高考物理高考物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)
高中物理带电粒子在电场中的运动解题技巧及练习题及解析

高中物理带电粒子在电场中的运动解题技巧及练习题及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。
整个空间存在电场强度E =100N/C 的水平向左的匀强电场。
现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。
求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。
【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。
-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。
此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。
高中物理高考物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)

高中物理高考物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。
整个空间存在电场强度E =100N/C 的水平向左的匀强电场。
现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。
求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。
【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。
-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。
此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。
专题16带电粒子在电磁场中运动-2024高考物理真题分类汇编(全国版 含解析)

2024高考物理真题分项解析专题16带电粒子在电磁场中运动1.(2024高考新课程卷·26).(20分)一质量为m 、电荷量为()0q q >的带电粒子始终在同一水平面内运动,其速度可用图示的直角坐标系内,一个点(),x y P v v 表示,x v 、y v 分别为粒子速度在水平面内两个坐标轴上的分量。
粒子出发时P 位于图中()00,a v 点,粒子在水平方向的匀强电场作用下运动,P 点沿线段ab 移动到()00,b v v 点;随后粒子离开电场,进入方向竖直、磁感应强度大小为B 的匀强磁场,P 点沿以O 为圆心的圆弧移动至()00,c v v -点;然后粒子离开磁场返回电场,P 点沿线段ca 回到a 点。
已知任何相等的时间内P 点沿图中闭合曲线通过的曲线长度都相等。
不计重力。
求(1)粒子在磁场中做圆周运动的半径和周期;(2)电场强度的大小;(3)P 点沿图中闭合曲线移动1周回到a 点时,粒子位移的大小。
试题分析题图给出的是粒子速度在水平面内两个坐标轴上的分量关系图像,不要理解成轨迹图像。
在a 点,粒子速度沿y 方向,做类平抛运动,运动到b 点,粒子做匀速圆周运动到c 点,逆方向类平抛运动,轨迹如图。
解题思路本题考查的考点:带电粒子在匀强电场中的类平抛运动和在匀强磁场中的匀速圆周运动。
(1)根据题述,粒子出发时P 位于图中()00,a v 点,粒子在水平方向的匀强电场作用下运动,P 点沿线段ab 移动到()00,b v v 点;可知带电粒子在磁场中做匀速圆周运动时的速度2200v v +2v 0,由qvB=m2v r解得r=02mv qB周期T=2πr/v=2mqBπ(2)根据题述,已知任何相等的时间内P 点沿图中闭合曲线通过的曲线长度都相等,由于曲线表示的为速度相应的曲线,所以P 点沿图中闭合曲线的加速度相等,故可得02qB v m=qEm 解得2Bv (3)根据题意分析,可知,P 点从b 到c,转过270°。
带电粒子在电场中运动题目及答案(分类归纳经典)

带电粒子在电场中的运动一、带电粒子在电场中做偏转运动1.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离. 解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动.⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU meE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为: 112m dv l eU at v y ==电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移dU l U v l dm eU at y 1212212122142121=∙== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+=图 52. 如图所示,在空间中取直角坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,场强大小为E 。
高中物理带电粒子在电场中的运动(一)解题方法和技巧及练习题含解析

高中物理带电粒子在电场中的运动(一)解题方法和技巧及练习题含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图1所示,光滑绝缘斜面的倾角θ=30°,整个空间处在电场中,取沿斜面向上的方向为电场的正方向,电场随时间的变化规律如图2所示.一个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重力加速度g=10m/s 2,求:(1)0~4s 内滑块的最大速度为多少? (2)0~4s 内电场力做了多少功? 【答案】(1)20m/s (2)40J 【解析】 【分析】对滑块受力分析,由牛顿运动定律计算加速度计算各速度. 【详解】【解】(l)在0~2 s 内,滑块的受力分析如图甲所示,电场力F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受力分析如图乙所示22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速, 在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最大由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场力做正功1160W F x J == - 在2~4 s 内,电场力做负功2220W F x J ==- 电场力做功W=40 J2.如图所示,半径r =0.06m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1m ,磁感应强度大小B =0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m ),平行金属板MN 的极板长L =0.3m 、间距d =0.1m ,极板间所加电压U =6.4x102V ,其中N 极板收集到的粒子全部中和吸收.一位于O 处的粒子源向第一、二象限均匀地发射速度为v 的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x 轴正方向,已知粒子在磁场中的运动半径R 0=0.08m ,若粒子重力不计、比荷qm=108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v 的大小;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,求它打出磁场时的坐标: (3)N 板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s ;(2)(0,0.18m );(3)29%【解析】【详解】(1)由洛伦兹力充当向心力,即qvB=m2vR可得:v=6×105m/s;(2)若粒子在O点入射方向与x轴负方向夹角为37°,作出速度方向的垂线与y轴交于一点Q,根据几何关系可得PQ=0.0637cos o=0.08m,即Q为轨迹圆心的位置;Q到圆上y轴最高点的距离为0.18m-0.0637sin o=0.08m,故粒子刚好从圆上y轴最高点离开;故它打出磁场时的坐标为(0,0.18m);(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv…③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180o×100%=29%3.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm = 又:1mv R Be=解得:00Ut B dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=4.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R 、宽为2R的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.(1)求电场强度大小及粒子经过P 点时的速度大小和方向; (2)为使粒子从AC 边界射出磁场,磁感应强度应满足什么条件;(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?【答案】(1) 224mv E qR=2v ,速度方向沿y 轴负方向8222mv mv B ≤≤)2713mvqR【解析】 【分析】 【详解】(1)在电场中,粒子沿初速度方向做匀速运动132cos 4522cos 45RL R R =-︒=︒1L vt =沿电场力方向做匀加速运动,加速度为a22sin 452L R R =︒=2212L at =qE a m=设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v 、2v ,合速度v '1v v =、2v at =,2tan v vθ=联立可得22mv E =进入磁场的速度22122v v v v =+='45θ=︒,速度方向沿y 轴负方向(2)由左手定则判定,粒子向右偏转,当粒子从A 点射出时,运动半径12Rr =由211mv qv B r =''得122mvB qR=当粒子从C 点射出时,由勾股定理得()222222R R r r ⎛⎫-+= ⎪⎝⎭解得258r R =由222mv qv B r =''得2825mvB qR=根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当82225mv mvB qR qR≤≤时,粒子从AC 边界射出(3)为使粒子不再回到电场区域,需粒子在CD区域穿出磁场,设出磁场时速度方向平行于x轴,其半径为3r,由几何关系得222 332Rr r R⎛⎫+-=⎪⎝⎭解得()3714Rr+=由233mvqv Br=''得()322713mvBqR-=磁感应强度小于3B,运转半径更大,出磁场时速度方向偏向x轴下方,便不会回到电场中5.如图所示,虚线OL与y轴的夹角θ=450,在OL上侧有平行于OL向下的匀强电场,在OL下侧有垂直纸面向外的匀强磁场,一质量为m、电荷量为q(q>0)的粒子以速率v0从y轴上的M(OM=d)点垂直于y轴射入匀强电场,该粒子恰好能够垂直于OL进入匀强磁场,不计粒子重力。
高中物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析

高中物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,半径为a 的内圆A 是电子发射器,其金属圆周表圆各处可沿纸面内的任意方向发射速率为v 的电子;外圆C 为与A 同心的金属网,半径为3a .不考虑静电感应及电子的重力和电子间的相互作用,已知电子质量为m ,电量为e .(1)为使从C 射出的电子速率达到3v ,C 、A 间应加多大的电压U ; (2)C 、A 间不加电压,而加垂直于纸面向里的匀强磁场.①若沿A 径向射出的电子恰好不从C 射出,求该电子第一次回到A 时,在磁场中运动的时间t ;②为使所有电子都不从C 射出,所加磁场磁感应强度B 应多大.【答案】(1)24mv e (2)①439avπ ②(31)B ae ≥-【解析】 【详解】(1)对电子经C 、A 间的电场加速时,由动能定理得()2211322eU m v mv =- 得24mv U e=(2)电子在C 、A 间磁场中运动轨迹与金属网相切.轨迹如图所示.设此轨迹圆的半径为r ,则)2223a rr a -=+又2rT vπ=得tan 3arθ== 故θ=60°所以电子在磁场中运动的时间2-22t T πθπ= 得439at vπ=(3)若沿切线方向射出的电子轨迹恰好与金属网C 相切.则所有电子都不从C 射出,轨迹如图所示:23r a a '=-又2v evB m r ='得3-1B ae =()所以3-1B ae≥()2.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离.【答案】(1)0v Ba(2)0≤y≤2a (3)78y a =,94a【解析】 【详解】(1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得Bqv 0=m 2v r故粒子的比荷v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·ABBC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a (3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 02019222qE y t a a m ==>, 所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则 水平方向有x =v 0·t竖直方向有212qE y t m=代入数据得x=2ay设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则002tan y x qE x v m v y v v aθ⋅===有H =(3a -x )·tan θ=(32)2a y y -当322a y y -=时,即y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为y =98a -2a =-78a3.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W4.一带正电小球通过绝缘细线悬挂于场强大小为E 1的水平匀强电场中,静止时细线与竖直方向的夹角θ=45°,如图所示。
高考物理带电粒子在电场中的运动试题(有答案和解析)含解析

高考物理带电粒子在电场中的运动试题(有答案和解析)含解析一、高考物理精讲专题带电粒子在电场中的运动1.利用电场可以控制电子的运动,这一技术在现代设备中有广泛的应用,已知电子的质量为m ,电荷量为e -,不计重力及电子之间的相互作用力,不考虑相对论效应.(1)在宽度一定的空间中存在竖直向下的匀强电场,一束电子以相同的初速度0v 沿水平方向射入电场,如图1所示,图中虚线为某一电子的轨迹,射入点A 处电势为A ϕ,射出点B 处电势为B ϕ.①求该电子在由A 运动到B 的过程中,电场力做的功AB W ;②请判断该电子束穿过图1所示电场后,运动方向是否仍然彼此平行?若平行,请求出速度方向偏转角θ的余弦值cos θ(速度方向偏转角是指末速度方向与初速度方向之间的夹角);若不平行,请说明是会聚还是发散.(2)某电子枪除了加速电子外,同时还有使电子束会聚或发散作用,其原理可简化为图2所示.一球形界面外部空间中各处电势均为1ϕ,内部各处电势均为221()ϕϕϕ>,球心位于z 轴上O 点.一束靠近z 轴且关于z 轴对称的电子以相同的速度1v 平行于z 轴射入该界面,由于电子只受到在界面处法线方向的作用力,其运动方向将发生改变,改变前后能量守恒.①请定性画出这束电子射入球形界面后运动方向的示意图(画出电子束边缘处两条即可);②某电子入射方向与法线的夹角为1θ,求它射入球形界面后的运动方向与法线的夹角2θ的正弦值2sin θ.【答案】(1)①()AB B A W e ϕϕ=- ②是平行;()020cos 2B A v ve v mθϕϕ==-+(2)① ②()1122211sin 2e v mθϕϕ=-+【解析】 【详解】(1)①AB 两点的电势差为AB A B U ϕϕ=-在电子由A 运动到B 的过程中电场力做的功为()AB AB B A W eU e ϕϕ=-=-②电子束在同一电场中运动,电场力做功一样,所以穿出电场时,运动方向仍然彼此平行,设电子在B 点处的速度大小为v ,根据动能定理2201122AB W mv mv =- 0cos v v θ=解得:()020cos 2B A v ve v mθϕϕ==-+(2)①运动图如图所示:②设电子穿过界面后的速度为2v ,由于电子只受法线方向的作用力,其沿界面方向的速度不变,则1122sin sin θθ=v v 电子穿过界面的过程,能量守恒则:2211221122mv e mv e ϕϕ-=- 可解得:()212212e v v mϕϕ-=+ 则()1122211sin 2e v mθϕϕ=-+故本题答案是:(1)①()AB B A W e ϕϕ=- ②()020cos 2B A v ve v mθϕϕ==-+(2)① ②()1122211sin 2e v mθϕϕ=-+2.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL=(2)04nmv B qL =n=1、2、3......(3)02L t v π= 【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv vθ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯== 若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==3.如图所示,在竖直面内有一边长为的正六边形区域,O 为中心点,CD 水平.将一质量为m 的小球以一定的初动能从B 点水平向右拋出,小球运动轨迹过D 点.现在该竖直面内加一匀强电场,并让该小球带电,电荷量为+q ,并以前述初动能沿各个方向从B 点拋入六边形区域,小球将沿不同轨迹运动.已知某一方向拋入的小球过O 点时动能为初动能的,另一方向拋入的小球过C 点时动能与初动能相等.重力加速度为g ,电场区域足够大,求:(1)小球的初动能;(2)取电场中B 点的电势为零,求O 、C 两点的电势;(3)已知小球从某一特定方向从B 点拋入六边形区域后,小球将会再次回到B ,求该特定方向拋入的小球在六边形区域内运动的时间. 【答案】(1);(2);(3)【解析】 【分析】 【详解】(1)设小球从B 点抛出时速度为,从B 到D 所用时间为t ,小球做平抛运动 在水平方向上 在竖直方向上由几何关系可知:,解得小球的初动能为:(2)带电小球B→O :由动能定理得:解得:带电小球B→C:由动能定理得:解得:(3)在正六边形的BC边上取一点G,令,设G到B的距离为x,则由匀强电场性质可知解得:由几何知识可得,直线GO与正六边形的BC边垂直,OG为等势线,电场方向沿CB方向,由匀强电场电场强度与电势的关系可得受力分析如图,根据力合成的平行四边形定则可得:,方向F→B小球只有沿BF方向抛入的小球才会再次回到B点,该小球进入六边形区域后,做匀减速直线运动,速度减为零后反向匀加速直线运动回到B点,设匀减速所用时间为t1,匀加速所用时间为t2,匀减速发生的位移为x由牛顿定律得(未射出六边形区域)小球在六边形区域内运动时间为4.如图,平面直角坐标系中,在,y>0及y<-32L区域存在场强大小相同,方向相反均平行于y轴的匀强电场,在-32L<y<0区域存在方向垂直于xOy平面纸面向外的匀强磁场,一质量为m,电荷量为q的带正电粒子,经过y轴上的点P1(0,L)时的速率为v0,方向沿x轴正方向,然后经过x轴上的点P2(32L,0)进入磁场.在磁场中的运转半径R=52L (不计粒子重力),求:(1)粒子到达P2点时的速度大小和方向;(2)EB;(3)粒子第一次从磁场下边界穿出位置的横坐标;(4)粒子从P1点出发后做周期性运动的周期.【答案】(1)53v0,与x成53°角;(2)043v;(3)2L;(4)()4053760Lvπ+.【解析】【详解】(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为v y,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+=53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E =2089mv qL粒子在磁场中做匀速圆周运动,根据qvB =m 2v R解得:B =mv qR =05352m v q L ⨯⨯=023mv qL解得:43v E B =; (3)粒子在磁场中做圆周运动的圆心为O ′,在图中,过P 2做v 的垂线交y =-32L 直线与Q ′点,可得: P 2O ′=3253L cos o=52L =r 故粒子在磁场中做圆周运动的圆心为O ′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y =-32L 直线从M 点穿出磁场,由几何关系知M 的坐标x =32L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=032Lv在磁场中由P 2到M 动时间:t 2=372360r v π︒⨯o =037120Lv π 从M 运动到N ,a =qE m =289v L则t 3=v a =0158L v则一个周期的时间T =2(t 1+t 2+t 3)=()04053760Lv π+.5.如图所示,在平面直角坐标系xOy 平面内,直角三角形abc 的直角边ab 长为6d ,与y 轴重合,∠bac=30°,中位线OM 与x 轴重合,三角形内有垂直纸面向里的匀强磁场.在笫一象限内,有方向沿y 轴正向的匀强电场,场强大小E 与匀强磁场磁感应强度B 的大小间满足E=v 0B .在x=3d 的N 点处,垂直于x 轴放置一平面荧光屏.电子束以相同的初速度v 0从y 轴上-3d≤y≤0的范围内垂直于y 轴向左射入磁场,其中从y 轴上y=-2d 处射入的电子,经磁场偏转后,恰好经过O 点.电子质量为m,电量为e,电子间的相互作用及重力不计.求 (1)匀强磁杨的磁感应强度B(2)电子束从y 轴正半轴上射入电场时的纵坐标y 的范围;(3)荧光屏上发光点距N 点的最远距离L【答案】(1)0mv ed ; (2)02y d ≤≤;(3)94d ; 【解析】(1)设电子在磁场中做圆周运动的半径为r ; 由几何关系可得r =d电子在磁场中做匀速圆周运动洛伦兹力提供向心力,由牛顿第二定律得:20v ev B m r=解得:0mv B ed=(2)当电子在磁场中运动的圆轨迹与ac 边相切时,电子从+ y 轴射入电场的位置距O 点最远,如图甲所示.设此时的圆心位置为O ',有:sin 30rO a '=︒3OO d O a ='-' 解得OO d '=即从O 点进入磁场的电子射出磁场时的位置距O 点最远 所以22m y r d ==电子束从y 轴正半轴上射入电场时的纵坐标y 的范围为02y d ≤≤设电子从02y d ≤≤范围内某一位置射入电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度方向与x 轴间夹角为θ,在电场中运动的时间为t ,电子打到荧光屏上产生的发光点距N 点的距离为L ,如图乙所示:根据运动学公式有:0x v t =212eE y t m=⋅ y eE v t m=tan y v v θ=tan 3Ld xθ=- 解得:(32)2L d y y =-⋅ 即98y d =时,L 有最大值 解得:94L d =当322d y y -=【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用.6.如图所示,虚线OL 与y 轴的夹角θ=450,在OL 上侧有平行于OL 向下的匀强电场,在OL 下侧有垂直纸面向外的匀强磁场,一质量为m 、电荷量为q (q >0)的粒子以速率v 0从y 轴上的M (OM =d )点垂直于y 轴射入匀强电场,该粒子恰好能够垂直于OL 进入匀强磁场,不计粒子重力。
带电粒子在电场中的运动知识梳理+典型例题+随堂练习(含答案)

带电粒子在电场中的运动回顾:1、电场的力的性质:E=F/q2、电场的能的性质:E p = ϕ q W AB =U AB q3、是否考虑重力①基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示外,一般不考虑重力. ②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确暗示外,一般都不能忽略重力.一、带电粒子在电场中的加速如图,不计重力,分析粒子由A 板运动到B 板时的速度多大。
1、动力学方法:由牛顿第二定律:由运动学公式:2、动能定理: 由动能定理:总结:动能定理只考虑始末状态,不涉及中间过程,使用起来比较方便简单。
例题1、下列粒子由静止经加速电压为U 的电场加速后,哪种粒子动能最大( ) 哪种粒子速度最大 ( ) A 、质子 B 、电子 C 、氘核 D 、氦核过度:以上是带电粒子在电场中的加速,研究的是直线运动的情况,下面我们来研究带电粒子在电场中做曲线运动的情况。
二、带电粒子在电场中的偏转如图,平行两个电极板间距为d ,板长为l ,板间电压为U ,初速度为v 0的带电粒子质量为m ,带电量为+q .分析带电粒子的运动情况:假设粒子成功飞出(重力不计) 引导:分析粒子进入电场后的受力情况和运动情况,从而得出粒子 在电场中做类平抛运动学生活动:类比平抛运动的规律,分析粒子在电场中的侧移距离和偏转角度侧移量: 偏转角:AB m F a =m qE =mdqU=adv 202=-ad v 2=mqU2=引导学生分析:侧移量和偏转角与哪些因素有关。
例题3、三个电子在同一地点沿、同一直线垂直飞入偏转电场,如图所示。
则由此可判断( ) A 、 b 和c 同时飞离电场B 、在b 飞离电场的瞬间,a 刚好打在下极板上C 、进入电场时,c 速度最大,a 速度最小D 、c 的动能增量最小,a 和b 的动能增量一样大过度:通过以上的学习,我们掌握了带电粒子在电场中的加速和偏转过程,若带电粒子既经过了加速又经过了偏转,结果会怎样呢? 例题4、如图所示,有一电子(电量为e 、质量为m)经电压U0加速后,沿平行金属板A 、B 中心线进入两板,A 、B 板间距为d 、长度为L , A 、B 板间电压为U ,屏CD 足够大,距离A 、B 板右边缘2L ,AB 板的中心线过屏CD 的中心且与屏CD 垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)6s末,电场力的瞬时功率.
【答案】(1) (2)
【解析】
【分析】
【详解】
(1)B所受电场力为F=Eq=6N;绳断之前,对系统由牛顿第二定律:F-μ(mA+mB)g=(mA+mB)a1
可得系统的加速度a1=1m/s2;
由运动规律:x= a1t12
解得A在2s内的位移为x=2m;
(1)电压U0的大小;
(2)若沿x轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度;
(3)若在第四象限加一个与x轴相切的圆形匀强磁场,半径为r=0.03m,切点A的坐标为(0.12m,0),磁场的磁感应强度大小B= ,方向垂直于坐标平面向里.求粒子出磁场后与x轴交点坐标的范围.
【答案】(1) (2) (3)
(2)设绳断瞬间,AB的速度大小为v1,t2=6s时刻,B的速度大小为v2,则v1=a1t1=2m/s;
绳断后,对B由牛顿第二定律:F-μmBg=mBa2
解得a2=2m/s2;
由运动规律可知:v2=v1+a2(t2-t1)
解得v2=10m/s
电场力的功率P=Fv,解得P=60W
4.在如图甲所示的直角坐标系中,两平行极板MN垂直于y轴,N板在x轴上且其左端与坐标原点O重合,极板长度l=0.08m,板间距离d=0.09m,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y轴上(0,d/2)处有一粒子源,垂直于y轴连续不断向x轴正方向发射相同的带正电的粒子,粒子比荷为 =5×107C/kg,速度为v0=8×105m/s.t=0时刻射入板间的粒子恰好经N板右边缘打在x轴上.不计粒子重力及粒子间的相互作用,求:
【答案】(1) ;(2) ;(3) ;
【解析】
【分析】
【详解】
试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:
(2)从AB圆弧面收集到的粒子有 能打到MN板上,则上端刚好能打到MN上的粒子与MN相切,则入射的方向与OA之间的夹角是 ,在磁场中运动的轨迹如图甲,轨迹圆心角 .
根据几何关系,粒子圆周运动的半径:
y= at2…①
a= = …②
t= …③
由①②③解得:y=0.08m
设此粒子射入时与x轴的夹角为α,则由几何知识得:y=rsinα+R0-R0cosα
可知tanα= ,即α=53°
比例η= ×100%=29%
7.如图所示,荧光屏 与 轴垂直放置,与 轴相交于 点, 点的横坐标 ,在第一象限 轴和 之间有沿 轴负方向的匀强电场,电场强度 ,在第二象限有半径 的圆形磁场,磁感应强度 ,方向垂直 平面向外.磁场的边界和 轴相切于 点.在 点有一个粒子源,可以向 轴上方180°范围内的各个方向发射比荷为 的带正电的粒子,已知粒子的发射速率 .不考虑粒子的重力、粒子间的相互作用.求:
(2)若粒子在O点入射方向与x轴负方向夹角为37°,作出速度方向的垂线与y轴交于一点Q,根据几何关系可得PQ= =0.08m,即Q为轨迹圆心的位置;
Q到圆上y轴最高点的距离为0.18m- =0.08m,故粒子刚好从圆上y轴最高点离开;
故它打出磁场时的坐标为(0,0.18m);
(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:
(1)求粒子到达O点时速度的大小;
(2)如图2所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB圆弧面的粒子经O点进入磁场后最多有 能打到MN板上,求所加磁感应强度的大小;
(3)如图3所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个垂直MN的匀强电场,电场强度的方向如图所示,大小 ,若从AB圆弧面收集到的某粒子经O点进入电场后到达收集板MN离O点最远,求该粒子到达O点的速度的方向和它在PQ与MN间运动的时间.
(1)为使从C射出的电子速率达到3v,C、A间应加多大的电压U;
(2)C、A间不加电压,而加垂直于纸面向里的匀强磁场.
①若沿A径向射出的电子恰好不从C射出,求该电子第一次回到A时,在磁场中运动的时间t;
②为使所有电子都不从C射出,所加磁场磁感应强度B应多大.
【答案】(1) (2)① ②
【解析】
【详解】
由洛伦兹力提供向心力得:
联合解得:
(3)如图粒子在电场中运动的轨迹与MN相切时,切点到O点的距离最远,
这是一个类平抛运动的逆过程.
建立如图坐标.
若速度与x轴方向的夹角为 角
3.如图,质量分别为mA=1kg、mB=2kg的A、B两滑块放在水平面上,处于场强大小E=3×105N/C、方向水平向右的匀强电场中,A不带电,B带正电、电荷量q=2×10-5C.零时刻,A、B用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s末细绳断开.已知A、B与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s2.求:
(1)求粒子的发射速度v的大小;
(2)若粒子在O点入射方向与x轴负方向夹角为37°,求它打出磁场时的坐标:
(3)N板收集到的粒子占所有发射粒子的比例η.
【答案】(1)6×105m/s;(2)(0,0.18m);(3)29%
【解析】
【详解】
(1)由洛伦兹力充当向心力,即qvB=m
可得:v=6×105m/s;
解得:
(2)①运动图如图所示:
②设电子穿过界面后的速度为 ,由于电子只受法线方向的作用力,其沿界面方向的速度不变,则 电子穿过界面的过程,能量守恒则: 可解得:
则
故本题答案是:(1)① ② ;
(2)① ②
6.如图所示,半径r=0.06m的半圆形无场区的圆心在坐标原点O处,半径R=0.1m,磁感应强度大小B=0.075T的圆形有界磁场区的圆心坐标为(0,0.08m),平行金属板MN的极板长L=0.3m、间距d=0.1m,极板间所加电压U=6.4x102V,其中N极板收集到的粒子全部中和吸收.一位于O处的粒子源向第一、二象限均匀地发射速度为v的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x轴正方向,已知粒子在磁场中的运动半径R0=0.08m,若粒子重力不计、比荷 =108C/kg、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6.
(2)某电子枪除了加速电子外,同时还有使电子束会聚或发散作用,其原理可简化为图2所示.一球形界面外部空间中各处电势均为 ,内部各处电势均为 ,球心位于 轴上 点.一束靠近 轴且关于 轴对称的电子以相同的速度 平行于 轴射入该界面,由于电子只受到在界面处法线方向的作用力,其运动方向将发生改变,改变前后能量守恒.
所以
8.从宏观现象中总结出来的经典物理学规律不一定都能适用于微观体系。但是在某些问题中利用经典物理学规律也能得到与实际比较相符合的结论。根据玻尔的氢原子模型,电子的运动看做经典力学描述下的轨道运动,原子中的电子在库仑力作用下,绕原子核做圆周运动。已知电子质量为m,电荷量为e,静电力常量为k。氢原子处于基态(n=1)时电子的轨道半径为r1,电势能为 (取无穷远处电势能为零)。第n个能级的轨道半径为rn,已知rn=n2r1,氢原子的能量等于电子绕原子核运动的动能、电子与原子核系统的电势能的总和。
a.里德伯常量R的表达式;
b.氢原子光谱巴尔末系最小波长与最大波长之比。
【答案】(1) (2)设电子在第1轨道上运动的速度大小为v1,根据牛顿第二定律有 ,电子在第1轨道运动的动能 ,电子在第1轨道运动时氢原子的能量 ,同理,电子在第n轨道运动时氢原子的能量 ,又因为 ,则有 ,命题得证。(3)a: b:5:9
由几何关系,恰好经N板右边缘的粒子经x轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x轴射出点的横坐标:
.
由几何关系,过A点的粒子经x轴后进入磁场由B点沿x轴正向运动.
综上所述,粒子经过磁场后第二次打在x轴上的范围为:
5.利用电场可以控制电子的运动,这一技术在现代设备中有广泛的应用,已知电子的质量为 ,电荷量为 ,不计重力及电子之间的相互作用力,不考虑相对论效应.
【解析】
【详解】
(1)电子绕氢原子核在第1轨道上做圆周运动
(1)对电子经C、A间的电场加速时,由动能定理得
得
(2)电子在C、A间磁场中运动轨迹与金属网相切.轨迹如图所示.
设此轨迹圆的半径为r,则
又
得
故θ=60°
所以电子在磁场中运动的时间
得
(3)若沿切线方向射出的电子轨迹恰好与金属网C相切.则所有电子都不从C射出,轨迹如图所示:
又
得
所以
2.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的电势为 ,内圆弧面CD的电势为 ,足够长的收集板MN平行边界ACDB,ACDB与MN板的距离为L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB的粒子再次返回.
(1)在宽度一定的空间中存在竖直向下的匀强电场,一束电子以相同的初速度 沿水平方向射入电场,如图1所示,图中虚线为某一电子的轨迹,射入点 处电势为 ,射出点 处电势为 .
①求该电子在由 运动到 的过程中,电场力做的功 ;
②请判断该电子束穿过图1所示电场后,运动方向是否仍然彼此平行?若平行,请求出速度方向偏转角 的余弦值 (速度方向偏转角是指末速度方向与初速度方向之间的夹角);若不平行,请说明是会聚还是发散.
①请定性画出这束电子射入球形界面后运动方向的示意图(画出电子束边缘处两条即可);
②某电子入射方向与法线的夹角为 ,求它射入球形界面后的运动方向与法线的夹角 的正弦值 .