y k, 将(2,1)A 代入=+y x m 中,得21+=m ,∴1=-m ,∴一次函数的表达式为1=-y x .(2)(1,2)--B ;当1<-x 或02<<x 时,反比例函数的值大于一次函数的值.【考点】反比例函数与一次函数的交点问题23.【答案】解:(1)∵⊥OF AB ,∴90∠=︒BOF ,∵30∠=︒B ,=FO∴6=OB ,212==AB OB .(3分)又∵AB 为⊙O 的直径,∴90∠=︒ACB , ∴162==AC AB . (2)如图,由(1)可知,12=AB ,∴6=AO ,即=AC AO ,在Rt △ACF 和Rt △AOF 中,=AE AF ,=AC AO ,∴Rt Rt △≌△ACF AOF ,∴30∠=∠=︒FAO FAC ,∴60∠=︒DOB .过点D 作⊥DG AB 于点G ,∵6=OD ,∴=DG∴162+==⨯⨯△△△ACF OFD AOD S S S即=阴影S 【解析】(1)∵⊥OF AB ,∴90∠=︒BOF ,∵30∠=︒B ,=FO∴6=OB ,212==AB OB .(3分)又∵AB 为⊙O 的直径,∴90∠=︒ACB , ∴162==AC AB . (2)如图,由(1)可知,12=AB ,∴6=AO ,即=AC AO ,在Rt △ACF 和Rt △AOF 中,=AE AF ,=AC AO ,∴Rt Rt △≌△ACF AOF ,∴30∠=∠=︒FAO FAC ,∴60∠=︒DOB .过点D 作⊥DG AB 于点G ,∵6=OD ,∴=DG∴162+==⨯⨯△△△ACF OFD AOD S S S即=阴影S24.【答案】(1)0>a ,240->b ac ;(2)∵直线2=x 是对称轴,(2,0)-A ,∴(6,0)B ,∵点(0,4)-C ,将A ,B ,C 的坐标分别代入2=++y ax bx c , 解得:13=a ,43=-b ,4=-c , ∴抛物线的函数表达式为214433=--y x x ; (3)存在.(i )假设存在点E 使得以A ,C ,E ,F 为顶点所组成的四边形是平行四边形,过点C 作∥CE x 轴,交抛物线于点E ,如图1,过点E 作∥EF AC ,交x 轴于点F ,则四边形ACEF 即为满足条件的平行四边形, ∵抛物线214433=--y x x 关于直线2=x 对称, ∴由抛物线的对称性可知,E 点的横坐标为4,又∵4=OC ,∴E 的纵坐标为4-,∴存在点(4,4)-E ;(ii )假设在抛物线上还存在点E ′,使得以A ,C ,F ′,E ′为顶点所组成的四边形是平行四边形,如图2,过点E ′作''∥E F AC 交x 轴于点F ′,则四边形ACF ′E ′即为满足条件的平行四边形,∴=''AC E F ,''∥AC E F ,过点E ′作'⊥E G x 轴于点G ,∵''∥AC E F ,∴∠=∠''CAO E F G ,又∵90∠=∠''=︒COA E GF ,=''AC E F ,∴''△≌△CAO E F G ,∴4'==E G CO ,∴点E ′的纵坐标是4, ∴2144433=--x x ,解得:12=+x 22=-x∴点E ′的坐标为(2)+,同理可得点E ″的坐标为(2)-.【考点】二次函数综合题25.【答案】解:(1)在折叠纸片后,3==PD PH ,∴4===AB CD MH ,90∠=∠=︒H D ,∴5=MP .(2)如图1,作点M 关于AB 的对称点M ′,连接M ′E 交AB 于点F ,则点F 即为所求,∴4='=AM AM ,过点E 作⊥EN AD ,垂足为N ,则5==ME MP ,在Rt △ENM 中,3==MN ,由''△∽△AFM NEM , 得'='M A AF M N EN ,∴1611=AF , ∴当1611=AF 时,△MEF 的周长最小. (3)如图2,由(2)知点M ′是点M 关于AB 的对称点,在EN 上截取2=ER ,连接M ′R 交AB 于点G ,再过点E 作∥EQ RG ,交AB 于点Q ,则+MG EQ 最小,∴四边形MEQG 的周长最小,∵=ER GQ ,∥ER GQ ,∴四边形MEQG 是平行四边形,∴=QE GR ,'==M R ,∵5=ME ,2=GQ ,∴四边形MEQG 的最小周长值是7+【解析】(1)在折叠纸片后,3==PD PH ,∴4===AB CD MH ,90∠=∠=︒H D ,∴5=MP .(2)如图1,作点M 关于AB 的对称点M ′,连接M ′E 交AB 于点F ,则点F 即为所求,∴4='=AM AM ,过点E 作⊥EN AD ,垂足为N ,则5==ME MP ,在Rt △ENM 中,3==MN ,由''△∽△AFM NEM , 得'='M A AF M N EN ,∴1611=AF , ∴当1611=AF 时,△MEF 的周长最小. (3)如图2,由(2)知点M ′是点M 关于AB 的对称点,在EN 上截取2=ER ,连接M ′R 交AB 于点G ,再过点E 作∥EQ RG ,交AB 于点Q ,则+MG EQ 最小,∴四边形MEQG 的周长最小,∵=ER GQ ,∥ER GQ ,∴四边形MEQG 是平行四边形,∴=QE GR ,'==M R ,∵5=ME ,2=GQ ,∴四边形MEQG 的最小周长值是7+(2)如图1,作点M 关于AB 的对称点M ′,连接M ′E 交AB 于点F ,利用两点之间线段最短可得点F 即为所求,过点E 作⊥EN AD ,垂足为N ,则4=--=AM AD M P PD ,所以4='=AM AM ,再证明5==ME MP ,接着利用勾股定理计算出3=MN ,所以11'=NM ,然后证明''△∽△AFM NEM ,则可利用相似比计算出AF ;(3)如图2,由(2)知点M′是点M 关于AB 的对称点,在EN 上截取2=ER ,连接M ′R 交AB 于点G ,再过点E 作∥EQ RG ,交AB 于点Q ,易得=QE GR ,而='GM GM ,于是+='MG QE M R ,利用两点之间线段最短可得此时+MG EQ 最小,于是四边形MEQG 的周长最小,在Rt '△M RN 中,利用勾股定理计算出'=M R MEQG 的最小周长值是7+【考点】几何变换综合题。

2014-2015学年九年级上数学期末试卷及答案解析

2014-2015学年九年级上数学期末试卷及答案解析

2014-2015九年级第一学期数学期末测试卷一.选择题(共10小题)1.已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a ≠b ,则的值是( )23.已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m ﹣1)(n ﹣1)4.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( )D . 7种5.如图,在△ABC 中,AC=BC ,点D 、E 分别是边AB 、AC 的中点,将△ADE 绕点E 旋转180°得△CFE ,则四边形ADCF 一定是( )4个黑球和若干个白球,它们除颜色外没有任何(m 为常数)的图象与x 轴的一个交点为(1,0),8.如图,二次函数y=ax 2+bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )﹣9.如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( )D.810.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()二.填空题(共8小题)11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是_________.12.若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是_________.13.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为_________.14.一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是_________.15.二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是_________.17.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.18.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF =4.其中正确的是_________(写出所有正确结论的序号).三.解答题(共10小题)19.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)20如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.21.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.22.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O 于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B 两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.24.)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B 两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.25.如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.26.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.27.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x 轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC 的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.28.如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.2014-2015学年九年级[上]数学期末测试卷参考答案与试题解析一.选择题(共10小题)1.(2013•烟台)已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a ≠b ,则=此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键. 2.(2013•咸宁)关于x 的一元二次方程(a ﹣1)x 2﹣2x+3=0有实数根,则整数a D . ﹣1 ,3.(2013•鄂州)已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m的关键.6.(2013•资阳)在一个不透明的盒子里,装有色外没有任何其他区别,÷8.(2013•济南)如图,二次函数y=ax +bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )﹣<最小值:<﹣9.(2013•自贡)如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( ),AG=10.(2013•日照)如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是( ) ∴===二.填空题(共8小题) 11.如果(2x+2y+1)(2x+2y ﹣1)=63,那么x+y 的值是 4或﹣4 .兰州)若,且一元二次方程解:∵,13.(2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为(0,﹣2).∵=335从这副牌中任意抽取一张,则这张牌是标有字母的概率是=.故答案为:..15.(2013•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.x <联立消掉k=时,抛物线与的坐标为(,))时,×y=.17.(2011•湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的轴的交点的坐标特点是解此题的关=,连接E=.,根据垂径定理可得:,由,E=∴=,∵=,AG=== E=AD=,××=3∴(∴,,;足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,个月,则乙队施工个月,则乙队施工y≤20.(2013•潍坊)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD 绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;,=135﹣垂直于OC ,OB=OC ,利用为公共边,利用SAS ,即可得证;OA=OC 的长,即可确定出AE=CE=AF=AE=AC=2AE=.BC=3,根据等AM=6;r=6r=,则CE=2r=OM=6﹣BE=2OM=然后判断Rt △PCM BM=CM=BC=3=6,r=6﹣r=CE=2r=OM=6=BE=2OM=∠MCP ,∴=,=PC=.求出二次函数的解析式为的方程,解方程),则D 点坐标为(x ,长度的最大值.两点,∴∴××,解得),时,有最大值,且的值,函数关系式即可求>=11,y=xxy=y=CEQ ,根据y=∴﹣x ,FOB=,∴C 作CK y=x ×,×,﹣y=﹣,当AC===.y=xCD=AD=2,∠AC=∴,即:﹣t=或t=,故舍去)t=本题是二次函数压轴题,考查了二次函数的图象与性质、正比例函数的图象与性质、待定系数法、对称、解直角三角形、相似三角形的判定与性质、解一元二次方程等知识点.试题的难点在于第(3)问,图形中:EQ=BE AE 在△ACD 与△BEF 中,,:B==EQ=AEH==,EH=BE::DM=OM=x 点坐标,运用待定系数法得到直,解得,m N=N=m ON==m m x ﹣×解得≤,,)﹣当时,m=)=,到达最高位置时的坐标为(,)考点:二次函数综合题.分析:(1)过点D作DF⊥x轴于点根据相似三角形对应边成比例得出=,即AF=1,进而得到点A(2)先由抛物线过原点((﹣2,0),求出对称轴为直线可知当△OBC是等腰三角形时,可分两种情况讨论:①求出y1的值,将A,设C(2,y2),列出方程,解方程求出抛物线的解析式.∴====362)代入,解得x=36(负值舍去))代入,解得xx x y=x。

2014-2015学年人教版九年级上学期期末数学试卷(精选3套,详细解析)

2014-2015学年人教版九年级上学期期末数学试卷(精选3套,详细解析)

2014-2015学年人教版九年级上学期期末数学试卷考试时间100分钟,试卷满分100分一. 选择题(每小题3分,共30分)1.“ a 是实数,0≥a ”这一事件是( )A .必然事件B .不确定事件C .不可能事件D .随机事件2. 把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值( )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定 3.已知反比例函数xy 1=,下列结论中不正确的是( ) A .图象经过点(-1,-1) B .图象在第一、三象限C .当x >1 时, 0 <y <1D .当 x <0 时, y 随着 x 的增大而增大 4.如图,在方格纸中,△ABC 经过变换得到△DEF ,正确的变换是( ) A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格 B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格 C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180° D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180° 5.如果关于x 的一元二次方程22(21)10k x k x -++=有两个 不相等的实数根,那么k 的取值范围是() A .14k >-B .14k >-且0k ≠ C .14k <- D .14k ≥-且0k ≠ 6.如图,点A 、B 、O 是正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧tan 的值是( )A .1BCD 7.如图,在大小为4×4的正方形网格中与①中三角形相似的是( )A .②B . ③C . ④和③D . ②和④8.已知抛物线k x a y +-=2)2((是常数,>k a a ,0),A (﹣3,y 1)、B (3,y 2)、C (4,y 3)是抛物线上三点,则y 1,y 2,y 3由小到大依序排列为( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 2<y 3<y 1 D .y 3<y 2<y 1 9.如图,△AOB 是等边三角形,B (2,0),将△AOB 绕O 点逆时针方向旋转90°到△A′OB′位置,则点A′ 的坐标是( )(第4题)(第6题)A .(﹣1,)B .(﹣,1)C .(,﹣1)D .(1,﹣)10. 已知二次函数c bx ax y ++=2的图象如图所示,那么 一次函数c bx y +=和反比例函数xay =在同一平面直角坐标系中的图象大致是( )A .B .C .D .二.填空题(每小题3分,共24分.) 11. 已知点M )3,21(m -关于原点对称的点在第一象限,那么的取值范围是________. 12. 如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为 13.一种药品经过两次降价,药价从原来每盒 60 元降至现在的 48.6 元,则平均每次降价的百分率是 .14. 如图,在平面直角坐标系中,点O为坐标原点,点P 在第一象限,☉P 与x 轴交于O 、A 两点,点A 的坐标为(6,0),☉P的半径为13,则点P 的坐标为 .15.如图,在△ABC 中,AB=24,AC=18,D 是AC 上一点,AD=12,AB 上取一点E ,A 、D 、E 三点为顶点组成的三角形与△ABC 相似,AE 的长是_____ _. 16.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行.点P (a 3,a )是反比例函数xk y =(k >0)的图象上与正方形的一个交点,若图中阴影部分的 面积等于9,则k 的值为 .(第16题) 17. 轮船从B 处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达 C 处,在C 处观测灯塔A 位于北偏东60°方向上,则C 处与灯塔 A 的距离是 海里.18. 二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0),下列说法:①若b 2﹣4ac=0,则抛物线的顶点一定在x 轴上; ②若a-b+c=0,则抛物线必过点(-1,0);③若a <0,且一元二次方程ax 2+bx+c=0有两根x 1,x 2(x 1<x 2),则ax 2+bx+c <0的解集为x 1<x <x 2;④若33ca b +=,则方程ax 2+bx+c=0有一根为-3. (第12题) (第14题) (第15题)其中正确的是 (把正确的序号都填上)三.解答题(本大题共有5题,满分46分) 19.(每小题6分,共12分)(1)2tan 603sin 30cos 45+--o o o . (2)解方程:2410x x ++=20.(本题8分) 如图,一次函数y 1=kx+b 的图象与反比例函数2my x=(x >0)的图象交于A (1,6),B (a ,2)两点.(1)求一次函数与反比例函数的解析式; (2)直接写出y 1≤y 2时x 的取值范围.21.(本题8分) 小华和小丽两人玩数字游戏,先由小丽心中任意想一个数记为 x ,再由小华猜小丽刚才想的数字,把小华猜的数字记为 y ,且他们想和猜的数字只能在 1、2、3、4这四个数字中.(1)请用树状图或列表法表示出他们想和猜的所有情况;(2)如果他们想和猜的数字相同,则称他们“心灵相通” .求他们“心灵相通”的概率; (3)如果他们想和猜的数字满足x y 1-≤,则称他们“心有灵犀” .求他们“心有灵犀”的概率.22. (本题8分) 如图,直线PM 切⊙O 于点M,直线PO 交⊙O 于A 、B 两点,弦AC ∥PM ,连接OM 、BC. 求证:(1)△ABC ∽△POM ;(2)2OA 2=OP·BC.23. (本题10分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润甲y (万元)与进货量x(吨)近似满足函数关系x y 3.0=甲;乙种水果的销售利润乙y (万元)与进货量x (吨)近似满足函数关系bx ax y +=2乙(其中0≠a ,a ,b 为常数),且进货量x 为1吨时,销售利润乙y 为1.4万元;进货量x 为2吨时,销售利润乙y 为2.6万元.(1)求乙y (万元)与x (吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t 吨,请你写出这两种水果所获得的销售利润之和W (万元)与t (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?2014—2015学年第一学期九年级数学期末质量检测评分标准11.m0< 12.1413.010 14.(3,2) 15.916或16.3 17.25 18.①、②、④三.解答题(本大题共有5题,满分46分)19.(1)21-2⎛⨯⎝…………………………………3分=313+-22…………………………………5分=4………………………………………6分(2)(2)解:2x4x1+=-,2x4x 414++=-+2(x2)3+=…………………………………3分x+2=…………………………………5分12x2,x2==.………………………………………6分20. (1)∵点A(1,6),B(a,2)在y2=的图象上,∴=6,m=6.∴反比例函数的解析式为:y2=,…………………………………3分∴=2,a==3,∵点A(1,6),B(3,2)在函数y1=kx+b的图象上,∴,解这个方程组,得∴一次函数的解析式为y1=-2x+8,反比例函数的解析式为y2=;…………………6分(2)由函数图象可知,当x在A、B之间时一次函数的图象在反比例函数图象的上方,∵点A(1,6),B(3,2),∴1≤x≤3.…………………………………8分(2)根据(1)得所以可能的情况有16中,想和猜的数相同的情况有4种,∴P(心灵相通)=41164=…………………6分(3)根据(1)得所以可能的情况有16中,数字满足|x-y|≤1的情况有10种,∴P(心有灵犀)105168==…………………8分22.(1)证明:∵直线PM切⊙O于点M,∴∠PMO=90°,∵弦AB是直径,∴∠ACB=90°,∴∠ACB=∠PMO,∵AC∥PM,∴∠CAB=∠P,∴△ABC∽△POM;…………………4分(2)∵△ABC∽△POM,∴,又AB=2OA,OA=OM,∴,∴2OA2=OP·BC.…………………8分23.解:(1)由题意,得:解得∴y乙=-0.1x2+1.5x.…………………4分(2)W=y甲+y乙=0.3(10-t)+(-0.1t2+1.5t)∴W=-0.1t2+1.2t+3.W=-0.1(t-6)2+6.6.∴t=6时,W有最大值为6.6.∴10-6=4(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元.…………………10分2014-2015学年人教版九年级上学期期末数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知=,则x的值是()A.B.C.D.2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.4.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣15.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是()A.B.C.D.7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣38.如图,等边△ABC边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC,则y关于x函数的图象大致为()A.B.C.D.二、填空题:(本题共16分,每小题4分)9.扇形的半径为9,且圆心角为120°,则它的弧长为.10.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是.11.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,在下列结论中,唯一正确的是.(请将正确的序号填在横线上)①a<0;②c<﹣1;③2a+3b=0;④b2﹣4ac<0;⑤当x=时,y的最小值为.12.如图,在平面直角坐标系xOy中,正方形ABCD顶点A(﹣1,﹣1)、B(﹣3,﹣1).我们规定“把正方形ABCD先沿x轴翻折,再向右平移2个单位”为一次变换.(1)如果正方形ABCD经过1次这样的变换得到正方形A1B1C1D1,那么B1的坐标是.(2)如果正方形ABCD经过2014次这样的变换得到正方形A2014B2014C2014D2014,那么B2014的坐标是.三、解答题:(本题共30分,每题5分)13.计算:tan30°﹣cos60°×tan45°+sin30°.14.已知抛物线y=x2﹣4x+3.(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.15.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.四、解答题:(本题共20分,每题5分)19.如图,在锐角△ABC中,AB=AC,BC=10,sinA=,(1)求tanB的值;(2)求AB的长.20.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.22.阅读下面材料:小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).请回答:图1中∠APB的度数等于,图2中∠PP′C的度数等于.参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A坐标为(﹣,1),连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形ABC.当C(x,y)在第一象限内时,求y与x之间的函数表达式.五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程mx2+(3m+1)x+3=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值;(3)在(2)的条件下,将关于x的二次函数y=mx2+(3m+1)x+3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请结合这个新的图象回答:当直线y=x+b与此图象有两个公共点时,b的取值范围.24.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.25.我们规定:函数y=(a、b、k是常数,k≠ab)叫奇特函数.当a=b=0时,奇特函数y=就是反比例函数y=(k是常数,k≠0).(1)如果某一矩形两边长分别是2和3,当它们分别增加x和y后,得到新矩形的面积为8.求y与x之间的函数表达式,并判断它是否为奇特函数;(2)如图,在平面直角坐标系xOy中,矩形OABC的顶点A、C坐标分别为(6,0)、(0,3),点D是OA中点,连接OB、CD交于E,若奇特函数y=的图象经过点B、E,求该奇特函数的表达式;(3)把反比例函数y=的图象向右平移4个单位,再向上平移个单位就可得到(2)中得到的奇特函数的图象;(4)在(2)的条件下,过线段BE中点M的一条直线l与这个奇特函数图象交于P,Q两点(P在Q右侧),如果以B、E、P、Q为顶点组成的四边形面积为16,请直接写出点P的坐标.2014-2015学年人教版九年级上学期期末数学试卷答案解析参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知=,则x的值是()A.B.C.D.考点:比例的性质.专题:计算题.分析:根据内项之积等于外项之积得到2x=15,然后解一次方程即可.解答:解:∵=,∴2x=15,∴x=.故选B.点评:本题是基础题,考查了比例的基本性质,比较简单.2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定考点:点与圆的位置关系.分析:点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).解答:解:∵OP=3<4,故点P与⊙O的位置关系是点在圆内.故选A.点评:本题考查了点与圆的位置关系,注意掌握点和圆的位置关系与数量之间的等价关系是解决问题的关键.3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.考点:锐角三角函数的定义.分析:首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.解答:解:∵在Rt△ABC中,∠C=90°,AB=5,BC=4,∴AC===3,∴sinB==.故选D.点评:本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.4.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣1考点:反比例函数的性质.分析:如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()解答:解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.点评:本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.5.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°考点:圆周角定理.分析:已知⊙O是△ABC的外接圆,∠AOB=100°,根据圆周角定理可求得∠ACB的度数.解答:解:∵⊙O是△ABC的外接圆,∠AOB=100°,∴∠ACB=∠AOB=×100°=50°.故选B.点评:本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是()A.B.C.D.考点:概率公式.分析:先统计出奇数点的个数,再根据概率公式解答.解答:解:∵正方体骰子共六个面,点数为1,2,3,4,5,6,奇数为1,3,5,∴点数为奇数的概率为:=.故选:C.点评:此题主要考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3考点:二次函数图象与几何变换.专题:几何变换.分析:先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.如图,等边△ABC边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC,则y关于x函数的图象大致为()A .B .C .D .考点: 动点问题的函数图象.分析: 分段讨论,当0≤x ≤2时,作PQ ⊥AC ,根据锐角三角函数和勾股定理求出AQ 、PQ 、CQ 、PC 2;当2<x <4时,PC 在BC 上,是一次函数;当4<x ≤6时,PC 在AC 上,是一次函数,根据函数关系式分析即可得出结论.解答: 解:当0≤x ≤2时,作PQ ⊥AC ,∵AP=x ,∠A=60°∴AQ=,PQ=, ∴CQ=2﹣,∴PC==, ∴PC 2=x 2﹣2x+4=(x ﹣1)2+3;当2<x <4时,PC=4﹣x ,当4<x ≤6时,PC=2﹣(6﹣x )=x ﹣4,故选:C .点评: 本题主要考查了动点问题的函数图形,分段讨论,列出每段函数的解析式是解决问题的关键.二、填空题:(本题共16分,每小题4分)9.扇形的半径为9,且圆心角为120°,则它的弧长为 6π .考点: 弧长的计算.分析: 直接利用弧长的计算公式计算即可.解答: 解:弧长是:=6π.故答案是:6π.点评:本题考查了弧长的计算公式,正确记忆公式是关键.10.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是2:5.考点:相似三角形的应用.分析:由题意知三角尺与其影子相似,它们周长的比就等于相似比.解答:解:∵,∴三角尺的周长与它在墙上形成的影子的周长的比是.点评:本题考查相似三角形的性质,相似三角形的周长的比等于相似比.11.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,在下列结论中,唯一正确的是③⑤.(请将正确的序号填在横线上)①a<0;②c<﹣1;③2a+3b=0;④b2﹣4ac<0;⑤当x=时,y的最小值为.考点:二次函数图象与系数的关系.分析:根据二次函数的图象开口方向即可判断A;由二次函数的图象与y轴的交点位置即可判断B;把x=﹣1代入二次函数的解析式即可判断C;根据二次函数的对称轴即可求出D.解答:解:①∵二次函数的图象开口向上,∴a>0,故本选项错误;②∵二次函数的图象与y轴的交点在点(0,﹣1)的上方,∴c>﹣1,故本选项错误;③、∵二次函数的图象的对称轴是直线x=,∴﹣=,﹣3b=2a,2a+3b=0,故本选项正确;④∵二次函数的图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;⑤∵二次函数的图象的对称轴是直线x=,∴﹣=,∴﹣3b=2a,b=﹣a,∴y最小值=a+b+c=a+×(﹣a)+c=;即y的最小值为,故本选项正确;故答案为:③⑤.点评:本题考查了二次函数的图象和系数的关系,题目具有一定的代表性,是一道比较好的题目,注意用了数形结合思想,二次函数的图象开口方向决定a的符号,二次函数的图形与y轴的交点位置决定c的符号,根据二次函数的图象的对称轴是直线x=得出﹣=,把x=代入y=ax2+bx+c(a≠0)得出y=a+b+c等等.12.如图,在平面直角坐标系xOy中,正方形ABCD顶点A(﹣1,﹣1)、B(﹣3,﹣1).我们规定“把正方形ABCD先沿x轴翻折,再向右平移2个单位”为一次变换.(1)如果正方形ABCD经过1次这样的变换得到正方形A1B1C1D1,那么B1的坐标是(﹣1,1).(2)如果正方形ABCD经过2014次这样的变换得到正方形A2014B2014C2014D2014,那么B2014的坐标是(4025,﹣1).考点:规律型:点的坐标.分析:(1)把正方形ABCD先沿x轴翻折,则点B关于x轴对称,得到B点的坐标为:(﹣3,1),再向右平移2个单位”后点B的坐标为:(﹣3+2,1),即B1(﹣1,1).(2)首先由正方形ABCD,点A、B的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),然后根据题意求得第1次、2次、3次变换后的点B的对应点的坐标,即可得规律:第n次变换后的点B的对应点的为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n﹣3,﹣1),继而求得把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标.解答:解:(1)∵正方形ABCD,点A、B的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),∴根据题意得:第1次变换后的点B的对应点的坐标为(﹣3+2,1),即B1(﹣1,1),(2)第2次变换后的点B的对应点的坐标为:(﹣1+2,﹣1),即(1,﹣1),第3次变换后的点B的对应点的坐标为(1+2,1),即(3,1),第n次变换后的点B的对应点的为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n﹣3,﹣1),∴把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标是:(4025,﹣1).故答案为:(﹣1,1);(4025,﹣1).点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点B的对应点的坐标为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n ﹣3,﹣1)是解此题的关键.三、解答题:(本题共30分,每题5分)13.计算:tan30°﹣cos60°×tan45°+sin30°.考点:特殊角的三角函数值.分析:将tan30°=,cos60°=,tan45°=1,sin30°=分别代入运算,然后合并即可得出答案.解答:解:原式==.点评:本题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是关键.14.已知抛物线y=x2﹣4x+3.(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.考点:二次函数的三种形式;二次函数的性质.分析:(1)由于二次项系数是1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)根据二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h求解即可;(3)先求出方程x2﹣4x+3=0的两根,再根据二次函数的性质即可求解.解答:解:(1)y=x2﹣4x+3=(x2﹣4x+4)﹣4+3=(x﹣2)2﹣1;(2)∵y=(x﹣2)2﹣1,∴对称轴为直线x=2,顶点坐标为(2,﹣1);(3)解方程x2﹣4x+3=0,得x=1或3.∵y=x2﹣4x+3,a=1>0,∴抛物线开口向上,∴当1<x<3时,函数y<0.点评:本题考查了二次函数解析式的三种形式,二次函数的性质,难度适中.利用配方法将一般式转化为顶点式是解题的关键.15.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.考点:相似三角形的判定与性质.分析:(1)根据两角对应相等,两三角形相似即可证明△ADC∽△ACB;(2)根据相似三角形的对应边成比例得出AC:AB=AD:AC,即AC2=AB•AD,将数值代入计算即可求出AC的长.解答:(1)证明:在△ADC与△ACB中,∵∠ABC=∠ACD,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴AC:AB=AD:AC,∴AC2=AB•AD,∵AD=2,AB=7,∴AC2=7×2=14,∴AC=.点评:本题考查的是相似三角形的判定与性质,用到的知识点为:①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(简叙为两角对应相等,两三角形相似);②相似三角形的对应边成比例.16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:在Rt△ABD中,求出BD,在Rt△ACD中,求出CD,二者相加即为楼高BC.解答:解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=20.在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=AD=20.∴BC=BD+CD=20+20(m).答:这栋楼高为(20+20)m.点评:本题考查了解直角三角形的应用﹣﹣仰角俯角问题,将原三角形转化为两个直角三角形是解题的关键.17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.考点:圆周角定理;勾股定理;垂径定理.专题:计算题.分析:(1)由OB=OC,利用等边对等角得到一对角相等,再由同弧所对的圆周角相等得到一对角相等,等量代换即可得证;(2)由弦CD与直径AB垂直,利用垂径定理得到E为CD的中点,求出CE的长,在直角三角形OCE中,设圆的半径OC=r,OE=OA﹣AE,表示出OE,利用勾股定理列出关于r 的方程,求出方程的解即可得到圆的半径r的值.解答:(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)解:∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.点评:此题考查了垂径定理,勾股定理,以及圆周角定理,熟练掌握定理是解本题的关键.18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.考点:反比例函数与一次函数的交点问题;三角形的面积.专题:计算题.分析:(1)先将点A(2,3)代入反比例函数和一次函数y=kx+2,求得m、k的值,(2)可求得点B的坐标,设P(x,y),由S△PBC=18,即可求得x,y的值.解答:解:(1)把A(2,3)代入,∴m=6.∴.(1分)把A(2,3)代入y=kx+2,∴2k+2=3.∴.∴.(2分)(2)令,解得x=﹣4,即B(﹣4,0).∵AC⊥x轴,∴C(2,0).∴BC=6.(3分)设P(x,y),∵S△PBC==18,∴y1=6或y2=﹣6.分别代入中,得x1=1或x2=﹣1.∴P1(1,6)或P2(﹣1,﹣6).(5分)点评:本题考查了一次函数和反比例函数的交点问题,利用待定系数法求解析式是解此题的关键.四、解答题:(本题共20分,每题5分)19.如图,在锐角△ABC中,AB=AC,BC=10,sinA=,(1)求tanB的值;(2)求AB的长.考点:解直角三角形.专题:计算题.分析:(1)过点C作CD⊥AB,垂足为D,设CD=3k,则AB=AC=5k,继而可求出BD=k,从而求出tanB的值;(2)在Rt△BCD中,先求出BC=k=10,求出k的值,继而得出AB的值.解答:解:(1)过点C作CD⊥AB,垂足为D,(1分)在Rt△ACD中,,(1分)设CD=3k,则AB=AC=5k,(1分)∴.(1分)在△BCD中,∵BD=AB﹣AD=5k﹣4k=k.(1分)∴.(1分)(2)在Rt△BCD中,,(1分)∵BC=10,∴.(1分)∴.(1分)∴AB=.(1分)点评:本题考查了解直角三角形的知识,过点C作CD⊥AB,构造直角三角形是关键.20.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.考点:待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.分析:(1)根据待定系数法即可求得;(2)正确画出图形;(3)通过图象可以看出点B纵坐标t的取值范围.解答:解:(1)∵抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).∴,解得,∴抛物线的表达式为y=﹣x2﹣2x+3.(2)此抛物线如图所示.(3)2<t≤4.如图,由图象可知点B纵坐标t的取值范围为2<t≤4.点评:本题考查了待定系数法求解析式,以及画图的能力和识别图形的能力,要熟练掌握.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.考点:切线的性质.分析:(1)连接AE,由圆周角定理和等腰三角形的性质,结合切线的性质可证得∠CBF=∠BAE,可证得结论;(2)由(1)结论结合正弦值,在Rt△ABE中可求得BE,可求出BC,过C作CM⊥BF,在Rt△BCM中可求得BM,CM,再利用平行线分线段成比例可求得BF.解答:(1)证明:如图1,连结AE.∵AB是⊙O的直径,∴∠AEB=90°,∴∠BAE=∠BAC.∵BF是⊙O的切线,∴∠CBF=∠BAE,∴∠CBF=∠CAB.(2)解:由(1)可知∠CBF=∠BAE,∴sin∠BAE=sin∠CBF=,在Rt△ABE中,sin∠BAE=,∴=,∴BE=,∴BC=2,如图2,过C作CM⊥BF于点M,则sin∠CBF==,即=,解得CM=2,由勾股定理可求得BM=4,又∵AB∥CM,∴=,。

(高清版)2015年贵州省贵阳市中考数学试卷

(高清版)2015年贵州省贵阳市中考数学试卷

其中,正确结论的个数是
()
A.0
B.1
C.2
D.3
10.已知二次函数 y x2 2x 3 ,当 x≥2 时, y 的取值范围是
() A. y≥3 C. y>3
B. y≤3 D. y<3
第Ⅱ卷(非选择题 共 120 分)
二、填空题(本大题共 5 小题,每小题 4 分,共 20 分.请把答案填写在题中的横线上)
示为 6.4 10n ,则 n 的值是

()
A.3
B.4
C.5
D.6
4.如图,一个空心圆柱体,其左视图正确的是
() 无
A.
B.
C.
D.

数学试卷 第 1页(共 24页)
5.小红根据 2014 年 4~10 月本班同学去孔子学堂听中国传统
文化讲座的人数,绘制了如图所示的折线统计图,图中统计
数据的众数是
了很多外地游客,某旅行社对 5 月份本社接待外地游客来我市各景点旅游的人数作了
一次抽样调查,并将调查结果绘制成如下两幅不完整的统计图表:
游客人数统计表
景点
频数(人数)
频率
黔灵山公园
116
0.29
小车河湿地公园
0.25
南江大峡谷
84
0.21
花溪公园
64
0.16
观山湖公园
36
0.09
游客人数条形统计图
数学试卷 第 4页(共 24页)
【考点】一次函数图象的应用
10.【答案】B 【解析】因为二次函数 y x 2x 3 的对称轴是直线 x 1 ,拋物线的开口向下,所以在 对称轴右侧,即 x>1时,y 随 x 的增大而减小.因为当 x 2 时, y 22 2 2 3 3 , 所以当 x≥2>1 时, y≤3 ,故选 B.

新人教版2014-2015年九年级上学期期末考试数学试题及答案

新人教版2014-2015年九年级上学期期末考试数学试题及答案

新人教版2014-2015年上学期期末考试九年级数学试题(考试时间:120分钟 满分:150分)一、选择题(本题共10道题,每小题3分,共30分)1.下列方程中,是一元二次方程的是( )A. 221x x y ++=B. 2110x x+-= C. 20x = D. 2(1)(3)1x x x ++=- 2.下列汽车标志中,既是轴对称又是中心对称图形的是( )3.下列说法中正确的是( )A.不确定事件发生的概率是不确定的B.事件发生的概率可以等于事件不发生的概率C.事件发生的概率不可能等于0D.抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于24.如图45,15中,∠=∠=O CBO CAO ,则AOB ∠的度数是( )A.75 B.30 C.45 D.60 5.掷一枚六面分别标有1到6的均匀骰子,向上一面的点数大于2且小于5的概率为1P ,抛两枚硬币,正面均朝上的概率为2P ,则( )A.12P P <B.12P P >C.12P P =D.不能确定6.在同圆中,下列四个命题:○1圆心角是顶点在圆心的角;○2两个圆心角相等,它们所对的弦也相等;○3两条弦相等,所对的劣弧也相等;○4等弧所对的圆心角相等。

其中真命题有( )A.4个B.3个C.2个D.1个7.抛物线22(1)3y x =---与y 轴交点的纵坐标为( )A.3-B. 4-C.5-D.1-8.用配方法解关于x 的方程20x px q ++=,方程可变形为( ) A.224()24p p q x -+= B.224()24p q p x -+= C.224()24p p q x +-= 第4题D.224()24p p q x --= 9.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE=CF ,连接AE 、BF ,将△ABE 绕正方形的中心按逆时针方向旋转到BCF △,旋转角为()0180a a <<,则a =( )A.60 B.90 C.120 D.4510.已知二次函数2y ax bx c =++的图象如图所示,其对称轴为直线1x =-,给出下列结论(1)24b ac >; (2)0abc >; (3)20a b +=; (4)0a b c ++>; (5)420a b c -+<.则正确的结论有( )A. 2个B. 3个C. 4个D. 5个第9题C第16题第17题B二、填空题(本大题共8小题,每小题3分,共24分)11.方程2x =的根是 .12.众所周知,手机的电话号码是由11位数字组成的,某人的手机号码位于中间的数字为5的概率是13.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是54002cm ,设金色纸边的宽为,那么x 满足的方程是14.如果函数232(3)1k k y k x kx -+=-++是二次函数,那么k 值为15.一个圆锥的侧面展开图是半径为1的半圆,该圆锥的底面半径是16.二次函数2y x bx c =-++的图象如图所示,则一次函数y bx c =+的图象不经过第 象限. 17.如图所示,一条公路的转变处是一段圆弧(图中的弧AB )点O 是这段弧的圆心,C 是AB 上一点,,OC AB ⊥ 垂足为D ,AB=300m ,CD=50m ,则这段弯路的半径是18.观察下列一组数:13579,,,,,27142334⋅⋅⋅它们是按一定规律排列的,那么这一组数的第n 个数是三、解答题(本大题共96分)19.解方程:(10分)(1) 2660x x --=(2) 22760x x -+=20.△ABC 在平面直角坐标系中的位置如图所示(A 、B 、C 三点在格点上),把△ABC 绕原点O 顺时针旋转90,A 、B 、C 旋转后的对应点分别是1A 、1B 、1C(1)画出旋转后的111△ABC ,并直接写出1A、1B 、1C 的坐标; (2)在旋转过程中,求点A 到点1A 所经过的路径的长.(12分)21.某汽车经销商推出A 、B 、C 、D 四种型号的小轿车共1000辆进行展销。

2015年贵州省贵阳市中考数学试卷(含详细答案)

2015年贵州省贵阳市中考数学试卷(含详细答案)
()
A.2:3B.2:3C.4:9D.8:27
7.王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出150条鱼,将它们作上标记,然
后放回鱼塘.经过一段时间后,再从中随机捕捞300条鱼,其中有标记的鱼有30条,请
估计鱼塘里鱼的数量大约有
()
A.1500条B.1600条C.1700条D.3000条
8.如图,点E,F在AC上,ADBC,DFBE,要使△ADF≌△CBE,还需要添加的
()
A.0B.1C.2D.3
10.已知二次函数yx22x3,当x≥2时,y的取值范围是
()
A.y≥3B.y≤3
C.y>3D.y<3
第Ⅱ卷(非选择题共120分)
二、填空题(本大题共5小题,每小题4分,共20分.请把答案填写在题中的横线上)
xy12,
11.方程组的解为
12.如图,四边形ABCD是O的内接正方形,若正方形的面积等于4,则O的面积等
__
__
__3.2015年5月份在贵阳召开了国际大数据产业博览会,据统计,
__
姓_
_
_()
__A.3B.4C.5D.6
__
__4.如图,一个空心圆柱体,其左视图正确的是
_题




本试卷满分150分,考试时间120分钟.
此第Ⅰ卷(选择题共30分)
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有
于.
三、解答题(本大题共10小题,共100分.解答应写出文字说明、证明过程或演算步骤)
16.(本小题满分8分)
先化简,再求值:(x1)(x1)x2(1x)x3,其中x2.
17.(本小题满分10分)

2014-2015学年九年级上下学期数学期末测试题(含答案)

2014-2015学年九年级上下学期数学期末测试题(含答案)

人教版2014-2015学年九年级上下学期测试数学试卷注:(1)全卷共三个大题,23个小题,共4页;满分:100分;考试时间:120分钟。

(2)答题内容一定要做在答卷..上,且不能超过密封线答题,否则视为无效。

一、选择:(每小题3分,共24分)1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.如图是某个几何体的三视图,该几何体是( )A. 正方体B. 圆柱C. 圆锥D. 球3.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每4.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为( ) A .B . 2πC . 3πD . 12π5.若ab >0,则一次函数y=ax+b 与反比例函数y=在同一坐标系数中的大致图象是( )A .B .C .D . 6.如图,在Rt △ABC 中,∠C=90°,BC=3,AC=4, 那么cosA 的值等于( ) 3A.4 4B.3 3C.5 4.5D 7.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示, 则下列结论中正确的是( )A .a >0B .3是方程ax 2+bx+c=0的一个根C .a+b+c=0D .当x <1时,y 随x 的增大而减小 8.如图,CD 是⊙O 的直径,弦AB ⊥CD 于E ,连接 BC 、BD ,下列结论中不一定正确的是( )=C 二、填空:(每小题3分,共18分) 9.方程22x x =的根为 .10.抛物线213y x =(﹣)﹣的对称轴是.11.已知3,a b ab b+==则 . 12.如图,在△ABC 中,D 是AB 的中点, DE ∥BC.则:ADE ABC S S ∆∆= . 13.直径为10cm 的⊙O 中,弦AB=5cm ,则弦AB 所对的圆周角是 .14.为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S ﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是 三、解答:(共58分)15.(5分)计算:02015111)(1)()2sin 303-+-+-.16.(5分)化简求值:•(),其中x =.17.(8分)已知:如图,AB 是⊙O 的直径,AB =6,延长AB 到点C ,使BC =AB ,D 是⊙O 上一点,DC =26. 求证:(1)△CDB ∽△CAD ;(2)CD 是⊙O 的切线. 18.(4分)在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣2,1),B (﹣4,5), C (﹣5,2).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△ABC 关于原点O 成中心对称的△A 2B 2C 2.19.(6分)如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成长方形零件PQMN ,使长方形PQMN 的边QM 在BC 上,其余两个项点P,N 分别在AB,AC 上.求这个长方形零件PQMN 面积S 的最大值。

贵阳2015中考数学试题(含答案)

贵阳2015中考数学试题(含答案)

2015年初中毕业生学业考试数学卷第1页(共8页)秘密★启用前贵阳市2015年初中毕业生学业考试试题卷数 学考生注意:考生注意:1.本卷为数学试题卷,全卷共4页,三大题25小题,满分150分.考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效. 3.可以使用科学计算器.一、选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分) 1.计算:4+3- 的结果等于的结果等于(A )7 (B )7- (C )1 (D )1- 2.如图,∠1的内错角是的内错角是(A )∠2 (B )∠3 (C )∠4 (D )∠5 3.今年5月份在贵阳召开了国际大数据产业博览会,据统计,到5月28日为止,来观展的人数已突破64000人次,64000这个数用科学记数法可表示为n10´46.,则n 的值是(A )3 (B )4 (C )5 (D )6 4.如图,一个空心圆柱体,其左视图正确的是.如图,一个空心圆柱体,其左视图正确的是5.小红根据去年4~10月本班同学去孔学堂听中国传统文化讲座的 人数,绘制了如图所示的折线统计图,图中统计数据的众数是(A )46 (B )42 (C )32 (D )27 6.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形,那么这两个相似三角形 面积的比是面积的比是(A )2:3 (B )2:3 (C )4:9 (D )8:27 7.王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出150条鱼,将它们作上标记,然后放回鱼塘.经过一段时间后,再从中随机捕捞300条鱼,其中有标记的鱼有30条,请估计鱼塘里鱼的数量大约有(A )1500条 (B )1600条 (C )1700条 (D )3000条8.如图,点E ,F 在AC 上,AD =BC ,DF =BE ,要使△ADF ≌△CBE ,还需要添加的一个条件是,还需要添加的一个条件是(第5题图)人数月份42323227423246610897545040302010(第8题图)FED CB A(第12题图)ODCB A(第9题图)04004020x /分l 2l 1y /元的解为 ▲ ., 的面积等于的面积等于 ▲ .化简的结果为化简的结果为 ▲ .投到小正方形(阴影)区域的概率是投到小正方形(阴影)区域的概率是 ▲ .心经过的距离是心经过的距离是 ▲ .,其中2=x .第3页(共8页))此次共调查)此次共调查 ▲ 人,并补全条形统计图;(4分)分))由上表提供的数据可以制成扇形统计图,求“南江大峡谷”所对的圆心角的度数;()该旅行社预计7月份接待来我市的游客有2500人,根据以上信息,请你估计去黔灵山公园的游客大约有多少人?(3分)分) (本题满分10分) 如图,在Rt △ABC 中,∠ACB =90°,D 为AB 的中点,的中点, CD ,CE ∥AB .小敏、小洁四位同学进行一次羽毛球单打比赛,小洁四位同学进行一次羽毛球单打比赛,小洁四位同学进行一次羽毛球单打比赛,要从中选出两)若已确定小英打第一场,再从其余三位同学中随机选取一位, )用画树状图或列表的方法,求恰好选中小敏、小洁 某校为了增强学生对中华优秀传统文化的理解,决定购买一批相关的书籍.据了解,经典著作元购买经典著作与用8000元购买传说故事的本数相32a▲0▲0是抛物线上一动点,是抛物线上一动点,为顶点所组成的四边形是平行四边形.),将矩形纸片折叠,使点C落在AD边上的点贵阳市2015年初中毕业生学业考试分参考120100人数116100806040200黔灵山 小车河 南江花溪观山湖景点366484题号题号 11 12 13 14 15 答案答案îíì2=10=yx p 22+1a 51 334 33 小英小英 小丽小丽 小敏小敏 小洁小洁 小英小英(小英,小丽) (小英,小敏) (小英,小洁) 小丽小丽 (小丽,小英) (小丽,小敏) (小丽,小洁) 小敏小敏 (小敏,小英) (小敏,小丽) (小敏,小洁) 小洁小洁(小洁,小英) (小洁,小丽) (小洁,小敏) F D20.(本题满分10分)解:(1)在Rt △BCD 中,CBD Ð∴sin15CD BD =°,………………………………………………………………∴25».CD (m )答:小华与地面的垂直距离(2)在Rt △AFE 中,AEF Ð=BC BD 3GBC D O E F(第23题图)页(共8页)3333393 > 0 > 0…………………………(10分)分) 为顶点所组成的四边形是为顶点所组成的四边形是 727,7,47,). ………………..…(12分) =90°,………………………………………………………………………(4分)分) 于点F ,(第24题图1)-22EN ME '11时,△2211255=+=,55. .…………………………………………………………………(12分)分)(第25题图1)(第25题图2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档