七年级数学下册第二章《整式的乘法》单元综合测试2(新版)湘教版

合集下载

湘教版七年级数学下册 第2章 整式的乘法 单元测试卷

湘教版七年级数学下册 第2章  整式的乘法  单元测试卷

第2章整式的乘法一.选择题(共10小题,每题3分,共30分)1.计算x2•x3的结果是()A.x5B.x8C.x6D.x72.下列运算正确的是()A.x2+x2=x4B.(a﹣b)2=a2﹣b2C.(﹣a2)3=﹣a6D.3a2•2a3=6a63.已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.64.下列多项式的乘法中,能用平方差公式计算的是()A.(x+2)(2+x)B.()(b﹣)C.(﹣m+n)(m﹣n)D.(x2﹣y)(x+y2)5.下列计算中,正确的是()A.(x+2)(x﹣3)=x2﹣6B.(﹣4x)(2x2+3x﹣1)=﹣8x3﹣12x2﹣4xC.(x﹣2y)2=x2﹣2xy+4y2D.(﹣4a﹣1)(4a﹣1)=1﹣16a26.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3B.3C.0D.17.若(﹣a2)•(﹣a)2•(﹣a)m>0,则()A.m为奇数B.m为偶数C.m为奇数且a>0D.a>0,m为偶数8.将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.529.一个正方形的边长如果增加4cm,面积则增加64cm2,则这个正方形的边长为()A.6cm B.5cm C.8cm D.7cm10.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是()A.2B.4C.6D.8二.填空题(共8小题,每小题3分,共24分)11.计算:(﹣a2)3•a2=.12.已知a+b=3,ab=1,则(a﹣2)(b﹣2)的值为.13.计算:=.14.已知4m=a,4n=b,则42m+n+1=.15.已知m+n=mn,则(m﹣1)(n﹣1)=.16.已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2022的值为.17.如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为.18.用如图所示的正方形和长方形卡片若干张,拼成一个长为(3a+b),宽为(a+b)的长方形(要求:所拼图形中,卡片之间不能重叠,不能有空隙),则需要A类卡片、B类卡片、C类卡片的张数分别为.三.解答题(20-23题每题8分,24题10分,其余每题12分,共66分)19.(12分)计算:(1)0.125100×(2100)3;(2);(3)(﹣2y2﹣3x)(3x﹣2y2);(4)(a﹣2b﹣3c)(a﹣2b+3c).20.(8分)先化简,再求值:(1)(a+b)(a﹣b)﹣b(a﹣b),其中a=﹣1,b=5;(2)(x﹣1)(3x+1)﹣(x+2)2﹣4,其中x2﹣3x=1.21.(8分)(1)已知:a+b=7,ab=12.求下列各式的值:①a2﹣ab+b2;②(a﹣b)2.(2)已知a=275,b=450,c=826,d=1615,用“<”来比较a、b、c、d的大小.22.(8分)已知M=x2+3x﹣a,N=﹣x,P=x3+3x2+5,且M•N+P的值与x的取值无关,求a的值.23.(8分)如图:某校一块长为2a米的正方形空地是七年级四个班的清洁区,其中分给七年级(1)班的清洁区是一块边长为(a﹣2b)米的正方形,(0<2b<a).(1)分别求出七(2)、七(3)班的清洁区的面积;(2)七(4)班的清洁区的面积比七(1)班的清洁区的面积多多少平方米?24.(10分)已知M(2)=(﹣2)×(﹣2),M(3)=(﹣2)×(﹣2)×(﹣2),…M (n)=(n为正整数).(1)计算:M(5)+M(6);(2)求2M(2022)+M(2023)的值;(3)试说明2M(n)与M(n+1)互为相反数.25.(12分)(1)观察下列各式的规律(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=.(2)猜想(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=(其中n为正整数,且n≥2)(3)利用(2)猜想的结论计算29﹣28+27﹣…+23﹣22+2.参考答案与试题解析一.选择题(共10小题,每题3分,共30分)1.计算x2•x3的结果是()A.x5B.x8C.x6D.x7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n.【解答】解:x2•x3=x2+3=x5.故选A.2.下列运算正确的是()A.x2+x2=x4B.(a﹣b)2=a2﹣b2C.(﹣a2)3=﹣a6D.3a2•2a3=6a6【分析】根据同类项、完全平方公式、幂的乘方和单项式的乘法计算即可.【解答】解:A、x2+x2=2x2,错误;B、(a﹣b)2=a2﹣2ab+b2,错误;C、(﹣a2)3=﹣a6,正确;D、3a2•2a3=6a5,错误;故选:C.3.已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.6【分析】根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.4.下列多项式的乘法中,能用平方差公式计算的是()A.(x+2)(2+x)B.()(b﹣)C.(﹣m+n)(m﹣n)D.(x2﹣y)(x+y2)【分析】利用平方差公式判断即可.【解答】解:A、原式=(x+2)2=x2+4x+4,不符合题意;B、原式=b2﹣a2,符合题意;C、原式=﹣(m﹣n)2=﹣m2+2mn﹣n2,不符合题意;D、原式=x3+x2y2﹣xy﹣y3,不符合题意.故选:B.5.下列计算中,正确的是()A.(x+2)(x﹣3)=x2﹣6B.(﹣4x)(2x2+3x﹣1)=﹣8x3﹣12x2﹣4xC.(x﹣2y)2=x2﹣2xy+4y2D.(﹣4a﹣1)(4a﹣1)=1﹣16a2【分析】A、利用多项式乘以多项式法则计算,合并得到结果,即可做出判断;B、利用单项式乘多项式法则计算,合并得到结果,即可做出判断;C、利用完全平方公式计算得到结果,即可做出判断;D、利用平方差公式计算得到结果,即可做出判断.【解答】解:A、(x+2)(x﹣3)=x2﹣x﹣6,本选项错误;B、(﹣4x)(2x2+3x﹣1)=﹣8x3﹣12x2+4x,本选项错误;C、(x﹣2y)2=x2﹣4xy+4y2,本选项错误;D、(﹣4a﹣1)(4a﹣1)=1﹣16a2,本选项正确.故选:D.6.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3B.3C.0D.1【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x的系数为0,得出关于m的方程,求出m的值.【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵(x+m)与(x+3)的乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.7.若(﹣a2)•(﹣a)2•(﹣a)m>0,则()A.m为奇数B.m为偶数C.m为奇数且a>0D.a>0,m为偶数【分析】根据负数的偶数次幂是正数,负数的奇数次幂是负数,可得单项式的乘法,根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,【解答】解:a>0,m为奇数时,(﹣a2)•(﹣a)2•(﹣a)m=(﹣a2)•a2•(﹣a m)=a2+2+m >0,故选:C.8.将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.52【分析】根据完全平方公式进行计算,判断即可.【解答】解:9.52=(10﹣0.5)2=102﹣2×10×0.5+0.52,故选:C.9.一个正方形的边长如果增加4cm,面积则增加64cm2,则这个正方形的边长为()A.6cm B.5cm C.8cm D.7cm【分析】设这个正方形的边长为x厘米,根据等量关系:新正方形的面积=原正方形的面积+64,得出方程,解答即可.【解答】解:设这个正方形的边长为x厘米,根据题意得:(x+4)2=x2+64,x2+8x+16=x2+64,8x+16=64,8x+16﹣16=64﹣16,8x=48,x=6(厘米),故选:A.10.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是()A.2B.4C.6D.8【分析】根据平方差公式可以化简题目中的式子,再根据题目中数字的变化规律,可以解答本题.【解答】解:∵A=(2+1)(22+1)(24+1)(28+1)+1==216﹣1+1=216,又∵21=2,22=4,23=8,24=16,25=32,∴216的末尾数字是6,∴A的末位数字是6.故选:C.二.填空题(共8小题,每小题3分,共24分)11.计算:(﹣a2)3•a2=﹣a8.【分析】先算乘方,再算乘法.【解答】解:原式=﹣a6•a2=﹣a8.故答案为:﹣a8.12.已知a+b=3,ab=1,则(a﹣2)(b﹣2)的值为﹣1.【分析】将a+b=3、ab=1代入到原式=ab﹣2a﹣2b+4=ab﹣2(a+b)+4,计算可得.【解答】解:当a+b=3、ab=1时,原式=ab﹣2a﹣2b+4=ab﹣2(a+b)+4=1﹣2×3+4=﹣1,故答案为:﹣1.13.计算:=﹣3.【分析】根据乘方的意义,先把2022个3相乘写成2021个3相乘,再乘以1个3,然后根据积的乘方法则的逆用即可得到答案.【解答】解:原式=32021×3×(﹣)2021=[3×(﹣)]2021×3=(﹣1)2021×3=(﹣1)×3=﹣3.故答案为:﹣3.14.已知4m=a,4n=b,则42m+n+1=4a2b.【分析】所求式子的指数是相加的形式,所以逆用同底数幂的乘法法则进行计算即可.【解答】解:原式=42m•4n•4=(4m)2•4n•4=4a2b.故答案为:4a2b.15.已知m+n=mn,则(m﹣1)(n﹣1)=1.【分析】先根据多项式乘以多项式的运算法则去掉括号,然后整体代值计算.【解答】解:(m﹣1)(n﹣1)=mn﹣(m+n)+1,∵m+n=mn,∴(m﹣1)(n﹣1)=mn﹣(m+n)+1=1,故答案为1.16.已知x2﹣x﹣1=0,则代数式﹣x3+2x2+2022的值为2023.【分析】根据条件得到x2﹣x=1,整体代入代数式中即可求得代数式的值.【解答】解:∵x2﹣x﹣1=0,∴x2﹣x=1,∴原式=﹣x(x2﹣2x)+2022=﹣x(x2﹣x﹣x)+2022=﹣x(1﹣x)+2022=x2﹣x+2022=1+2022=2023.故答案为:2023.17.如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为±4.【分析】将2a+2b看做整体,用平方差公式解答,求出2a+2b的值,进一步求出(a+b)的值.【解答】解:∵(2a+2b+1)(2a+2b﹣1)=63,∴(2a+2b)2﹣12=63,∴(2a+2b)2=64,2a+2b=±8,两边同时除以2得,a+b=±4.18.用如图所示的正方形和长方形卡片若干张,拼成一个长为(3a+b),宽为(a+b)的长方形(要求:所拼图形中,卡片之间不能重叠,不能有空隙),则需要A类卡片、B类卡片、C类卡片的张数分别为3,4,1.【分析】先根据题意得出长方形的面积是(3a+b)(a+b),再进行化简即可.【解答】解:长方形的面积是(3a+b)(a+b)=3a2+3ab+ab+b2=3a2+4ab+b2,即需要A类卡片、B类卡片、C类卡片的张数分别为3,4,1,故答案为:3,4,1.三.解答题(20-23题每题8分,24题10分,其余每题12分,共66分)19.(12分)计算:(1)0.125100×(2100)3;(2);(3)(﹣2y2﹣3x)(3x﹣2y2);(4)(a﹣2b﹣3c)(a﹣2b+3c).【分析】(1)根据幂的乘方和积的乘方法则计算;(2)先算乘方,再算乘除;(3)用平方差公式计算;(4)把a﹣2b看做一个整体,用平方差公式计算.【解答】解:(1)原式=0.125100×(23)100=0.125100×8100=(0.125×8)100=1100=1;(2)原式=﹣2×(﹣1)2(a2)2b2c2•ab3c3=﹣2a4b2c2•ab3c3=﹣a5b5c5;(3)原式=(﹣2y2﹣3x)(﹣2y2+3x)=(﹣2y2)2﹣(3x)2=4y4﹣9x2;(4)原式=[(a﹣2b)﹣3c][(a﹣2b)+3c]=(a﹣2b)2﹣(3c)2=a2﹣4ab+4b2﹣9c2.20.(8分)先化简,再求值:(1)(a+b)(a﹣b)﹣b(a﹣b),其中a=﹣1,b=5;(2)(x﹣1)(3x+1)﹣(x+2)2﹣4,其中x2﹣3x=1.【分析】(1)先根据平方差公式和单项式乘以多项式进行计算,再合并同类项,最后求出答案即可;(2)先根据多项式乘以多项式,完全平方公式进行计算,再合并同类项,最后求出答案即可.【解答】解:(1)(a+b)(a﹣b)﹣b(a﹣b)=a2﹣b2﹣ab+b2=a2﹣ab,当a=﹣1,b=5时,原式=(﹣1)2﹣(﹣1)×5=1+5=6;(2)(x﹣1)(3x+1)﹣(x+2)2﹣4,=3x2+x﹣3x﹣1﹣x2﹣4x﹣4﹣4=2x2﹣6x﹣9=2(x2﹣3x)﹣9,当x2﹣3x=1时,原式=2×1﹣9=﹣7.21.(8分)(1)已知:a+b=7,ab=12.求下列各式的值:①a2﹣ab+b2;②(a﹣b)2.(2)已知a=275,b=450,c=826,d=1615,用“<”来比较a、b、c、d的大小.【分析】(1)①将a2﹣ab+b2化为(a+b)2﹣3ab,再代入求值即可;②将(a﹣b)2化为(a+b)2﹣4ab,再代入求值即可;(2)都化为底数为2的幂,再比较大小.【解答】解:(1)①a2﹣ab+b2=(a+b)2﹣3ab=72﹣3×12=49﹣36=13;②(a﹣b)2=(a+b)2﹣4ab=72﹣4×12=49﹣48=1;(2)∵a=275,b=(22)50=2100,c=(23)26=278,d=(24)15=260,100>78>75>60,∴2100>278>275>260,∴b>c>a>d.22.(8分)已知M=x2+3x﹣a,N=﹣x,P=x3+3x2+5,且M•N+P的值与x的取值无关,求a的值.【分析】首先根据多项式乘多项式的方法,求出M•N的值是多少;然后用它加上P,求出M•N+P的值是多少;最后根据M•N+P的值与x的取值无关,可得x的系数是0,据此求出a的值是多少即可.【解答】解:M•N+P=(x2+3x﹣a)•(﹣x)+(x3+3x2+5)=﹣x3﹣3x2+ax+x3+3x2+5=ax+5∵M•N+P的值与x的取值无关,∴a=0.23.(8分)如图:某校一块长为2a米的正方形空地是七年级四个班的清洁区,其中分给七年级(1)班的清洁区是一块边长为(a﹣2b)米的正方形,(0<2b<a).(1)分别求出七(2)、七(3)班的清洁区的面积;(2)七(4)班的清洁区的面积比七(1)班的清洁区的面积多多少平方米?【分析】(1)根据图形和题目中的数据,可以用含a、b的代数式表示出七(2)、七(3)班的清洁区的面积;(2)根据图形和题目中的数据,可以分别写出七(4)和七(2)的面积,然后作差即可.【解答】解:(1)∵七年级(1)班的清洁区是一块边长为(a﹣2b)米的正方形,四个班所在的图形是边长为2a的正方形,∴七(2)所在长方形的长为:2a﹣(a﹣2b)=a+2b,宽为:a﹣2b,七(3)所在长方形的长为:2a﹣(a﹣2b)=a+2b,宽为:a﹣2b,∴七(2)班的清洁区的面积是(a+2b)(a﹣2b)=(a2﹣4b2)(平方米),七(3)班的清洁区的面积是(a+2b)(a﹣2b)=(a2﹣4b2)(平方米),即七(2)、七(3)班的清洁区的面积分别为(a2﹣4b2)平方米,(a2﹣4b2)平方米;(2)∵七年级(1)班的清洁区是一块边长为(a﹣2b)米的正方形,四个班所在的图形是边长为2a的正方形,∴七(4)班所在的图形是边长为:2a﹣(a﹣2b)=a+2b的正方形,(a+2b)2﹣(a﹣2b)2=a2+4ab+4b2﹣a2+4ab﹣4b2=8ab(平方米),即七(4)班的清洁区的面积比七(1)班的清洁区的面积多8ab平方米.24.(10分)已知M(2)=(﹣2)×(﹣2),M(3)=(﹣2)×(﹣2)×(﹣2),…M (n)=(n为正整数).(1)计算:M(5)+M(6);(2)求2M(2022)+M(2023)的值;(3)试说明2M(n)与M(n+1)互为相反数.【分析】(1)利用新定义得到M(5)+M(6)=(﹣2)5+(﹣2)6,然后利用乘方的意义计算;(2)利用新定义得到2M(2022)+M(2023)=2×(﹣2)2022+(﹣2)2023,然后根据同底数幂的乘法进行计算;(3)利用新定义得到2M(n)+M(n+1)=﹣(﹣2)×(﹣2)n+(﹣2)n+1,然后根据同底数幂的乘法计算出它们的和为0,从而可判断2M(n)与M(n+1)互为相反数.【解答】解:(1)M(5)+M(6)=(﹣2)5+(﹣2)6=﹣32+64=32;(2)2M(2022)+M(2023)=2×(﹣2)2022+(﹣2)2023=2×22022﹣22023=22023﹣22023=0;(3)2M(n)与M(n+1)互为相反数.理由如下:因为2M(n)+M(n+1)=﹣(﹣2)×(﹣2)n+(﹣2)n+1=﹣(﹣2)n+1+(﹣2)n+1=0,所以2M(n)与M(n+1)互为相反数.25.(12分)(1)观察下列各式的规律(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017.(2)猜想(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=a n﹣b n(其中n为正整数,且n≥2)(3)利用(2)猜想的结论计算29﹣28+27﹣…+23﹣22+2.【分析】(1)根据题目中的例子可以直接写出结果,从而可以解答本题;(2)根据(1)中的例子可以写出相应的猜想;(3)利用(2)中的猜想进行变形即可解答本题.【解答】解:(1)(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017,故答案为:a2017﹣b2017;(2)(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=a n﹣b n,故答案为:a n﹣b n;(3)29﹣28+27﹣…+23﹣22+2=2(28﹣27+26﹣…+22﹣2+1)===.。

七年级数学下册 2 整式的乘法单元测试(二)整式的乘法

七年级数学下册 2 整式的乘法单元测试(二)整式的乘法

单元测试(二) 整式的乘法一、选择题(每小题3分,共24分)1.计算(-a3)5的结果是(C)A.a8 B.a15C.-a15 D.-a82.化简-5a·(2a2-ab),结果正确的是(D)A.-10a3-5ab B.-10a3-5a2bC.-10a2+5a2b D.-10a3+5a2b3.下列各式中,不能用平方差公式计算的是(B)A.(-4x+3y)(4x+3y) B.(4x-3y)(3y-4x)C.(-4x+3y)(-4x-3y) D.(4x+3y)(4x-3y)4.若(3a m·b m+n)2=9a6b16,则(A)A.m=3,n=5 B.m=3,n=2C.m=2,n=6 D.m=2,n=35.(株洲中考)下列等式中,正确的是(B)A.3a-2a=1 B.a2·a3=a5C.(-2a3)2=-4a6 D.(a-b)2=a2-b26.若(x+3)(x-5)=x2-mx-15,则m的值为(A)A.2 B.-2C.5 D.-57.设(5a+3b)2=(5a-3b)2+A,则A=(C)A.30ab B.15abC.60ab D.12ab8.某青少年活动中心的场地为长方形,原来长a米,宽b米.现在要把四周都向外扩展,长增加3米,宽增加2米,那么这个场地的面积增加了(C)A.6平方米 B.(3a-2b)平方米C.(2a+3b+6)平方米 D.(3a+2b+6)平方米二、填空题(每小题4分,共16分)9.计算:(-3x)2·2x=18x3.10.已知x n=2,y n=3,则(xy)n=6.11.已知m+n=1,mn=-2,则(3-m)(3-n)=4.12.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是6.三、解答题(共60分)13.(12分)计算:(1)(-2x2y)3·(3xy2)2;解:原式=-8x6y3·9x2y4=-72x8y7.(2)(益阳中考)(x+1)2-x(x+1);解:原式=x2+2x+1-x2-x=x+1.(3)(重庆B 卷)2(a +1)2+(a +1)(1-2a).解:原式=2(a 2+2a +1)+(-2a 2-a +1)=3a +3.14.(8分)解方程:x(2x +3)-(x -7)(x +6)=x 2-10.解:2x 2+3x -x 2+x +42=x 2-10.4x =-52.x =-13.15.(8分)试比较大小:213×310与210×312.解:因为213×310=23×(2×3)10,210×312=32×(2×3)10,又因为23<32,所以213×310<210×312.16.(10分)先化简,再求值:(1)(贵阳中考)(x +1)(x -1)+x 2(1-x)+x 3,其中x =2;解:原式=x 2-1+x 2-x 3+x 3=2x 2-1,当x =2时,原式=2×22-1=7.(2)(常州中考)(x -1)(x -2)-(x +1)2,其中x =12. 解:原式=x 2-x -2x +2-(x 2+2x +1)=-5x +1,当x =12时,原式=-5×12+1=-32.17.(10分)已知有理数m ,n 满足(m +n)2=9,(m -n)2=1.求下列各式的值.(1)mn ;(2)m 2+n 2-mn.解:(1)因为(m +n)2-(m -n)2=m 2+2mn +n 2-(m 2-2mn +n 2)=4mn=8,所以mn =2.(2)因为(m +n)2+(m -n)2=m 2+2mn +n 2+m 2-2mn +n 2=2m 2+2n 2=10,所以m 2+n 2=5.所以m 2+n 2-mn =5-2=3.18.(12分)通过学习同学们已经体会到灵活运用整式乘法公式给计算和化简带来的方便、快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.例:用简便方法计算195×205.解:195×205=(200-5)(200+5) ①=2002-52 ②=39 975.(1)例题求解过程中,第②步变形是利用平方差公式(填乘法公式的名称);(2)用简便方法计算:①9×11×101×10 001;②(2+1)(22+1)(24+1)…(232+1)+1.解:①原式=(10-1)(10+1)(100+1)(10 000+1) =(100-1)(100+1)(10 000+1)=(10 000-1)(10 000+1)=108-1.②原式=(2-1)(2+1)(22+1)(24+1)…(232+1)+1 =(22-1) (22+1)(24+1)…(232+1)+1=(24-1)(24+1)…(232+1)+1=264-1+1=264.。

七年级数学下册《第二章-整式的乘法》练习题及答案(湘教版)

七年级数学下册《第二章-整式的乘法》练习题及答案(湘教版)

七年级数学下册《第二章整式的乘法》练习题及答案(湘教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列计算错误的是( )A.(-a)·(-a)2=a3B.(-a)2·(-a)2=a4C.(-a)3·(-a)2=-a5D.(-a)3·(-a)3=a62.式子a2m+3不能写成( )A.a2m·a3 B.a m·a m+3 C.a2m+3 D.a m+1·a m+23.计算3a·(-2a)2=( )A.-12a3B.-6a2C.12a3D.6a24.化简a(a+1)-a(1-a)的结果是( )A.2a ;B.2a2;C.0 ;D.2a2-2a.5.若(x+2)(x-1)=x2+mx+n,则m+n=()A.1B.﹣2C.﹣1D.26.若(x+m)(x2-3x+n)的展开式中不含x2和x项,则m,n的值分别为()A.m=3,n=1B.m=3,n=-9C.m=3,n=9D.m=-3,n=97.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n); ②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b); ④2am+2an+bm+bn你认为其中正确的有()A.①②B.③④C.①②③D.①②③④8.若x2﹣kxy+9y2是一个完全平方式,则k的值为( )A.3B.±6C.6D.+39.已知P=8x2-y2+6x-2,N=9x2+4y+13,则P和N的大小关系是( ).A.P>NB.P=NC.P<ND.不能确定10.计算(a-b)(a+b)(a2+b2)(a4-b4)的结果是( )A.a8+2a4b4+b8B.a8-2a4b4+b8C.a8+b8D.a8-b8二、填空题11.计算:(﹣x)3•x2= .12.计算(-xy)2(x+2x2y)= .13.已知单项式M、N满足等式3x(M-5x)=6x2y3+N,则M=______,N=______.14.若4a4﹣ka2b+25b2是一个完全平方式,则k= .15.若(x+2y)(2x﹣ky﹣1)的结果中不含xy项,则k的值为.16.若n满足(n﹣2010)(2024﹣n)=6,则(2n﹣4034)2=__________.三、解答题17.化简:4xy(3x2+2xy-1);18.化简:-5x(-x2+2x+1)-(2x+3)(5-x2)19.化简:(2a+1)2-(2a+1)(2a-1).20.化简:4(a+2)2-7(a+3)(a-3)+3(a-1)2.21.若2×8n×16n=222,求n的值.22.先化简,再求值.x(x2﹣6x﹣9) ﹣x(x2﹣8x﹣15) +2x(3﹣x),其中x=-16 .23.老师在黑板上布置了一道题,小亮和小新展开了下面的讨论:根据上述情景,你认为谁说得对?为什么?24.图①是一个长为2m,宽为2n的长方形纸片,将长方形纸片沿图中虚线剪成四个形状和大小完全相同的小长方形,然后拼成图②所示的一个大正方形.(1)用两种不同的方法表示图②中小正方形(阴影部分)的面积:方法一:S小正方形= ;方法二:S小正方形= ;(2)(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系为(3)应用(2)中发现的关系式解决问题:若x+y=9,xy=14,求x﹣y的值.24.将6张小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好分割为两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a,宽为b,且a>b.当AB长度不变而BC变长时,将6张小长方形纸片还按照同样的方式放在新的长方形ABCD内,S1与S2的差总保持不变,求a,b满足的关系式.(1)为解决上述问题,如图3,小明设EF=x,则可以表示出S1=_______,S2=_______;(2)求a,b满足的关系式,写出推导过程.参考答案1.【答案】A2.【答案】C3.【答案】C4.【答案】B5.【答案】C6.【答案】C7.【答案】D8.【答案】B9.【答案】C10.【答案】D11.【答案】﹣x5.12.【答案】x3y2+2x4y3.13.【答案】2xy3;-15x2.14.【答案】±20.15.【答案】4.16.【答案】25.17.【答案】原式=12x3y+8x2y2-4xy.18.【答案】原式=7x3-7x2-15x-15.19.【答案】原式=4a+2.20.【答案】原式=10a+8221.【答案】解:n=322.【答案】解:x(x2-6x-9)-x(x2-8x-15)+2x(3-x)=x3-6x2-9x- x3+8x2+15x+6x-2x2=12x.当x=-16时,原式=-2.23.【答案】解:原式=4x2﹣y2+2xy﹣8x2﹣y2+4xy+2y2﹣6xy=﹣4x2 因为这个式子的化简结果与y值无关所以只要知道了x的值就可以求解故小新说得对.24.【答案】解:(1)方法一:S小正方形=(m+n)2﹣4mn.方法二:S小正方形=(m﹣n)2.(2)(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系为(m+n)2﹣4mn=(m﹣n)2.(3)∵x+y=9,xy=14∴x﹣y=±=±5.故答案为:(m+n)2﹣4mn,(m﹣n)2;(m+n)2﹣4mn=(m﹣n)2.25.【答案】解:(1)a(x+a),4b(x+2b);(2)解:由(1)知:S1=a(x+a),S2=4b(x+2b)∴S1-S2=a(x+a)-4b(x+2b)=ax+a2-4bx-8b2=(a-4b)x+a2-8b2∵S1与S2的差总保持不变∴a-4b=0.∴a=4b.。

湘教版七年级下册数学第2章 整式的乘法含答案

湘教版七年级下册数学第2章 整式的乘法含答案

湘教版七年级下册数学第2章整式的乘法含答案一、单选题(共15题,共计45分)1、下列计算正确的是()A. B. C. D.2、若x2﹣kxy+9y2是一个完全平方式,则k的值为()A.18B.6C.±6D.±183、计算a2·a4的结果是()A.a 6B.a 7C.a 8D.a 124、下列计算中,正确的是()A. B. C. D.5、下列计算正确的是()A.a+2a 2=3a 3B.2a·4a=8aC.a 3•a 2=a 6D.(a 3)2=a 66、计算的结果是()A. B. C. D.7、下列运算正确的是()A.(ab 3)2=a 2b 6B.(x﹣2)(x﹣3)=x 2﹣6C.(x﹣2)2=x 2﹣4D.2a×3a=6a8、下列计算中,正确的是()A. B. C.D.9、下列计算正确的是()A.x 3+x 3=x 6B.x 3÷x 4=C.(m 5)5=m 10D.x 2y 3=(xy)510、利用乘法公式计算正确的是()A.(2x﹣3)2=4x 2+12x﹣9B.(4x+1)2=16x 2+8x+1C.(a+b)(a+b)=a 2+b 2D.(2m+3)(2m﹣3)=4m 2﹣311、下列计算不正确的是( )A. B. C. D.12、下列运算正确的是()A. B.C. D.13、在下列运算中,计算正确的是()A.(x 5)2=x 7B.(x﹣y)2=x 2﹣y 2C.x 13÷x 3=x 10D.x 3+x 3=x 614、计算的结果为()A.1B.-1C.2D.-215、若a m=2,a n=3,则a m+n等于 ( )A.5B.6C.8D.9二、填空题(共10题,共计30分)16、若x+y=7,x﹣y=4,则x2﹣y2=________.17、计算.(﹣)2016×(1 )2017=________.18、订算:-4a3b2c·3ab3=________。

湘教版数学七年级下第2章整式的乘法单元测试卷含答案

湘教版数学七年级下第2章整式的乘法单元测试卷含答案

第2章整式的乘法单元测试卷一、选择题(每题3分,共30分)1.下列各式中,与其他三个选项可能不相等的是( )A. (a2)3B. (a3)2C. a3·a3D. a3+a32.下列等式错误的是( )A.(2mn)2=4m2n2B.(-2mn)2=4m2n2C.(2m2n2)3=8m6n6D.(-2m2n2)3=-8m5n53.计算(m3n)2的结果是( )A.m6nB.m6n2C.m5n2D.m3n24.已知a m=8,a n=16,则a m+n等于( )A.24B.32C.64D.1285.一个长方体的长、宽、高分别是3x-4,2x-1和x,则它的体积是( )A.6x3-5x2+4xB.6x3-11x2+4xC.6x3-4x2D.6x3-4x2+x+46.已知a+b=3,ab=2,则a2+b2的值为( )A.3B.4C.5D.67.20152-2014×2016的计算结果是( )A.-1B.0C. 1D.4 0308.下面计算(-7+a+b)(-7-a-b)正确的是( )A.原式=[-(7-a-b)][-(7+a+b)]=72-(a+b)2B.原式=[-(7+a)+b][-(7+a)-b]=(7+a)2-b2C.原式=(-7+a+b)[-7-(a+b)]=-72-(a+b)2D.原式=(-7+a+b)[-7-(a+b)]=72+(a+b)29.当x=-1时,代数式x2(x3+2x2+6)-(x3+2x2+6)的值是( )A.32B.-32C.0D.-6410.如图所示的各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m,n的关系是( )A.M=mnB.M=n(m+1)C.M=mn+1D.M=m(n+1)二、填空题(每题3分,共24分)11.计算:3a·2a2=_________.12.已知ab2=-1,则2a2b·3ab5=_________.13.如果(x-5)(x+20)=x2+mx+n,那么m=_________,n=_________.14.若a2n=3,则2a6n-1=_________.15.若16a2-ka+9是完全平方式,则k=_________.16.若ab=3,a-2b=5,则a2b-2ab2的值是_________.17.要使(x2+ax+1)·(-6x3)的计算结果中不含x4项,则a=_________.18.观察下列各式的规律:(a-b)(a+b)=a2-b2,(a-b)(a2+ab+b2)=a3-b3,(a-b)(a 3+a 2b+ab 2+b 3)=a 4-b 4,,…,可得到(a-b)(a 2 016+a 2 015b+…+ab 2 015+b 2 016)= _________.三、解答题(19、20题每题8分,其余每题10分,共46分)19.化简:(1)(a-b)2+a(2b-a);(2)(a+2)2+(1-a)(1+a).20.(1)先化简,再求值:(x+1)(x-1)+x(3-x),其中x=2.(2)化简求值:(a+2b+1)·(-a+2b-1)+(a-1)2,其中a=12,b=3.21.(1)已知a m =3,a n =6,a k =4,求a m+n+k 的值;(2)若a 2+3a-1=0,求3a 3+10a 2+2 013的值.22.对于任意的有理数a,b,c,d,我们规定|a b c d|=ad-bc. 如:|-2 -43 5|=(-2)×5-(-4)×3=2.根据这一规定,解答下列问题: (1)化简|x +3y 2x3y 2x +y |;(2)若x,y 同时满足|3-2yx |=5,|x 1y 2|=8,求x,y 的值.23.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)2 014和2 012这两个数是“神秘数”吗?为什么?(2)说明:由两个连续偶数构造的“神秘数”是4的倍数.参考答案1.【答案】D解:(a 2)3=a 6,(a 3)2=a 6,a 3·a 3=a 6,a 3+a 3=2a 3,故选D.2.【答案】D3.【答案】B解:根据积的乘方公式,即可得到答案.4.【答案】D解:a m+n =a m ·a n =8×16=128,故选D.5.【答案】B6.【答案】C7.【答案】C解:20152-2014× 016=20152-(2015-1)(2015+1)=20152-20152+1=1,故选C.8.【答案】A 9.【答案】C 10.【答案】D二、11.【答案】6a312.【答案】-6解:2a2b·3ab5=6a3b6=6(ab2)3=6×(-1)=-6.13.【答案】15;-100解:因为(x-5)(x+20)=x2+20x-5x-100=x2+15x-100= x2+mx+n,所以m=15,n=-100.14.【答案】53 15.【答案】±24 16.【答案】1517.【答案】0解:因为(x2+ax+1)·(-6x3)=-6x5-6ax4-6x3,且(x2+ax+1)·(-6x3)的计算结果中不含x4项,所以-6a=0,所以a=0.18.【答案】a2 017-b2 017三、19.解:(1)原式=a2-2ab+b2+2ab-a2=b2.(2)原式=a2+4a+4+1-a2=4a+5.20.解:(1)原式=x2-1+3x-x2=3x-1,当x=2时,原式=3×2-1=5.(2)原式=-[(a+1)+2b]·[(a+1)-2b]+(a-1)2=-[(a+1)2-(2b)2]+(a-1)2=4b2-(a2+2a+1)+a2-2a+1=4b2-a2-2a-1+a2-2a+1=4b2-4a.,b=3时,当a=12原式=4×32-4×12=36-2=34. 21.解:(1)a m+n+k =a m ·a n ·a k =3×6×4=72.本题是同底数幂的乘法法则的逆用,只要把a m+n+k 转化为a m ·a n ·a k ,代入求值即可.(2)因为a 2+3a-1=0,所以a 2+3a=1,所以3a 3+10a 2+2 013=3a(a 2+3a)+a 2+2 013=3a+a 2+2013=1+2013=2014.22.解:(1)|x +3y 2x 3y 2x +y|=(x+3y)(2x+y)-2x ·3y=2x 2+xy+3y 2. (2)由|3 -2y x|=5,得3x+2y=5;由|x 1y 2|=8,得2x-y=8;联立可得方程组{3x +2y =5,2x -y =8,解得{x =3,y =-2. 23.解:(1)2014不是“神秘数”,2012是“神秘数”.理由:假如2 014和2012都是“神秘数”,设2014是x 和x-2两数的平方差(x 为正整数),则x 2-(x-2)2=2014,解得x=504.5,因为504.5不是整数,所以2014不是“神秘数”.设2012是y 和y-2两数的平方差(y 为正整数),则y 2-(y-2)2=2012,解得y=504,y-2=502,即2 012=5042-5022,所以2 012是“神秘数”.(2)设两个连续偶数为2k+2和2k(k取非负整数),则(2k+2)2-(2k)2=(2k+2-2k)(2k+2+2k)=4(2k+1),所以由2k+2和2k构造的“神秘数”是4的倍数,即两个连续偶数构造的“神秘数”是4的倍数.。

2020-2021学年(湘教版)七年级数学下册第二章《整式的乘法》单元测试卷(含答案)

2020-2021学年(湘教版)七年级数学下册第二章《整式的乘法》单元测试卷(含答案)

七年级数学下册第二章《整式的乘法》单元测试卷满分:150分考试用时:120分钟班级姓名得分一、选择题(本大题共10小题,共40.0分)1.下列运算正确的是()x=2x4 C. (2x2)3=6x6 D. (−x2y)2=x4yA. 3x3⋅2x2=6x6B. x5÷122.下列各式计算的结果为a5的是()A. a3+a2B. a10÷a2C. a⋅a4D. (−a3)23.下列各式正确的是()A. 6a2−5a2=a2B. (2a)2=2a2C. −2(a−1)=−2a+1D. (a+b)2=a2+b24.已知a=8111,b=2721,c=931,则a、b、c的大小关系是()A. a>b>cB. a>c>bC. a<b<cD. b>c>a5.在2014,2015,2016,2017四个数中,不能表示为两个整数的平方差的数是()A. 2014B. 2015C. 2016D. 20176.计算(x+1)(x−2)的结果是()A. x2−2B. x2+2C. x2−x+2D. x2−x−27.一个正整数若能表示为两个正整数的平方差,则称这个正整数为“创新数”,例如27=62−32,63=82−12,故27,63都是“创新数”,下列各数中,不是“创新数”的是()A. 31B. 41C. 16D. 548.设x,y是有理数,定义“※”的一种运算如下:x※y=(x−y)2,则下列结论:①若x※y=0,则x=0或y=0;②x※y=y※x;③(x−y)※(y−z)=x※(−z);④x※(y+z)=x※y+y※z+x※(−z);其中正确的有()个.A. 0B. 1C. 2D. 39.下列多项式相乘时,可用平方差公式的是()A. (m+2n)(m−n)B. (−m−n)(m+n)C. (−m−n)(m−n)D. (m−n)(−m+n)10.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2−(a−b)2,则下列结论:①若a@b=0,则a=0或b=0;②a@(b+c)=a@b+a@c;③不存在实数a,b,满足a@b=a2+5b2;④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是().A. ②③④B. ①③④C. ①②④D. ①②③二、填空题(本大题共8小题,共32.0分)11.若2n=8,则3n−1=______.12.某中学有一块边长为a米的正方形草坪,经统一规划后,边长比原来增加3米,则改造后的正方形草坪的面积比原来的面积多______平方米(结果写成几个整式乘积的形式).13.若9x2+kxy+y2是完全平方式,则k=______ .14.若x m=3,x n=5,则x2m+n的值为______.15.若多项式4x4+1加上一个含字母的单项式,就能变形为一个含x的多项式的平方,则这样的单项式为______.16.下列有四个结论:①若(2x−1)x+1=1,则x只能是−1;②若(x−1)(x2+ax+1)的运算结果中不含x2项,则a=1;③若a+b=10,ab=2,则a−b=2;④若.其中正确的是________.4x=a,8y=b,则22x−3y可表示为ab17.式子3(22+1)(24+1)…(232+1)+1计算结果的个位数字是__________)2013等于______ .18.计算:(−2)2012×(12三、解答题(本大题共7小题,共78.0分)19.(10分)计算:x3⋅x3+x8÷x2+(2x3)220.(10分)(1)已知4m=a,8n=b,,用含a,b的式子表示22m+3n的值(2)已知2×8x×16=223,求x的值.21.(10分)化简:(1)(x2−2y)(xy2)3;ab3−5).(2)(−a)3⋅(−2ab2)3−4ab2(7a5b4+1222.(10分)如图是小李家住房的平面示意图,小李打算在卧室和客厅里铺上木地板.请你帮他算一算,他需要买的木地板的面积至少是多少?23.(12分)在计算(x+a)(x+b)时,甲把错b看成了6,得到结果是:x2+8x+12;乙错把a看成了−a,得到结果:x2+x−6.(1)求出a,b的值;(2)在(1)的条件下,计算(x+a)(x+b)的结果.24.(12分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像。

湘教版数学七年级下册第二章整式的乘法单元检测试题.docx

湘教版数学七年级下册第二章整式的乘法单元检测试题.docx

初中数学试卷沪科版七年级下册数学第二章整式的乘法单元检测试题一、选择题(本大题共10小题)1. 1.下列运算正确的是()A.2a3÷a=6 B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b22.若x2+ax-24=(x+2)(x-12),则a的值为()A. ±10;B. -10;C. 14;D. -14;3.若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.404.四位同学一起做多项式乘法(x+3)(x+a),其中a>0,最后得出下列四个结果,其中正确的结果可能是( )A.x2-2x-15 B.x2+8x+15C.x2+2x-15 D.x2-8x+155.已知x-y=3,x-z=12,则(y-z) 2+5(y-z)+254的值等于()A. 254; B.52; C.52; D. 0;6.某青少年活动中心的场地为长方形,原来长a米,宽b米.现在要把四周都向外扩展,长增加3米,宽增加2米,那么这个场地的面积增加了( )A.6平方米B.(3a-2b)平方米C.(2a+3b+6)平方米D.(3a+2b+6)平方米7.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b28.有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()A.a+b B.2a+b C.3a+b D.a+2b9.已知(a m+1b n+2)(a2n-1b2m)=a5b6,则m+n的值为()A. 1;B. 2;C. 3;D. 4;10.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+x n)的结果是()A.1﹣x n+1B.1+x n+1C.1﹣x n D.1+x n二、填空题(本大题共8小题)11.已知a+b=3,a﹣b=5,则代数式a2﹣b2的值是.12.已知10m=2,10n=3,则103m+2n= .13.按下面程序计算:输入x=3,则输出的答案是。

湘教版七年级下册数学第2章 整式的乘法含答案

湘教版七年级下册数学第2章 整式的乘法含答案

湘教版七年级下册数学第2章整式的乘法含答案一、单选题(共15题,共计45分)1、下列计算正确的是()A.(﹣5b)3=﹣15b 3B.(2x)3(﹣5xy 2)=﹣40x 4y2 C.28x 6y 2+7x 3y=4x 2y D.(12a 3﹣6a 2+3a)÷3a=4a 2﹣2a2、下列等式成立的是().A.(a 2) 3=a 6B.2a 2-3a=-aC.a 6÷a 3=a 2D.(a+4)(a-4)=a 2-43、下列计算正确的是A. B. C. D.4、下列运算中,结果正确的是()A.(x 2)3=x 5B.3x 2+2x 2=5x 4C.x 3•x 3=x 6D.(x+y)2=x 2+y 25、若(x+2) (x-1)=x2+mx-2,则m的值为()A.3B.-3C.1D.-16、下列计算正确的是()A. + =B.a 3÷a 2=aC.a 2•a 3=a 6D.(a 2b)2=a 2b 27、计算的结果是()A. .B. .C. .D. .8、如图1,在边长为 a 的正方形中挖掉一个边长为 b 的小正方形,把余下的部分剪拼成一长方形(如图2),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A. B. C.D.9、下列各式计算正确的是()A.2a 2+3a 2=5a 4B.(﹣2ab)3=﹣6ab 3C.(3a+b)(3a﹣b)=9a 2﹣b 2D.a 3•(﹣2a)=﹣2a 310、下列等式一定成立的是()A.a 2×a 5=a 10B.C.(﹣a 3)4=a 12D.11、下列运算正确的是()A.a 2+a 3=a 5B.(﹣2a 2)3=﹣6a 5C.(2a+1)(2a﹣1)=2a 2﹣1 D.(2a 3﹣a 2)÷a 2=2a﹣112、下列运算正确的是()A.(﹣a 3)2=a 6B.2a+3b=5abC.(a+1)2=a 2+1D.a 2•a 3=a 613、若a>0且a x=2,a y=3,则a x+y的值为()A.6B.5C.﹣1D.14、x·x ·( )=x ,括号内填()A. xB. xC. xD. x15、如图,大正方形的边长为m,小正方形的边长为n,若用x,y表示四个长方形的两边长(x>y),观察图案及以下关系式:①;②;③;④.其中正确的关系式有()A.①②B.①③C.①③④D.①②③④二、填空题(共10题,共计30分)16、若,则常数________.17、符号叫做二阶行列式,规定它的运算法则为=ad﹣bc,例如=1×4﹣2×3=﹣2.那么,根据阅读材料,化简=________ .18、若,则________ ________19、如图,从一个边长为a的正方形的一角上剪去一个边长为b(a>b)的正方形,则剩余(阴影)部分正好能够表示一个乘法公式,则这个乘法公式是________(用含a,b的等式表示).20、如果实数x、y满足方程组,那么x2﹣y2= ________.21、已知,,则________.22、计算:a(a+1)=________.23、若,则代数式的值为________.24、如果那么________.(用含的式子表示)25、若a﹣b=6,ab=2,则a2+b2=________.三、解答题(共5题,共计25分)26、已知27b=9×3a+3, 16=4×22b﹣2,求a+b的值.27、已知关于的方程和的解相同.28、已知a m=2,a n=3,求:①a m+n的值;②a3m﹣2n的值.29、(1)填空:(a﹣b)(a+b)= ;(a﹣b)(a2+ab+b2)= ;(a﹣b)(a3+a2b+ab2+b3)= .(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= (其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.30、x5•x7+x6•(﹣x3)2+2(x3)4.参考答案一、单选题(共15题,共计45分)1、D2、A3、C5、C6、B7、C8、D9、C10、C11、D12、A13、A14、C15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如果你喜欢这份文档,欢迎下载,另祝您成绩进步,学习愉快!《整式的乘法》单元测试一、精心选一选,慧眼识金1.下列说法正确的是().A.2xy -的系数为2-,次数为1B.a 的系数为1,次数为0C.332x 的系数为2,次数为6D.3x y 的系数为1,次数为42.如图,阴影部分的面积是().A.112xy B.132xy C.6xy D.3xy3.下列运算正确的是().A.221a a a a ÷⋅=B.()336a a a -⋅=C.()32628x x -=-D.()236()()x x x -⋅-=-4.若M 的值使得()22421x x M x ++=+-成立,则M 的值为().A.5B.4C.3D.25.若3,3x y a b ==,则23x y +的值为().A.ab B.2a b C.2ab D.23a b6.已知5a b -=,3ab =,则(1)(1)a b +-的值为().A.1-B.3-C.1D.37.代数式()()222235yz xz y xz z x xyz +-+++的值().A.只与,x y 有关B.只与,y z 有关C.与,,x y z 都无关D.与,,x y z 都有关8.计算:()()200820083.140.1258π-︒+-⨯的结果是().A. 3.14π-B.0C.1D.23x2y y0.5x9.若2(9)(3)(x x ++4)81x =-,则括号内应填入的代数式为().A.3x -B.3x -C.3x +D.9x -10.现规定一种运算:*a b ab a b =+-,其中a b ,为实数,则()**a b b a b +-等于().A.2a b -B.2b b -C.2b D.2b a -二、耐心填一填,一锤定音11.把代数式222a b c 和32a c 的共同点填在横线上,例如它们都是整式,①都是_______;②都是______.12.已知31323m x y -与52114n x y +-的和是单项式,则53m n +的值是______.13.计算2342()()()m n m n mn ⋅-÷-的结果为______.14.一个三角形的长为(24)a cm +,宽为(24)a cm -,则这个三角形的面积为______.15.若2,48x y xy -==,则代数式22x y +的值为().16.我国宋朝数学家扬辉在他的著作《详解九章算法》中提出下表,此表揭示了()n a b +(n 为非负数)展开式的各项系数的规律.例如:()01a b +=它只有一项,系数为1;()1a b a b +=+它有两项,系数分别为1,1;()2222a b a ab b +=++它有三项,系数分别为1,2,1;()3322333a b a a b ab b +=+++它有四项,系数分别为1,3,3,1;……根据以上规律,()4a b +展开式共有五项,系数分别为__________.17.已知一个多项式与单项式2xy -的积为3222642x y x y xy --,则这个多项式是_________.18.观察下列各式:23456,,2,3,5,8,x x x x x x …….试按此规律写出的第10个式子是______.19.一个正方形一组对边减少3cm ,另一组对边增加3cm ,所得的长方形的面积与这个正方形的每边都减去1cm 后所得的正方形的面积相等,则原来的正方形的边长为______.20.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为()2a b +,宽为()a b +的长方形,则需要A 类卡片________张,B 类卡片_______张,C 类卡片_______张.三、细心做一做,马到成功21.计算下列各式(1)()223211482x y xyz xy ⎛⎫⎛⎫-⋅-÷ ⎪ ⎪⎝⎭⎝⎭(2)()()()2232x y x y y x y +---(3)()()222121a a -+(4)2200720092008⨯-(运用乘法公式)22.先化简,再求值:22[(2)(2)2(2)]()xy xy x y xy +---÷,其中10x =,125y =-.23.小马虎在进行两个多项式的乘法时,不小心把乘以()2x y -,错抄成除以()2x y -,结果得()3x y -,则第一个多项式是多少?24.梯形的上底长为()43n m +厘米,下底长为()25m n +厘米,它的高为()2m n +厘米,求此梯形面积的代数式,并计算当2m =,3n =时的面积.25.如果关于x 的多项式()()()22232125546x mx x x mx x mx x +-++-+---的值与x 无关,你能确定m 的值吗?并求()245m m m +-+的值.26.已知1234567822,24,28,216,232,264,2128,2256========,……(1)你能根据此推测出642的个位数字是多少?(2)根据上面的结论,结合计算,试说明()()()()()()24832212121212121-++++⋅⋅⋅+的个位数字是多少?27.阅读下文,寻找规律:已知1x ≠,观察下列各式:()()2111x x x -+=-,()()23111x x x x -++=-,()()234111x x x x x -+++=-…(1)填空:()1(x -8)1x =-.(2)观察上式,并猜想:①()()211n x x x x -+++⋅⋅⋅+=______.②()()10911x x x x -++⋅⋅⋅++=_________.(3)根据你的猜想,计算:①()()234512122222-+++++=______.②234200712222...2++++++=______.参考答案一、精心选一选,慧眼识金1.D.点拨:选项A 的系数为2-,次数为2;选项B 的系数为1,次数为1;选项C 的系数为32(或8),次数为3.2.A.点拨:112(30.5)0.52y x x xy xy -+=.3.C.点拨:因2111a a a a a ÷⋅=⋅=,故选项A 错误;又因()336a a a -⋅=-,故选项B 也错误;而()235()()x x x -⋅-=-,故选项D 也错误.4.C.点拨:因为()222143x x x +-=++,所以3M =.5.B.点拨:逆用公式得,()222233333x y x y x y a b +=⋅=⋅=.6.B.点拨:运用整体法,可得(1)(1)()13513a b ab a b +-=---=--=-.7.A.点拨:原式可化简为2xy -,所以代数式的值只与,x y 有关.8.D.点拨:()()()2008200820083.140.125810.1258112π-︒+-⨯=+-⨯=+=.9.A.点拨:利用验证法知,222(3)(3)(9)(9)(9)x x x x x -++=-+=481x -.10.B.点拨:由规定运算得,原式()()ab a b b a b b a b =+-+-+--2b b =-.二、耐心填一填,一锤定音11.答案不惟一,如:单项式;五次式.12.13.点拨:由题意知31323m x y -与52114n x y +-是同类项,故315m -=,213n +=,解得2,1m n ==.13.82m n -.点拨:23426342282()()()()()()m n m n mn m n m n m n m n ⋅-÷-=⋅-÷=-.14.22(28)a cm -.点拨:()1(24)242a a +-=22(28)a cm -.15.100.点拨:()222222248100.x y x y xy +=-+=+⨯=16.1,4,6,4,1;点拨:寻求规律知,每下一行的数比上一行多1个,且每行两端的数都是1,中间各数都写在上一行两数中间,并且等于它们的和.17.232x y x y -++.点拨:依据乘法和除法互为逆运算,可得3222(642)(2)x y x y xy xy --÷-.18.1055x .点拨:从第三个式子开始,系数是前两个式子的系数之和.19.5cm .设原来的正方形的边长为xcm ,根据题意得2(3)(3)(1)x x x -+=-,解得5x =.20.2,3,1.点拨:由于三个小卡片的面积分别是22,,a b ab ,而大长方形的面积为()()2a b a b ++2223a ab b =++,故需2张A 类卡片,3张B 类卡片,1张C 类卡片.三、细心做一做,马到成功21.(1)原式=342411224x y z x y xz ÷=(2)原式222222323624x xy y xy y x y=+--+=+(3)原式=()()()22242212141168 1.a a a a a -+=-=-+⎡⎤⎣⎦(4)原式222(20081)(20081)20082008120081=-⋅+-=-+=-22.原式2222(424)()x y x y xy =--+÷22()x y xy xy =-÷=-.当10x =,125y =-时,原式1210255⎛⎫=-⨯-= ⎪⎝⎭.23.设第一个多项式是A,根据题意得,()23A x y x y ÷-=-.所以()()2223372A x y x y x xy y =-⋅-=-+24.()()()432522n m m n m n +++⨯+÷⎡⎤⎣⎦22519922m mn n =++当2m =,3n =时,原式225192329310578114822=⨯+⨯⨯+⨯=++=.25.()()()22232125546x mx x x mx x mx x +-++-+---22232125546x mx x x mx x mx x =+-++-+-++()556556mx x m x =++=++.由原多项式的值与x 无关可知,x 的系数须为0,即550m +=,所以1m =-.当1m =-时,()245m m m +-+2255(1)5(1)59m m =+-=-+⨯--=-.26.(1)因为644162(2)=,所以642的个位数字是6.(2)因为()()()()()()24832212121212121-++++⋅⋅⋅+()()()()()()()()()22483244832212121212121212121=-+++⋅⋅⋅+=-++⋅⋅⋅+=……()()323264212121=-+=-.所以()()()()()()24832212121212121-++++⋅⋅⋅+的个位数字是5.27.(1)2345671x x x x x x x +++++++;(2)①11n x +-;②111x -.(3)①61263-=-;②200821-.点拨:因为23420072008(12)(12222...2)12-++++++=-,所以23420072008200812222...2(12)21++++++=--=-.。

相关文档
最新文档