油中气体分析方法

合集下载

油中气体的气相色谱分析技术概述

油中气体的气相色谱分析技术概述
注意值包括两个方面,气体含量注意 值和气体增长率注意值。
气相色谱分析技术内容: 气相色谱分析技术内容包括分析
油中气体产生的原因及变化、明确判 断有无故障和故障性质及严重程度、 判断故障的发展趋势、提出相应的应 对措施等。
一、故障性质分析
判断故障性质的方法常见的 有四种,其中最常用的是特征气 体分析法和三比值判断法。
应用气相色谱分析 应注意的事项
1、应用三比值法应注意的事项 ①气体含量正常的,比值无意义。 ②只有气体含量足够高(通常超过注意
值),且综合分析确有故障时才能应用。 ③由于一种故障对应于一组比值,当有
多种故障时,可能找不到对应的比值组合, 需根据具体情况做出判断。
④当采用IEC三比值法时,可能出现没有列 入的三比值组合,采用改良法这种情况可不再出现, 但需进行分析才能做出判断。
度越高,H2与总烃的比例越低,但绝对值越高。 高、中温故障H2与总烃比例一般在27%左右。
②乙炔C2H2变化 当有电弧放电时,乙炔一般占总烃的20 -70%。乙炔超标且增长速率较快,可能有高 能量放电。
③甲烷CH4、乙烯C2H4变化 热性故障时两者之和一般可占总烃的
80%以上,温度越高,C22H4的比例也增加。 ④一氧化碳CO、二氧化碳CO2变化
油中气体的气相色谱 分析技术概述
制作:王炜
气相色谱分析法以发现充油设备早 期潜伏性故障为主,是一种灵敏、有效 的方法。
电气试验以发现暴露性故障为主, 发现时故障已发展到一定程度或已然形 成。
气相色谱技术包括检测 技术和分析技术。
变压器油的分解特性: 乙烯生成的温度高于甲烷和乙烷,约为
500℃。 乙炔约在800-1000℃生成,低于800℃
CH4 C2H4 C2H6 CH4 C2H4 C2H6

变压器油中溶解气体检测

变压器油中溶解气体检测

变压器油中溶解气体检测一、油中溶解气体检测的意义及原理1.油中溶解气体检测的意义电力变压器是电网的核心设备,其运行可靠性影响着电网的安全稳定。

大多数变压器故障都是由内部局部微小缺陷逐步演变形成的。

变压器构造为结构复杂的全密封箱体,其内部缺陷难以通过外部测量手段监测,但其导致的放电或过热现象,不同程度上均会导致变压器绝缘油及绝缘纸等固体绝缘材料发生一系列化学反应,生成不同类型的故障特征气体,并溶解于变压器油中。

如同诊断人体疾病最常用的“验血”手段,通过对油中溶解特征气体浓度及比例的检测或监测,可及时发现变压器大部分内部隐患和缺陷。

常用的变压器油中溶解故障特征气体主要为氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)七种。

2.油中溶解气体检测方法常用的多组分气体检测方法主要包括气相色谱法、光声光谱法、电化学传感器法、半导体传感器法等。

气相色谱法通过气相色谱检测器测量油中溶解气体的浓度,其具有技术成熟度高、测量灵敏的优势,但存在需要更换载气、色谱柱的问题;光声光谱法属于一种光学气体检测方法,其具有测量周期短、无需载气、维护量少的优势,但存在国产化程度低的问题,且部分气体(如乙炔)检测灵敏度仍有待提升。

电化学传感器法与半导体传感器法检测原理类似,均是通过待测气体改变传感器/半导体本身的特性后产生的电流信号来测量气体浓度,均具有灵敏度高、成本低的优点,但都同样存在气体间交叉干扰的影响,且长期可靠性较差。

目前常用于在线监测的油中溶解气体检测装置主要采用了气相色谱与光声光谱技术。

气相色谱技术成熟度高,主要零部件实现了全国产化,具有价格优势;光声光谱技术具有检测周期短、维护量少的优势,入网率逐年上升,但由于其主要核心部件(光源、麦克风)仍依赖进口,导致其成本较高,价格较贵。

二、油中溶解气体在线监测装置入网检测目前,油中溶解气体在线监测装置在变压器状态监测中具有广泛的应用,但变压器运行环境复杂,如何保持油中溶解气体在线监测装置在运行中的测量准确性(精度)是面临的一大难题。

油中溶解气体色谱分析

油中溶解气体色谱分析

油中溶解气体色谱分析一、运行中充油设备中溶解气体色谱分析周期1.330KV及以上变压器、电抗器为3个月。

2.220KV变压器为6个月。

3.35KV级以上,容量为1000KV A及以上的电力变压器每年一次;对比较重要的变压器,可缩短检测周期。

4.电抗器检测周期同电力变压器。

5.66KV级及以上的CT、PT每2—3年检测一次,如有全密封者不用检测。

6.大修后和新投入的变压器,在投运前要做一次检测,投运后一段时期内多检测几次。

二、粗略判断将色谱分析结果的几项主要指标(总烃、乙炔、氢气)与注意值作比较:表1 各种充油电气设备油中气体含量的注意值注:1.乙炔是充油设备内部存在电性故障的特征气体。

2.总烃是热性故障的特征气体,其中乙烯往往作为高温过热的特征气体,甲烷在其含量大于氢时,可作低温过热的特性气体。

3.ppm为百万分率(10-6)1ppm=0.0001%。

4.500kv电力变压器乙炔含量的注意值为1ppm。

5.故障点温度较低时,油中溶解气体的组成主要是CH4,随着温度升高,产气率最大的气体依次为CH4、C2H6、C2H4、C2H2。

通常油中的C2H6含量小于CH4,是由于C2H6不稳定,在一定温度下极易分解为C2H6(气)= C2H4(气)+H2(气),即C2H4和H2是相伴产生的。

表2 氢、烃气体含量限值判断若分析结果超过油中溶解气体注意值,则表明设备处于非正常运行状态,进一步采用特征气体判断法确定故障性质和状态。

三、定性分析特征气体判断法:(过热性故障、放电性故障、过热和放电并存故障)表3 判断故障性质的特征气体法气体特征随着故障类型、故障能量及及其涉及的绝缘材料的不同而不同,即故障点产生烃类气体的不饱和度与故障源的能量密度之间有密切关系。

表4 气体中主要成份与异常情况的关系注:1.氢含量单值超标,主要是设备进水受潮所致,进行电气试验和微水分析。

2.氢含量超标,同时CO、CO2含量较大,固体绝缘受潮后加速老化的结果。

变压器油中溶解气体分析的原理及方法

变压器油中溶解气体分析的原理及方法

变压器油中溶解⽓体分析的原理及⽅法变压器油中溶解⽓体分析的原理及⽅法充油电⼒变压器在正常运⾏过程中受到热、电和机械⽅⾯⼒的作⽤下逐渐⽼化,产⽣某些可燃性⽓体,当变压器存在潜伏性故障时,其⽓体产⽣量和⽓体产⽣速率将逐渐明显,⼈们取变压器油样使⽤⽓相⾊谱⽅法获得油中溶解的特征⽓体浓度后,就可以对变压器的故障情况进⾏分析。

由于⼤型充油电⼒变压器是⼀个⾮常复杂的电⽓设备,变压器存在潜伏性故障时与多种因素存在耦合,特征⽓体形成涉及的机理⼗分复杂,这些机理及由这些机理导出的诊断⽅法对智能诊断⽅法有很好的借鉴意义。

1 变压器油及固体绝缘的成份及⽓体产⽣机理分析虽然SF6⽓体绝缘、蒸发冷却式⽓体绝缘变压器和⼲式变压器、交联聚⼄烯绕组变压器等有着良好的发展前景,但是变压器油优良的绝缘和散热能⼒是它们所不能替代的,⽬前⾼电压、⼤容量的电⼒变压器仍然普遍采⽤充油式。

充油电⼒变压器内部的主要绝缘材料是变压器油、绝缘纸和纸板等A 级绝缘材料,当运⾏年限为20年左右时,最⾼允许的温度为105℃左右。

变压器油中特征⽓体是由变压器油及固体绝缘产⽣的,与它们的性能存在着密切的关系。

1 变压器油的成份及⽓体产⽣机理变压器油是由天然⽯油经过蒸馏、精炼⽽获得的⼀种矿物油。

它是由各种碳氢化合物所组成的混合物,其中碳、氢两元素占全部重量的95%~99%。

主要的碳氢化合物有环烷烃(50%以上)、烷烃(10%~40%)和芳⾹烃(5%~15%)组成[9]。

不同变压器油各种成份的含量有些不同。

变压器油中不同烃类⽓体的性能是不同的。

环烷烃具有较好的化学稳定性和介电稳定性,黏度随温度的变化很⼩。

芳⾹烃化学稳定性和介电稳定性也较好,在电场作⽤下不析出⽓体,⽽且能吸收⽓体;但芳⾹烃易燃、黏度⼤、凝固点⾼,且在电弧的作⽤下⽣成的碳粒较多,会降低油的电⽓性能。

环烷烃中的⽯蜡烃具有较好的化学稳定性和易使油凝固,但在电场的作⽤下易发⽣电离⽽析出⽓体,并形成树枝状的X蜡,影响油的导热性。

油气测试方法

油气测试方法

油气测试方法一、化学分析方法1. 气体成分分析:气体成分分析是研究天然气组成和性质的基础。

常用的气体成分分析方法包括色谱法、质谱法等。

色谱法是一种通过气相色谱仪将气体成分分离并进行定量分析的方法,而质谱法则是通过质谱仪对气体成分进行检测和分析的方法。

2. 原油成分分析:原油成分分析是研究原油成分和性质的重要方法。

常用的原油成分分析方法包括色谱法、质谱法、核磁共振法等。

这些方法可以分析出原油中各种组分的含量和比例,从而确定原油的性质和品质。

3. 残余烃分析:残余烃分析主要是分析石油加工过程中残留的烃类化合物。

常用的残余烃分析方法包括色谱法、质谱法、元素分析法等。

这些方法可以确定残留烃的种类、含量和分布规律,为石油加工工艺的优化提供依据。

二、物理测试方法1. 密度测定:密度是描述油气物质密度大小的重要指标,对于估算油气的含量和储量具有重要意义。

常用的密度测定方法有液体置换法、气体置换法等。

这些方法可以测定油气的密度、容重等参数,并通过比较和计算得出油气的含量和储量。

2. 粘度测定:粘度是描述油气物质流动性的重要参数,对于评估油气开采和输送过程中的流动性能具有重要意义。

常用的粘度测定方法有旋转粘度计法、流变仪法等。

这些方法可以测定油气的粘度、黏度指数等参数,并通过比较和计算得出油气的流动性能。

3. 闪点测定:油气的闪点是在一定条件下恰好会发生燃烧或爆炸的温度,对于油气的储运和使用安全具有重要意义。

常用的闪点测定方法有闭口杯法、开口杯法、闪点测试仪法等。

这些方法可以测定油气的闪点和燃点,评估油气的安全性能。

三、地质测试方法1. 地震勘探:地震勘探是一种通过地震波在地下传播和反射的原理,对地下岩石结构和油气储层进行探测和识别的方法。

地震勘探可以提供地下岩石结构和油气储层的三维地质模型,为油气资源的勘探和开发提供依据。

2. 电磁勘探:电磁勘探是一种利用电磁场对地下物质进行探测和识别的方法。

电磁勘探可以在地下发现含水层、油气储层等目标物质,为油气资源的勘探和开发提供依据。

油中气体分析方法

油中气体分析方法

变压器一、气相色谱法的原理色谱法又叫层析法,它是一种物理分离技术。

它的分离原理是使混合物中各组分在两相间进行分配,其中一相是不动的,叫做固定相,另一相则是推动混合物流过此固定相的流体,叫做流动相。

当流动相中所含的混合物经过固定相时,就会与固定相发生相互作用。

由于各组分在性质与结构上的不同,相互作用的大小强弱也有差异。

因此在同一推动力作用下,不同组分在固定相中的滞留时间有长有短,从而按先后秩序从固定相中流出,这种借在两相分配原理而使混合物中各组分获得分离的技术,称为色谱分离技术或色谱法。

当用液体作为流动相时,称为液相色谱,当用气体作为流动相时,称为气相色谱。

气相色谱法的一般流程主要包括三部分:载气系统、色谱柱和检测器。

具体流程如下:当载气携带着不同物质的混合样品通过色谱柱时,气相中的物质一部分就要溶解或吸附到固定相内,随着固定相中物质分子的增加,从固定相挥发到气相中的试样物质分子也逐渐增加,也就是说,试样中各物质分子在两相中进行分配,最后达到平衡。

这种物质在两相之间发生的溶解和挥发的过程,称分配过程。

分配达到平衡时,物质在两相中的浓度比称分配系数,也叫平衡常数,以K表示,K=物质在固定相中的浓度/物质在流动相中的浓度,在恒定的温度下,分配系数K是个常数。

由此可见,气相色谱的分离原理是利用不同物质在两相间具有不同的分配系数,当两相作相对运动时,试样的各组分就在两相中经反复多次地分配,使得原来分配系数只有微小差别的各组分产生很大的分离效果,从而将各组分分离开来。

然后再进入检测器对各组分进行鉴定。

二、变压器的故障产生的气体及故障类型(一)变压器绝缘材料产生的气体组分油和固体绝缘材料在电或热的作用下分解产生的各种气体中,对判断故障有价值的气体有甲烷、乙烷、乙烯、乙快、氢、一氧化碳、二氧化碳。

正常运行的老化过程产生的气体主要是一氧化碳和二氧化碳。

在油纸绝缘存在局部放电时,油裂解产生的气体主要是氢和甲烷。

在故障温度高于正常运行温度不多时,产生的气体主要是甲烷。

如何应用油中溶解气体分析法判断变压器故障方法

如何应用油中溶解气体分析法判断变压器故障方法

现代国企研究 2016. 12(下)162案 例 AN LI摘要:变压器内部潜伏故障可以通过油中溶解气体分析法,来对变压器进行检查和诊断来实现的。

本文不仅呈现了在实际工作中正确消除缺陷的案例,而且系统的阐述了在变压器故障综合判断中是如何具体运用油中溶解气体分析法的。

关键词:变压器;油中溶解气体;判断故障油中溶解气体分析法是主要应用于检测变压器状态的一种较为有效的方法,具体做法是在电正常的工作状态下,利用气相色谱法对变压器内的油样进行一定量的采集,采用溶解气体的办法进行分析和诊断。

一、油中溶解气体分析法判断变压器故障的原理一般来说,油中溶解气体分析法大大优于电气试验法,究其原因是,电气试验法需要较为充足的电气量来反映出变压器当时的现状,才能对变压器内部的故障作出准确的判断。

而电气的特性只有在变压器内部的故障发展到一定的程度才会发生质的改变,也只有这样的电气量才适合用电气试验法。

与此相反,油中溶解气体分析法可以通过油中溶解气体的具体含量完全有效的诊断出变压器内部潜伏性的一些故障,这样就可以做到用最低的成本把一些事故防范于未然,把损失降到最低,以实现利润的最大化。

二、油中溶解气体分析法判断变压器故障方法在诊断充油电气设备故障时可以充分的运用油中溶解气体分析法并配合其他的试验手段来完成,但在此之前要准确的判断油中溶解气体形成的具体原因是什么,例如,是来源于变压器内部故障的因素还是来源于变压器本体非故障因素。

油中溶解气体的产生,究其原因来自于以下几种情况,一是变压器内部存在的放电性和过热性故障,二是变压器内部的受潮,三是非变压器故障的一些因素。

下面对油中溶解气体分析法判断变压器故障进行具体的说明:(1)检测变压器箱体进行带油补焊时发生的故障。

一般情况下,在对变压器箱体进行焊接过程中会产生大量H 2和烃类气体,这是由于油在焊接的高温下分解而形成的,这样就很容易产生误导,把它当做是一种高温兼放电故障来进行处理。

变压器油中的溶解气体分析方法

变压器油中的溶解气体分析方法

变压器油中的溶解气体分析方法随着变压器的使用年限逐渐增长,变压器油中的溶解气体也会越来越多。

这些溶解气体会导致油的劣化和变压器内部部件的氧化腐蚀,从而影响变压器正常运行。

因此,分析变压器油中的溶解气体,了解其类型和含量,对变压器的维护和管理非常重要。

那么,变压器油中的溶解气体分析方法有哪些呢?一、气相色谱法气相色谱法是目前应用较广泛的溶解气体分析方法之一。

该方法适用于水、空气、油和气体中的溶解气体的分析。

变压器油中的溶解气体分析中,气相色谱法可以分析二氧化碳、乙烯、甲烷等气体。

气相色谱法的分析原理是将混合气体样品与气相色谱柱中填充的固定相分离。

气相色谱法具有分离效果好、分离速度快、分析灵敏度高等特点。

但是,气相色谱法需要有较高的分析仪器设备和专业技术,使用成本相对较高。

二、傅里叶变换红外光谱法傅里叶变换红外光谱法是一种将样品吸收红外辐射产生的光谱进行处理以获取样品化学结构信息的分析方法。

在变压器油中的溶解气体分析中,该方法适用于氢气、氧气、氮气、二氧化碳等气体的检测。

傅里叶变换红外光谱法的分析原理是通过改变样品中各种化学键所吸收的红外光的频率来对样品分析。

该方法具有快速、准确、不需要分离样品等优点。

但是,傅里叶变换红外光谱法需要对样品进行前处理,如稀释、过滤等,同时也需要高质量的样品和分析仪器设备。

三、电化学分析法电化学分析法是一种利用电化学方法进行分析的技术。

在变压器油中的溶解气体分析中,该方法适用于氢气、氧气、二氧化碳等气体的检测。

电化学分析法的分析原理是利用电极反应与被测物质间的作用,测定电荷变化或者释放的能量,并进一步计算出被测物质的含量。

该方法具有实时、便捷、经济等优点,但也存在着变压器油中其他成分对溶解气体分析的干扰问题。

综上所述,变压器油中的溶解气体分析方法有多种,每种方法具有不同的优缺点和适用范围。

因此,在实际应用中需要根据分析要求和条件选择合适的分析方法,综合考虑分析精度、成本和可操作性等因素,以实现对变压器油中溶解气体的高效分析和准确检测,提升变压器的正常运行和使用寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器、气相色谱法的原理色谱法又叫层析法,它是一种物理分离技术。

它的分离原理是使混合物中各组分在两相间进行分配,其中一相是不动的,叫做固定相,另一相则是推动混合物流过此固定相的流体,叫做流动相。

当流动相中所含的混合物经过固定相时,就会与固定相发生相互作用。

由于各组分在性质与结构上的不同,相互作用的大小强弱也有差异。

因此在同一推动力作用下,不同组分在固定相中的滞留时间有长有短,从而按先后秩序从固定相中流出,这种借在两相分配原理而使混合物中各组分获得分离的技术,称为色谱分离技术或色谱法。

当用液体作为流动相时,称为液相色谱,当用气体作为流动相时,称为气相色谱。

气相色谱法的一般流程主要包括三部分:载气系统、色谱柱和检测器。

具体流程如下:当载气携带着不同物质的混合样品通过色谱柱时,气相中的物质一部分就要溶解或吸附到固定相内,随着固定相中物质分子的增加,从固定相挥发到气相中的试样物质分子也逐渐增加,也就是说,试样中各物质分子在两相中进行分配,最后达到平衡。

这种物质在两相之间发生的溶解和挥发的过程,称分配过程。

分配达到平衡时,物质在两相中的浓度比称分配系数,也叫平衡常数,以K表示,K=物质在固定相中的浓度/物质在流动相中的浓度,在恒定的温度下,分配系数K是个常数。

由此可见,气相色谱的分离原理是利用不同物质在两相间具有不同的分配系数,当两相作相对运动时,试样的各组分就在两相中经反复多次地分配,使得原来分配系数只有微小差别的各组分产生很大的分离效果,从而将各组分分离开来。

然后再进入检测器对各组分进行鉴定。

二、变压器的故障产生的气体及故障类型(一)变压器绝缘材料产生的气体组分油和固体绝缘材料在电或热的作用下分解产生的各种气体中,对判断故障有价值的气体有甲烷、乙烷、乙烯、乙炔、氢、一氧化碳、二氧化碳。

正常运行的老化过程产生的气体主要是一氧化碳和二氧化碳。

在油纸绝缘存在局部放电时,油裂解产生的气体主要是氢和甲烷。

在故障温度高于正常运行温度不多时,产生的气体主要是甲烷。

随着故障温度的升高,乙烯和乙烷逐渐成为主要特征。

在温度高于1 0 0 0 C时,例如在电弧弧道温度(3 0 0 0 C以上)的作用下,油裂解产生和气体中含有较多的乙炔。

如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳和二氧化碳。

绝缘油和绝缘材料在不同温度和能量作用下主要产生的气体组分,归纳如下:1)在14 0 °C以下时有蒸发汽化和较缓慢的氧化。

2)绝缘油在14 0 C到5 0 0 C时油分解主要产生烷类气体,其中主要是甲烷和乙烷,随温度的升高(5 0 0 C以上)油分解急剧地增加,其中烯烃和氢增加较快,乙烯尤为显著,而温度(约8 0 0 C左右)更高时,还会产生乙炔气体。

3)油中存在电弧时(温度超过1 0 0 0 C,使油裂解的气体大部分是乙炔和氢气,并有一定的甲烷和乙烯等。

4)设备在运行中,由于负荷变化所引起的热胀和冷缩,用泵循环油所引起的湍流,以及铁芯的磁滞伸缩效应所引起的机械振动等,都会导致形成空穴和油释放溶解气体。

如果产生的气泡集在设备绝缘结构的高电压应力区域内,在较高电场下会引起气隙放电(一般称为局部放电),而放电本身又能进一步引起油的分解和附近的固体绝缘材料的分解,而产生气体,这些气体在电应力作用下会更有利于放电产生气体。

这种放电使油分解产生的气体主要是氢和少量甲烷气体。

5)固体绝缘材料,在较低温度(140 C 以下)长期加热时,将逐渐地老化变质产生气体,其中主要是一氧化碳和二氧化碳,且后者是主要成分。

6)固体绝缘材料在高于2 0 0 C作用下,除产生碳的氧化物之外,还分解有氢、烃类气体,温度不同,一氧化碳和二氧化碳的比值有所不同,这一比值在低温时小而高温时大。

7)铁钢等金属材料起催化作用,水与铁反应产生氢气。

此外,奥氏不锈钢材能储藏氢,与绝缘油接触释放出来溶解于油中。

表为不同故障类型产生的气体组分:有时设备内并不存在故障,而由于其他原因,在油中也会出现上述气体,要注意这些可能引起误判断的气体来源。

例如:有载调压变压器中切换开关油室的油向变压器本体渗漏或某种范围开关动作时悬浮电位放电的影响:设备曾经有过故障,而故障排除后绝缘油未经彻底脱气,部分残余气体仍留在油中;设备油箱曾带油补焊;原注入的油就含有某几种气体等。

还应注意油冷却系统附属设备(如潜油泵,油流继电器等)的故障产生的气体也会进入到变压器本体的油中。

运行中设备内部油中气体含量超过下表所列数值时,应引起注意。

仅仅根据分析结果的绝对值是很难对故障的严重性作出正确判断的,必须考察故障的发展趋势,也就是故障点(如果存在的话)的产气速率。

产气速率是与故障消耗能量大小、故障部位、故障点的温度等情况直接有关的。

如总烃的相对产气速率大于10%时应引起注意。

(二)对一氧化碳和二氧化碳的判断当故障涉及到固体绝缘时会引起一氧化碳和二氧化碳含量的明显增长。

但根据现有统计资料,固体绝缘的正常老化过程与故障情况下劣化分解,表现在油中一氧化碳的含量上,一般情况下没有严格的界限,二氧化碳含量的规律更不明显。

因此,在考察这两种气体含量时更应结合具体变压器的结构特点(如油保护方式)、运行温度、负荷情况、运行历史等情况加以综合分析。

对开放式变压器一氧化碳含量一般在300ppm以下。

如总烃含量超出正常范围,而一氧化碳含量超过3 0 0 ppm,应考虑有涉及到固体绝缘过热的可能性;如一氧化碳含量虽然超过3 0 0 ppm,但总烃含量在正常范围,一般可认为是正常的;对某些有双饼式线圈带附加外包绝缘的变压器,当一氧化碳含量超过3 0 0 ppm时,即使总烃含量正常,也可能有固体绝缘过热故障。

对贮油柜中带有胶囊或隔膜的变压器,油中一氧化碳含量一般均高于开放式变压器。

突发性绝缘击穿事故时,油中溶解气体中的一氧化碳、二氧化碳含量不一定高,应结合气体继电器中的气体分析作判断。

(三)变压器等充油设备内部发生故障的部位了解变压器内部可能发生的故障类型,对气相色谱分析结果定论时有很大的帮助,变压器等充油设备内部发生故障的部位主要归纳为:1)过热故障发生的部位①过热性故障在变压器内常发生的部位主要为:载流导线和接头不良引起的过热故障。

如分接开关动静触头接触不良、引线接头虚焊、线圈股间短路、引线过长或包扎绝缘损伤引起导体间相接产生环流发热,超负荷运行发热、线圈绝缘膨胀、油道堵塞而引起的散热不良等。

另一种是磁路故障,如铁芯多点接地、铁芯片间短路、铁芯与穿芯螺钉短路、漏磁引起的油箱、夹件、压环等局部过热。

②过热性故障占少油设备(互感器和电容套管)故障比例较少,发生的部位主要为:电流互感器的一次引线紧固螺母松动,分流比抽头紧固螺母松动等;电容套管的穿缆线鼻与引线接头焊接不良,导管与将军帽等连接螺母配合不当等。

2)放电故障发生的部位①高能量放电(电弧放电)在变压器、套管、互感器内均有发生。

引起电弧放电故障原因通常是线圈匝层间绝缘击穿,过电压引起内部闪络,引线断裂引起的闪弧,分接开关飞弧和电容屏击穿等。

这种故障气体产生剧烈、产气量大,故障气体往往来不及溶解于油而聚集到气体继电器引起瓦斯动作。

②低能量放电一般是火花放电,是一种间歇性的放电故障,在变压器、互感器、套管中均有发生。

不同电位的导体与导体、绝缘体与绝缘体之间以及不固定电位的悬浮体,在电场极不均匀或畸变以及感应电位下,都可能引起火花放电。

③局部放电是指油和固体绝缘中的气泡和尖端,因耐压强度低,电场集中发生的局部放电。

这种放电不断蔓延与发展,会引起绝缘的损伤(碳化痕迹或穿孔)。

如电流互感器和电容套管的电容芯绕包工艺不良或真空干燥工艺不良等,都会造成局部放电。

三、诊断变压器等充油设备内部的潜伏性故障诊断变压器等充油设备内部的潜伏性故障时,应综合考虑以下三个方面的因素,做到准确判断变压器的故障类型及故障的大致部位:(一)故障下产气的累计性充油电气设备的潜伏性故障所产生的可燃性气体大部分会溶解于油。

随着故障的持续,这些气体在油中不断积累,直至饱和甚至析出气泡。

因此,油中故障气体的含量及其累计程度是诊断故障的存在与发展情况的一个依据。

(二)故障下产气的速率正常情况下充油电气设备在热和电场的作用下也会老化分解出少量的可燃性气体,但产气速率很缓慢。

当设备内部存在故障时,就会加快这些气体的产气速率。

因此,故障气体的产气速率,也是诊断故障的存在与发展程度的另一个依据。

(三)故障下产气的特征性变压器内部在不同故障下产生的气体有不同的特征。

例如局部放电时总会有氢;较高温度的过热时总会有乙烯;而电弧放电时也总会有乙炔。

因此,故障下产气的特征性是诊断故障性质的又一个依据。

四、总结在用气相色谱连续检测充油电气设备内部故障的过程中,如果发现油中各种气体的含量中有一项达到了注意值范围时,应开始引起注意,采取措施进行其它电气试验等,以便对设备有无异常作出分析和判断。

当试验结果中一项超过注意值上限时,应采取措施,尽早停止运行,并用其它试验进行验证,进一步找出故障点,防止重大事故的发生。

用气相色谱法对充油电气设备油中气体含量的分析,能判明设备存在的故障,更重要的是分析判断故障的性质,是过热性故障还是放电性故障及故障的大概部位是在裸金属部分还是介入了固体绝缘,从而进一步估计故障的危害性,以便及时采取措施,作出正确处理,防患于未然。

综上所述,利用气相色谱分析变压器油的气体组分及其含量,能够使设备专责充分掌握并监测变压器的运行状态,能够提前知道变压器内部是否存在潜伏性故障,即在变压器运行中,通过常规检测及色谱分析就可以把变压器内有无故障、有什么样性质的故障诊断出来,这对于变压器的维护保养起到关键性的指导作用,从而更好地保证电力系统的安全运行。

相关文档
最新文档