湖北省技能高考近5年(2014-2018)数学试卷

合集下载

湖北省技能高考近5年(2014-2018)数学试卷

湖北省技能高考近5年(2014-2018)数学试卷

文化综合 第1页(共18页)2014年湖北省技能高考数学部分(90分)五、选择题 (本大题共6小题,每小题6分,共36分)在每小题给出的四个备选项中,只有一项是符合题目要求的,请将其选出。

未选,错选或多选均不得分。

24.若全集U =R ,且集合A ={|x 13,x x -<≤∈N }与B ={|x 220x x --≥},则集合UAB =A .[0,1]B .(1,2)-C .{0,1}D .(0,1)25.下列函数中在定义域内为单调递增的奇函数的是A .2()1f x x =-B .3()f x x =C .5()3xf x ⎛⎫= ⎪⎝⎭D.()f x x =26.下列结论中正确的是A .0.60.744>B .920.80.8>C .0.30.3log 5log 3>D .22log 0.9log 0.4>27.若角11π8θ=,则下列结论中正确的是 A .sin 0θ<且cos 0θ< B .sin 0θ<且cos 0θ> C .sin 0θ>且cos 0θ< D .sin 0θ>且cos 0θ> 28.下列直线中与圆22230x y x ++-=相切的是A .3470x y ++=B .3470x y --=C .4370x y ++=D .4370x y --=29.若n S 为等比数列{}n a 的前n 项和,且3221a S =+与4321a S =+,则公比q =A .3-B .1-C .1D .3六、填空题 (本大题共3小题,每小题6分,共18分)把答案填在答题卡相应题号的横线上。

30.化简3221133203212792793⎡⎤⎛⎫⎛⎫⎢⎥⨯⨯-+⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.31.函数()131f x x =+的定义域用区间表示为 .32.若集合2{|210}A x ax x x =++=∈R ,中至多含有一个元素,则实数a 的取值范围用区间表示为 .文化综合 第2页(共18页)七、解答题 (本大题共3小题,每小题12分,共36分)应写出文字说明,证明过程或演算步骤。

2014年高考真题——文科数学(湖北卷)部分试题解析版Word版含解析

2014年高考真题——文科数学(湖北卷)部分试题解析版Word版含解析

2014年普通高等学校招生全国统一考试(湖北卷)数学(文科)部分解析一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知全集}7,6,5,4,3,2,1{=U ,集合}6,5,3,1{=A ,则=A C U ( )A.}6,5,3,1{B. }7,3,2{C. }7,4,2{D. }7,5,2{2. i 为虚数单位,则=+-2)11(ii ( ) A. 1 B. 1- C. i D.i -3. 命题“R ∈∀x ,x x ≠2”的否定是( )A. R ∉∀x ,x x ≠2B. R ∈∀x ,x x =2C. R ∉∃x ,x x ≠2D. R ∈∃x ,x x =24.若变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥≥≤-≤+0,024y x y x y x ,则y x +2的最大值是( )A.2B.4C.7D.85.随机投掷两枚均匀的投骰子,学 科 网他们向上的点数之和不超过5的概率为1P ,点数之和大于5的概率为2P ,点数之和为偶数的概率为3P ,则( )A. 321P P P <<B. 312P P P <<C. 231P P P <<D. 213P P P <<6.根据如下样本数据:得到的回归方程为a bx y+=ˆ,则( ) A.0,0>>b a B.0,0<>b a C.0,0><b a D.0.0<<b a7.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C. ④和③D.④和②8.设a 、b 是关于t 的方程0sin cos 2=+θθt t 的两个不等实根,则过),(2a a A ,),(2b b B 两点的直线与双曲线1sin cos 2222=-θθy x 的公共点的个数为( ) A. 0 B. 1 C. 2 D. 39.已知)(x f 是定义在R 上的奇函数,当0≥x 时,x x x f 3)(2-=,则函数3)()(+-=x x f x g 的零点的集合为( )A.{1,3}B.{3,1,1,3}--C.{2-D.{2--10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258 C.15750 D.355113二.填空题:本大题共7小题,每小题5分,共35分.请将答案天灾答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分.11.甲、乙两套设备生产的同类产品共4800件,采用分层抽样的方法从中抽取一个容量为80 的样本进行检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.12.若向量)3,1(-=OA ,||||OB OA =,0=∙OB OA ,则=||AB ________.13.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,已知6π=A ,1=a ,3=b ,则=B ________.14.阅读如图所示的程序框图,运行相应的程序,若输入n 的值为9,则输出S 的值为 .15.如图所示,函数)(x f y =的图象由两条射线和三条线段组成.若R ∈∀x ,)1()(->x f x f ,则正实数a 的取值范围是 .16.某项研究表明,在考虑行车安全的情况下,某路段车流量F (单位时间内测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)平均车长l (单位:米)的值有关,其公式为lv v vF 2018760002++=(1)如果不限定车型,05.6=l ,则最大车流量为_______辆/小时;(2)如果限定车型,5=l ,则最大车流量比(1)中的最大车流量增加 辆/小时.17. 已知圆1:22=+y x O 和点)0,2(-A ,若定点)2)(0,(-≠b b B 和常数λ满足:对圆O 上那个任意一点M ,都有||||MA MB λ=,则 (1)=b ; (2)=λ .。

2018年湖北技能高考文化综合考试数学试题

2018年湖北技能高考文化综合考试数学试题

A . (1,4) C . (-::,1)U(4,;) 468'角与 J 角的终边相同; 5若点R (4,6), P 2(2,8),且P 2是线段P 1P 的中点,则点P 的坐标是(3,7);22 •下列四个函数① f (x ) =1-x , 为同一函数的序号是 C . 2 ② f (x) =1-|x|,③ f(x)=1-3x 3 ,2018年湖北技能高考文化综合考试 数学部分(90 分) 四、选择题(本大题共 6小题,每小题5分,共30分) 在每小题给出的四个备选项中 ,只有一项是符合题目要求的 ,请将其选出.未选,错选或多 选均不得分.19. 下列三个命题中真命题个数是( ).若集合A 「B ,则3 A ;(1) (2) 若全集为 U - ;x|1 :: x :: 7?,且 氐 A - ;x |1 ::: x 乞 3?,则集合 A - ;x |3 :: x ::7]; 20. (3) 若p:0cxv3 q:|x|<3,则条件p 是结论q 成立的必要条件.C .不等式(1-x )(x-4)<2的解集为( ).21 . 下列三个命题中 假命题的个数是( ). (3) 两条直线夹角的取值范围是 JI[0,-].A •①③B •①④C .②③ 23.下列四个函数在其定义域内为减函数且为奇函数的是(3 D •②④ A . f(x)=3» B . f (X )= X f(x) =s inx 24.若向量 a =(-3,1), b =(3,4),且(2a b) (a + kb)=20 ,则实数k=A . -1 C . 41D . 一 6五、填空题(本大题共 把答案填在答题卡相应题号的横线上4小题,每小题6分,共24分)1 225.计算:(9)) (-0.125)3 3 24 3lg 2 Ig125 二 826 .函数f (X )* 的定义域用区间表示为 ------ lg x(2,3)(^□0,2)U(3,::)(1) (2) D . 3 f (x )=1-(47)4,。

2014年湖北省高考数学理科试题及解析(全部题目)

2014年湖北省高考数学理科试题及解析(全部题目)

2014年湖北省高考数学理科试题及解析1. i 为虚数单位,=+-2)11(ii A. -1 B.1 C. -i D. i 【解题提示】利用复数的运算法则进行计算 【解析】选A . 122)1)(1()1)(1()11(2-=-=++--=+-iii i i i i i 2.若二项式7)2(x a x +的展开式中31x 的系数是84,则实数a = A. 2 B.34 C.1 D.42【解题提示】 考查二项式定理的通项公式 【解析】选C . 因为1r T += r r r r rrrx a C xa x C 2777772)()2(+---⋅⋅⋅=⋅⋅,令327-=+-r ,得2=r ,所以84227227=⋅⋅-a C ,解得a =1. 3.设U 为全集,B A ,是集合,则“存在集合C 使得,U A C B C ⊆⊆”是“∅=B A ”的A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要的条件【解题提示】考查集合与集合的关系,充分条件与必要条件的判断 【解析】选C . 依题意,若C A ⊆,则UUC A ⊆,当UB C ⊆,可得∅=B A ;若∅=B A ,不妨另C A = ,显然满足,UA CBC ⊆⊆,故满足条件的集合C 是存在的.4.得到的回归方程为a bx y +=ˆ,则A.0,0>>b aB.0,0<>b aC.0,0><b aD.0.0<<b a【解题提示】 考查根据已知样本数判绘制散点图,由散点图判断线性回归方程中的b 与a 的符号问题【解析】选B .画出散点图如图所示,y 的值大致随x 的增加而减小,因而两个变量呈负相关,所以0<b ,0>a5..在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A.①和②B.③和①C. ④和③D.④和②【解题提示】 考查由已知条件,在空间坐标系中作出几何体的大致形状,进一步得到正视图与俯视图 【解析】选D . 在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D . 6.若函数f(x),()g x 满足11()g()d 0f x x x -=⎰,则称f(x),()g x 为区间[-1,1] 上的一组正交函数,给出三组函数:①11()sin,()cos 22f x x g x x ==;②()1,g()1f x x x x =+=-;③2(),g()f x x x x ==其中为区间]1,1[-的正交函数的组数是( ) A.0 B.1 C.2 D.3【解题提示】 考查微积分基本定理的运用【解析】选C . 对①,1111111111(sin cos )(sin )cos |02222x x dx x dx x ---⋅==-=⎰⎰,则)(x f 、)(x g 为区间]1,1[-上的正交函数;对②,1123111114 (1)(1)(1)()|033x x dx x dx x x---+-=-=-=-≠⎰⎰,则)(x f、)(x g不为区间]1,1[-上的正交函数;对③,1341111()|04x dx x--==⎰,则)(x f、)(x g为区间]1,1[-上的正交函数.所以满足条件的正交函数有2组.7.由不等式⎪⎩⎪⎨⎧≤--≥≤2xyyx确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21yxyx,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为()A.81B.41C.43D.87【解题提示】首先根据给出的不等式组表示出平面区域,然后利用面积型的几何概型公式求解【解析】选D. 依题意,不等式组表示的平面区域如图,由几何概型概率公式知,该点落在2Ω内的概率为111221722218222BDF CEFBDFS SPS⨯⨯-⨯⨯-===⨯⨯.8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,另相乘也。

2014年高考数学湖北卷(理工类) 试题及详细答案解析

2014年高考数学湖北卷(理工类) 试题及详细答案解析

3
曲线 C2 的极坐标方程为ρ=2, 可得方程 x2+y2=4,②
由①②联立解得
x

3 ,故 C1 与 C2 交点的直角坐标为
3,1 .
y 1
三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分 11 分)某实验室一天的温度(单位:℃)随时间 t (单位:h)的变化近似满足函
D(a)=851).阅读如图所示的程序框图,运行相应的程序,
任意输入一个 a , 输出的结果 b=
.
【答案】495
【解析】不妨取 a=815,则 I(a)=158,D(a)=851,b=693;
则取 a=693,则 I(a)=369,D(a)=963,b=594;
则取 a=594,则 I(a)=459,D(a)=954,b=495;
对于③,
1 x x2dx
1
1 1
x3dx


1 4
x4

1 1

0
,故③为一组正交函数,故选
C.
7.由不等式组
x

y
y

0 0 x

2

0
确定的平面区域记为Ω1,不等式组
x x

y y

1 2
确定的平面区域
记为Ω2,在Ω1 中随机取一点,则该点恰好在Ω2 内的概率为( ).
x t
已知曲线
C1
的参数方程是

y
3t (t 为参数).以坐标原点为极点, x 轴的正半轴为
3
极轴建立极坐标系,曲线 C2 的极坐标方程是ρ=2,则 C1 与 C2 交点的直角坐标为

2018年武汉中等职业学校技能高考四月调考

2018年武汉中等职业学校技能高考四月调考

2018年武汉市中等职业学校技能高考四月调考数学部分参考答案及评分标准五、填空题(本大题共4小题,每小题6分,共24分) 25.(3,4) 26.1827.1228.4π六、解答题(本大题共3小题,每小题12分,共36分) 29. (Ⅰ)解:∵(sin )4a p -=∴sin 4a -=即sin 4a =- ……(1分)又,302pa 骣÷çÎ÷ç÷ç桫 ∴,32p a p 骣÷çÎ÷ç÷ç桫 ……(2分) 由平方和关系可知1cos 4α===- ……(3分) 又sin cos tan 1a a a --sin cos 1cos sin cos 4cos αααααα-===-- ……(5分) (Ⅱ)解:Q22sin ()cos()tan(5)tan(2)sin(4)sin (cos )tan tan (sin )sin cos a a p a p a p p a a a aa a a a-??-???=?=? ……(2分)……(3分)又1sin()cos(3)sin cos ,3p a a p a a +--=-+=- ……(4分) 两边平方得112sin cos ,9a a -=∴4sin cos .9a a = ……(6分)故原式4sin cos .9a a ==……(7分) . 30.(Ⅰ)解:在方程360x y -+=中令0y =,则2x =-,故直线360x y -+=与x 轴的交点为A (-2,0)令0x =,则 6y =,故直线360x y -+=与y 轴的交点为B (0,6) ……(1分)由中点公式可得, AB 中点M 的坐标为(-1,3) ……(2分) (Ⅱ)解:设直线1:4310l x y +-=的斜率为1k ,则143k =- ……(3分)设直线l 的斜率为k ,∵1l l ⊥故11k k ⋅=- 则34k = ……(4分) 又直线l 过点M (-1,3),故其方程为 ()3314y x -=+ ……(5分) 即 34150x y -+= ……(6分)(Ⅲ)解:将22240x y x y m +--+=化成圆的标准方程,得()()22125x y m -+-=- ……(7分)因此,圆心为点C (1,2),半径)5r m < ……(8分) ∵直线l 与圆C 相切,∴圆心C 到直线l 的距离d r ==……(10分)2=,故1m = ……(12分) 31.(Ⅰ)解:设此等差数列的三个正数分别为,,a d a a d -+,其中d 为公差, ……(1分) ① ② ……(3分)()()()()()2155213a d a a d a a d a d -+++=⎧⎪⎨+=-+++⎪⎩由①得5a =, ……(4分) 代入②则有()()210718d d =-+即211260d d +-=得213d d ==-或 ……(5分)235,7d =当时,这三个数分别为,-135,-8d =当时,这三个数分别为18,,不合题意,舍去。

2014年高考数学湖北卷试题及解析

2014年高考数学湖北卷试题及解析

2014年普通高等学校招生全国统一考试(湖北卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1.为虚数单位,则=+-2)11(ii ( ) A. 1- B. C. i - D. i【答案】C【解析】试题分析:因为122)11(2-=-=+-iii i ,故选C 。

【点评】本题考查复数的运算,容易题。

2. 若二项式7)2(x a x +的展开式中31x的系数是84,则实数=a ( ) A.2 B. 54 C. 1 D.42答案】D【解析】试题分析:因为r r r r rrr x a C xax C 2777772)()2(+---⋅⋅⋅=⋅⋅,令327-=+-r ,得2=r ,所以84227227=⋅⋅-a C ,解得42=a ,故选D 。

【点评】本题考查二项式定理的通项公式,容易题。

3. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】A【解析】试题分析:依题意,若C A ⊆,则A C C C U U ⊆,当C C B U ⊆,可得∅=B A ;若∅=B A ,不能推出C C B U ⊆,故选A 。

【点评】本题考查集合与集合的关系,充分条件与必要条件判断,容易题。

得到的回归方程为a bx y+=ˆ,则( ) A.0,0>>b a B.0,0<>b a C.0,0><b a D.0.0<<b a 【答案】B【解析】试题分析:依题意,画散点图知,两个变量负相关,所以0<b ,0>a .选B 。

【点评】本题考查根据已知样本数判断线性回归方程中的b 与a 的符号,容易题。

5.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A. ①和②B.③和①C. ④和③D.④和② 【答案】D【解析】试题分析:在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D 。

2014年高考真题——文科数学(湖北卷)解析版Word版含解析

2014年高考真题——文科数学(湖北卷)解析版Word版含解析

2014年高考真题——文科数学(湖北卷)解析版 Word版含解析绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数学(文史类)本试题卷共5页,22题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2014?湖北卷] 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则?UA =()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}1.C[解析] 由A={1,3,5,6},U={1,2,3,4,5,6,7},得?UA={2,4,7}.故选C.2.[2014?湖北卷] i为虚数单位,=()A.1 B.-1 C.i D.-i2.B[解析] ===-1.故选B.3.[2014?湖北卷] 命题"?x∈R,x2≠x"的否定是()A.?x∈/R,x2≠x B.?x∈R,x2=xC.?x0∈/R,x≠x0 D.?x0∈R,x=x03.D[解析] 特称命题的否定方法是先改变量词,然后否定结论,故命题"?x∈R,x2≠x"的否定是"?x0∈R,x=x0". 故选D.4.[2014?湖北卷] 若变量x,y满足约束条件则2x+y的最大值是()A.2 B.4 C.7 D.84.C[解析] 作出约束条件表示的可行域如下图阴影部分所示.设z=2x+y,平移直线2x+y=0,易知在直线x+y=4与直线x-y=2的交点A(3,1)处,z=2x+y取得最大值7. 故选C.5.[2014?湖北卷] 随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则() A.p1<p2<p3 B.p2<p1<p3C.p1<p3<p2 D.p3<p1<p25.C[解析] 掷出两枚骰子,它们向上的点数的所有可能情况如下表:123456123456723456783456789456789105678910116789101112则p1=,p2=,p3=.故p16.[2014?湖北卷] 根据如下样本数据x345678y4.02.5-0.50.5-2.0-3.0得到的回归方程为\s\up6(^(^)=bx+a,则()A.a>0,b<0 B.a>0,b>0C.a<0,b<0 D.a<0,b>06.A[解析] 作出散点图如下:由图像不难得出,回归直线\s\up6(^(^)=bx+a的斜率b0,所以a>0,b图1-17.[2014?湖北卷] 在如图1-1所示的空间直角坐标系O -xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()图1-2A.①和②B.③和①C.④和③D.④和②7.D[解析] 由三视图可知,该几何体的正视图显然是一个直角三角形(三个顶点坐标分别是(0,0,2),(0,2,0),(0,2,2))且内有一虚线(一锐角顶点与一直角边中点的连线),故正视图是④;俯视图是一个斜三角形,三个顶点坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.故选D.8.、[2014?湖北卷] 设a,b是关于t的方程t2cos θ+ts θ=0的两个不等实根,则过A(a,a2),B(b,b2)两点的直线与双曲线-=1的公共点的个数为()A.0 B.1C.2 D.38.A[解析] 由方程t2cos θ+ts θ=0,解得t1=0,t2=-t θ,不妨设点A(0,0),B(-t θ,t2θ),则过这两点的直线方程为y=-xt θ,该直线恰是双曲线-=1的一条渐近线,所以该直线与双曲线无公共点.故选A.9.、[2014?湖北卷] 已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-3x,则函数g(x)=f(x)-x+3的零点的集合为()A.{1,3} B.{-3,-1,1,3}C.{2-,1,3} D.{-2-,1,3}9.D[解析] 设x0,所以f(x)=-f(-x)=-[(-x)2-3(-x)]=-x2-3x .求函数g(x)=f(x)-x+3的零点等价于求方程f(x)=-3+x的解.当x≥0时,x2-3x=-3+x,解得x1=3,x2=1;当x10.[2014?湖北卷] 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求"锔"的术"置如其周,令相乘也.又以高乘之,三十六成一."该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A. B. C. D.10.B[解析] 设圆锥的底面圆半径为r,底面积为S,则L=2πr.由题意得L2h≈Sh,代入S=πr2化简得π≈3.类比推理,若V≈L2h时,π≈.故选B.11.[2014?湖北卷] 甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.11.1800[解析] 设乙设备生产的产品总数为n,则=,解得n=1800.12.、[2014?湖北卷] 若向量\s\up6(→(→)=(1,-3),|\s\up6(→(→)|=|\s\up6(→(→)|,\s\up6(→(→)?\s\up6(→(→)=0,则|\s\up6(→(→)|=________.12.2[解析] 由题意知,\s\up6(→(→)=(3,1)或OB=(-3,-1),所以AB=OB-OA =(2,4)或AB=(-4,2),所以==2.13.[2014?湖北卷] 在△ABC中,角A,B,C所对的边分别为a,b,c.已知A=,a=1,b=,则B=________.13.或[解析] 由正弦定理得=,即=,解得s B=.又因为b>a,所以B=或.14.[2014?湖北卷] 阅读如图1-3所示的程序框图,运行相应的程序,若输入n的值为9,则输出S的值为________.图1-314.1067[解析] 第一次运行时,S=0+21+1,k=1+1;第二次运行时,S=(21+1)+(22+2),k=2+1;......所以框图运算的是S=(21+1)+(22+2)+...+(29+9)=1067.15.[2014?湖北卷] 如图1-4所示,函数y=f(x)的图像由两条射线和三条线段组成.若?x∈R,f(x)>f(x-1),则正实数a的取值范围为________.图1-415.[解析] "?x∈R,f(x)>f(x-1)"等价于"函数y=f(x)的图像恒在函数y=f(x-1)的图像的上方",函数y=f(x-1)的图像是由函数y=f(x)的图像向右平移一个单位得到的,如图所示.因为a>0,由图知6a16.[2014?湖北卷] 某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)、平均车长l(单位:米)的值有关,其公式为F=.(1)如果不限定车型,l=6.05,则最大车流量为________辆/小时;(2)如果限定车型,l=5,则最大车流量比(1)中的最大车流量增加________辆/小时.16.(1)1900(2)100[解析] (1)依题意知,l>0,v>0,所以当l=6.05时,F==≤=1900,当且仅当v=11时,取等号.(2)当l=5时,F==≤2000,当且仅当v=10时,取等号,此时比(1)中的最大车流量增加100辆/小时.17.[2014?湖北卷] 已知圆O:x2+y2=1和点A(-2,0),若定点B(b,0)(b≠-2)和常数λ满足:对圆O上任意一点M,都有=λ,则(1)b=________;(2)λ=________.17.(1)-(2)[解析] 设点M(cos θ,s θ),则由=λ得(cos θ-b)2+s2θ=λ2,即-2bcos θ+b2+1=4λ2cos θ+5λ2对任意的θ都成立,所以又由=λ,得λ>0,且b≠-2,解得18.、、、[2014?湖北卷] 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-cost-st,t∈[0,24).(1)求实验室这一天上午8时的温度;(2)求实验室这一天的最大温差.18.解:(1)f(8)=10-cos-s=10-cos-s=10-×-=10.故实验室上午8时的温度为10 ℃.(2)因为f(t)=10-2=10-2s,又0≤t所以≤t+当t=2时,s=1;当t=14时,s=-1.于是f(t)在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.19.、、[2014?湖北卷] 已知等差数列{}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{}的通项公式.(2)记Sn为数列{}的前n项和,是否存在正整数n,使得Sn>+800?若存在,求n的最小值;若不存在,说明理由.19.解:(1)设数列{}的公差为d,依题意知,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4,当d=0时,=2;当d=4时,=2+(n-1)?4=-2,从而得数列{}的通项公式为=2或=-2.(2)当=2时,Sn=,显然此时不存在正整数n,使得Sn>+800成立.当=-2时,Sn==2.令2>+800,即n2--400>0,解得n>40或n此时存在正整数n,使得Sn>+800成立,n的最小值为41.综上,当=2时,不存在满足题意的正整数n;当=-2时,存在满足题意的正整数n,其最小值为41.20.、[2014?湖北卷] 如图1-5,在正方体ABCD -A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQ.图1-520.证明:(1)连接AD1,由ABCD - A1B1C1D1是正方体,知AD1∥BC1.因为F,P分别是AD,DD1的中点,所以FP∥AD1.从而BC1∥FP.而FP?平面EFPQ,且BC1?平面EFPQ,故直线BC1∥平面EFPQ.(2)如图,连接AC,BD,A1C1,则AC⊥BD.由CC1⊥平面ABCD,BD?平面ABCD,可得CC1⊥BD.又AC∩CC1=C,所以BD⊥平面ACC1A1.而AC1?平面ACC1A1,所以BD⊥AC1.因为M,N分别是A1B1,A1D1的中点,所以∥BD,从而⊥AC1.同理可证PN⊥AC1.又PN∩=N,所以直线AC1⊥平面PQ.21.[2014?湖北卷] π为圆周率,e=2.718 28...为自然对数的底数.(1)求函数f(x)=的单调区间;(2)求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数.21.解:(1)函数f(x)的定义域为(0,+∞).因为f(x)=,所以f′(x)=.当f′(x)>0,即0当f′(x)e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(2)因为e即3e于是根据函数y=x,y=ex,y=πx在定义域上单调递增可得,3e故这6个数中的最大数在π3与3π之中,最小数在3e与e3之中.由e即由π3.由综上,6个数中的最大数是3π,最小数是3e.22.[2014?湖北卷] 在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(-2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.22.解:(1)设点M(x,y),依题意得=|x|+1,即=|x|+1,化简整理得y2=2(|x|+x).故点M的轨迹C的方程为y2=(2)在点M的轨迹C中,记C1:y2=4x(x≥0),C2:y=0(x依题意,可设直线l的方程为y-1=k(x+2).由方程组可得ky2-4y+4(2k+1)=0.①当k=0时,y=1.把y=1代入轨迹C的方程,得x=.故此时直线l:y=1与轨迹C恰好有一个公共点.当k≠0时,方程①的判别式Δ=-16(2k2+k-1).②设直线l与x轴的交点为(x0,0),则由y-1=k(x+2),令y=0,得x0=-.③(i)若由②③解得k.即当k∈(-∞,-1)∪时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.(ii)若或由②③解得k∈或-≤k即当k∈时,直线l与C1只有一个公共点,与C2有一个公共点.当k∈时,直线l与C1有两个公共点,与C2没有公共点.故当k∈∪时,直线l与轨迹C恰好有两个公共点.(iii)若由②③解得-1即当k∈∪时,直线l与C1有一个公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有三个公共点.综上所述,当k∈(-∞,-1)∪∪{0}时,直线l与轨迹C恰好有一个公共点;当k∈∪时,直线l与轨迹C恰好有两个公共点;当k∈∪时,直线l与轨迹C恰好有三个公共点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文化综合 第1页(共18页)2014年湖北省技能高考数学部分(90分)五、选择题 (本大题共6小题,每小题6分,共36分)在每小题给出的四个备选项中,只有一项是符合题目要求的,请将其选出。

未选,错选或多选均不得分。

24.若全集U =R ,且集合A ={|x 13,x x -<≤∈N }与B ={|x 220x x --≥},则集合UAB =A .[0,1]B .(1,2)-C .{0,1}D .(0,1)25.下列函数中在定义域内为单调递增的奇函数的是A .2()1f x x =-B .3()f x x =C .5()3xf x ⎛⎫= ⎪⎝⎭D.()f x x =26.下列结论中正确的是A .0.60.744>B .920.80.8>C .0.30.3log 5log 3>D .22log 0.9log 0.4>27.若角11π8θ=,则下列结论中正确的是 A .sin 0θ<且cos 0θ< B .sin 0θ<且cos 0θ> C .sin 0θ>且cos 0θ< D .sin 0θ>且cos 0θ> 28.下列直线中与圆22230x y x ++-=相切的是A .3470x y ++=B .3470x y --=C .4370x y ++=D .4370x y --=29.若n S 为等比数列{}n a 的前n 项和,且3221a S =+与4321a S =+,则公比q =A .3-B .1-C .1D .3六、填空题 (本大题共3小题,每小题6分,共18分)把答案填在答题卡相应题号的横线上。

30.化简3221133203212792793⎡⎤⎛⎫⎛⎫⎢⎥⨯⨯-+⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.31.函数()131f x x =+的定义域用区间表示为 .32.若集合2{|210}A x ax x x =++=∈R ,中至多含有一个元素,则实数a 的取值范围用区间表示为 .文化综合 第2页(共18页)七、解答题 (本大题共3小题,每小题12分,共36分)应写出文字说明,证明过程或演算步骤。

33.解答下列问题:(Ⅰ)已知1cos 5α=,求sin(π)cos(2π)tan(π)cos(2π)αααα-⋅+⋅+⋅-的值;(5分)(Ⅱ)设点()P y (0)y ≠在角α的终边上,且sin 4y α=,求cos α的值.(7分)34.解答下列问题:(Ⅰ)求经过直线1l :240x y +-=与2l :230x y --=的交点且平行于直线3l :230x y +-=的直线l 的一般式方程;(5分) (Ⅱ)求圆C :222410x y x y ++-+=的半径和圆心坐标;(4分) (Ⅲ)判断(Ⅰ)中直线l 与(Ⅱ)中圆C 之间的位置关系.(3分)35.解答下列问题:(Ⅰ)假设张刚家庭的每月收入为x (元),[2000,20000]x ∈.他制订了一个理财计划:当某月家庭收入不超过3000元时,则不进行投资;当某月家庭收入超过3000元但不超过10000元时,则将超过3000元部分中的50%用于投资;当某月家庭收入超过10000元时,则将超过3000元但不超过10000元部分中的50%和超过10000元部分中的60%用于投资.试建立张刚家每月用于投资的资金y (元)与月收入x (元)之间的函数关系式;(6分)(Ⅰ)设等差数列{}n a 中的11a =,且3514a a +=,求数列{}n a 的通项公式和前10项的和10S .(6分)数学部分五、选择题 (本大题共6小题,每小题6分,共36分)24.C 25.B 26.D 27.A 28.B 29.D 六、填空题 (本大题共3小题,每小题6分,共18分)30.30 31.11,,033⎛⎫⎛⎤-∞-- ⎪ ⎥⎝⎭⎝⎦ 32.[)1,+∞ 七、解答题 (本大题共3小题,每小题12分,共36分)33. 解(Ⅰ)sin(π)cos(2π)tan(π)cos(2π)αααα-⋅+⋅+⋅-sin cos tan cos αααα=⋅⋅⋅文化综合 第3页(共18页)2sin cos αα=⋅3cos cos αα=-因为1cos 5α=所以sin(π)cos(2π)tan(π)cos(2π)αααα-⋅+⋅+⋅-3cos cos αα=-3112455125⎛⎫=-= ⎪⎝⎭(Ⅱ)由于点()P y ()0y ≠在角α的终边上,得sin α==cos α==又sin y α=()0y ≠4y =,得25y =故cos α===34.解(Ⅰ)由于240230x y x y +-=⎧⎨--=⎩,得21x y =⎧⎨=⎩即1l 与2l 的交点坐标为(2,1) 而直线3l 的斜率为2-,又所求直线平行于3l得直线l 的斜率为2- 因此直线l 的点斜式方程为12(2)y x -=-- 故直线l 的一般式方程为250x y +-= (Ⅰ)将圆222410x y x y ++-+=的方程化为标准形式,得 222(1)(2)2x y ++-=故该圆的半径2r =,圆心为C (1,2)- (Ⅰ)由于圆心(1,2)C -到直线l 的距离为d==而d r>,因此直线l与圆C相离35.解(Ⅰ)依题意,当2000≤x≤3000时,0y=当300010000x<≤时(3000)50y x=-⨯%0.51500x=-当1000020000x<≤时(100003000)50y=-⨯%(10000)60x+-⨯%0.62500x=-综上所述,得y(元)与x(元)之间的函数关系式为0 , 20003000,0.51500, 300010000,0.62500, 1000020000.xy x xx x≤≤⎧⎪=-<≤⎨⎪-<≤⎩(Ⅰ)设等差数列{}na的公差为d,因为11a=,且3514a a+=所以(12)(14)14d d+++=,得2d=故数列{}n a的通项公式为1(1)1(1)221na a n d n n=+-=+-⨯=-前10项的和为1010910121002S⨯=⨯+⨯=文化综合第4页(共18页)文化综合 第5页(共18页)2015年湖北省技能高考文化综合数学部分(90分)一、选择题(本大题共6小题,每小题5分,共30分)在每小题给出的四个备选项中,只有一项是符合题目要求的,请将其选出。

未选,错选或多选均不得分。

19. 下列三个结论中正确结论的个数为( )①空集是由数0组成的集合;②绝对值小于3的整数组成的集合用列举法可表示为{-3,-2,-1,0,1,2,3};③若a 为实数,则022=--a a 是2=a 成立的充分条件A. 3B. 2C. 1D. 020. 若集合A={x ∈R|-2<x <1}与B={x ∈N|0≤x ≤3},则A ∩B=( )A.{0}B.[ 0,1)C.( -2,3]D.{0,1,2,3} 21. 下列函数在定义域内为奇函数的是( )A.21)(-=xx f B.1)(-=x x f C.2)(x x f = D.xx f 3)(=22. 下列三个结论中正确结论的个数为( )①23)(x x f =为幂函数;②算式)404cos(505tan 202sin-⋅⋅<0; ③直线02045=-+y x 的横截距等于4 。

A.0 B.1 C.2 D.3 23. 直线023=++y x 的倾斜角是( )A.6πB. 3π C. 32π D. 65π24. 在等比数列{n a }中,若1a =2,且q =2,则4a =( )A.8B.10C.16D.32五、填空题(本大题共4小题,每小题6分,共24分)把答案填在答题卡相应题号的横线上。

文化综合 第6页(共18页)25. 计算:65131213131235335253⋅⋅⋅⎪⎪⎭⎫ ⎝⎛⋅⋅---- =————————。

26. 函数()1log 13)(5.02-+--=x x x x x f 的定义域用区间表示为——————。

27. 与向量a =(3,4)垂直的单位向量的坐标为——————。

28. 若公差不为零的等差数列的第2、3、6项构成等比数列,则该等比数列的公比为——— 。

六、解答题 (本大题共3小题,每小题12分,共36分)应写出文字说明,证明过程或演算步骤。

29. 解答下列问题(I )设向量a =(2,m ), b =(2,1), c =(n ,-8),且)1520(23,=-+c b a ,求实数m ,n 的值 ; (5分)(II )已知向量a =(4,5),b =(-3,1),c =(5,3),求向量c a -与b 的夹角θ 。

(7分) 30. 解答下列问题(I )求 405tan 330cos 240sin 23⋅-的值;(6分) (II )已知53)2sin(=-απ,且角⎪⎭⎫⎝⎛∈ππα223,,求)2cos()(tan )3sin(2απαππα-+++-的值。

(6分) 31. 解答下列问题(I )求与直线1l :0524=+-y x 平行,且纵截距为-2的直线2l 的一般式方程;(5分) (II )已知点A (2,5)与B (a ,b )(a ,b 为实数),且线段AB 的中点为C (1,1),求点B 的坐标及以线段AB 为直径的圆的标准方程。

(7分)数学部分四、选择题(本大题共6小题,每小题5分,共30分) 19. D 20. A 21. B 22. B 23. D 24. C五、真空题(本大题共4小题,每小题6分,共24分) 25.101 26. (1,3] 27. ⎪⎭⎫ ⎝⎛53-54,或⎪⎭⎫⎝⎛-5354, 28. 3六、解答题(本大题共3小题,每小题12分,共36分)文化综合 第7页(共18页)29. 解(I )由于a =(2,m ),b =(2,-1),c =(n ,-8)因此3a +2b -c =3×(2,m )+2×(2,-1)-(n ,-8) = (6,3m )+(4,-2)-(n ,-8) = (6+4-n ,3m -2+8) =(10-n ,3m +6)又3a +2b -c =(20,15) 得⎩⎨⎧=+=-15632010m n得m =3,n =-10(II)由于a =(4,5),b =(-3,1),c =(5,3)因此 a -c =(4,5)-(5,3)=(-1,2)得c a -=5,b =10b c a ⋅-)(=(-1)×(-3)+2×1=5得22211055cos ==⋅=θ故4πθ=或4530. 解(I)405tan 330cos 240sin 23⋅-=)45360tan()30360cos()60180(sin 23+⋅--+ =45tan 30cos 60sin 23⋅--=1232323⨯-⎪⎪⎭⎫ ⎝⎛- =435-(II) 由于53)2sin(=-απ 得53sin -=α 又)223(ππα,∈ 得54sin 1cos 2=-=αα 因此)2cos()(tan )3sin(2απαππα-+++-=αααcos tan sin 2+=αααcos sin cos 2+文化综合 第8页(共18页)=5453542+-⎪⎭⎫ ⎝⎛=154-31. 解(I )直线1l :0524=+-y x 的斜率为21=k因为直线2l 与直线1l 平行,得直线2l 的斜率212==k k 又直线2l 的纵截距为-2所以直线2l 的斜截式方程为22-=x y 故直线2l 的一般方程为022=--y x(II )依题意知⎪⎩⎪⎨⎧=+-=+125122b a得4-=a ,3-=b即点B 的坐标是(-4,-3)又所求的圆以线段AB 为直径 得所求圆的圆心坐标为C (-1,1)半径为5)15()12(22=-++=r故所求圆的标准方程为25)1()1(22=-++y x文化综合 第9页(共18页)2016年湖北省技能高考文化综合数学部分(90分)四、选择题(本大题共6小题,每小题5分,共30分)在每小题给出的四个备选项中,只有一项是符合题目要求的,请将其选出。

相关文档
最新文档