湖北中职技能高考数学知识总汇
职高高中数学知识点全总结

职高高中数学知识点全总结一、数学基础1. 数的基本概念- 自然数、整数、有理数和无理数的定义与性质- 实数的分类与运算法则- 复数的基本概念及四则运算2. 代数表达式- 单项式与多项式的构成及运算- 因式分解的基本方法- 分式与分式方程的解法3. 初等函数- 线性函数、二次函数的图像与性质- 指数函数、对数函数和幂函数的基本概念与运算- 三角函数的定义、基本关系式及图像4. 初等代数方程- 一元一次方程、一元二次方程的解法- 不等式的基本性质与解集表示- 系统方程组的解法,包括代入法、消元法二、几何知识1. 平面几何- 点、线、面的基本性质- 三角形、四边形的基本性质与计算- 圆的基本性质与相关公式2. 空间几何- 空间直线与平面的方程及其关系- 柱、锥、台、球的体积与表面积计算- 空间向量的概念及其在几何中的应用3. 解析几何- 平面直角坐标系与曲线方程- 空间直角坐标系与空间图形- 圆锥曲线(椭圆、双曲线、抛物线)的标准方程三、概率与统计1. 概率基础- 随机事件的概率定义与计算- 条件概率与独立事件的概念- 随机变量及其分布类型2. 统计初步- 数据的收集、整理与描述- 样本及其分布特征(均值、方差、标准差)- 总体参数的估计与假设检验四、数学应用1. 生活中的数学应用- 利率、复利与折现- 比例、百分数与利率的实际应用- 统计图表的解读与制作2. 职业领域的数学应用- 工程图纸的阅读与计算- 生产流程中的优化问题- 经济活动中的成本与收益分析五、数学思维与方法1. 逻辑思维与证明- 演绎推理与归纳推理- 数学证明的基本方法- 反证法与数学归纳法2. 解题策略- 问题转化与化归- 分类讨论与数形结合- 函数思想与方程思想3. 数学软件应用- 常用数学软件的基本操作- 数据处理与图形绘制- 数值计算与符号计算总结职高高中数学课程旨在培养学生的数学基础知识和应用能力,同时注重数学思维的培养。
通过对上述知识点的系统学习,学生能够掌握数学的基本理论和方法,为未来的职业生涯和终身学习打下坚实的基础。
湖北中职技能高考数学知识总汇(下)备课讲稿

湖北技能高考数学基础知识总汇(下)预备知识:1.完全平方和(差)公式: (a +b)2=a 2+2ab +b 2 (a -b)2=a 2-2ab +b 22.平方差公式: a 2-b 2=(a +b)(a -b)3.立方和(差)公式: a 3+b 3=(a +b)(a 2-ab +b 2) a 3±b 3=(a -b)(a 2±ab +b 2)4.韦达定理: ; 求根公式: 。
第六章 数列一.数列:(1)前n 项和:; (2)前n 项和与通项的关系:;(3);(4)常数列的等差数列,非零常数列是等比数列。
(5)观察法求通项公式:根据前几项的规律分析项和项数n 的关系。
如果是摇摆数列,奇负偶正乘以;奇正偶负乘以。
二.等差数列 :1.定义:d a a n n =-+1。
2.通项公式:d n a a n )1(1-+= (关于n 的一次函数),3.前n 项和:(1).2)(1n n a a n S += (2). d n n na S n 2)1(1-+=(即S n = An 2+Bn ) 4.等差中项: 2ba A +=或b a A +=2 5.等差数列的主要性质:(1)等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+。
特别地,若则。
也就是: =+=+=+--23121n n n a a a a a a ,如图所示:nn a a n a a n n a a a a a a ++---112,,,,,,12321 (2)三.等比数列: 1.定义:)0(1≠=+q q a a nn 。
2.通项公式:11-=n n q a a (其中:首项是1a ,公比是q )。
3.前n 项和]:⎪⎩⎪⎨⎧≠--=--==)1(,1)1(1)1(,111q q q a qq a a q na S nn n (推导方法:乘公比,错位相减)。
说明:①)1(1)1(1≠--=q q q a S n n ; ②)1(11≠--=q qq a a S n n ; ③当1=q 时为常数列,1na S n =。
湖北中职技能高考 数学知识总汇(上)培训资料

解析式
②奇偶性法:f(x)是左路函数,且在(0,+∞)上解析式是 f(x)=x-2,则在(-
∞,0)上解析式是 f(x)=x+2
7、函数的单调性:
(1)定义:区间 D 上任意两个值 x1, x2 ,若 x1 x2 时有 f (x1) f (x2 ) ,称 f (x) 为 D 上增函数;
若 x1 x2 时有 f (x1) f (x2 ) ,称 f (x) 为 D 上减函数。(一致为增,不同为减) (2)区间 D 叫函数 f (x) 的单调区间,单调区间包含于定义域;
4.韦达定理:
; 求根公式:
。
一. 集合
第一章 集合与简易逻辑
1、集合的有关概念和运算
(1)集合的特性:确定性、互异性和无序性;
(2)元素 a 和集合 A 之间的关系:a∈A,或 aA;
(3)常用数集及其符号:自然数集 N、整数集 Z、正整数集 、有理数集 Q、实数
集 R。
(4)集合的表示方法:列举法、描述法、图示法。
仅供学习与交流,如有侵权请联系网站删除 谢谢5
精品资料
④偶次根式:被开方式 0 ,例: y 25 x2 ;⑤对数:真数 0 ,例:
y
log
a
(1
1 x
)
⑥正切函数:
;⑦指数函数、对数函数:底数(a>0 且 a≠1);
⑧其他实际要求:例如三角形的内角 0<α< 、人的个数、工件个数、工作天数等 x∈
(4)作差法比较两数(或两式)的大小或证明不等式成立:作差→变形(通分、配 方、分解因式等→判断符号。也可以求比来比较大小。 二.均值定理:
仅供学习与交流,如有侵权请联系网站删除 谢谢3
精品资料
职高数学各章节知识点汇总

职高数学各章节知识点汇总一. 第一章概率统计基础1. 概率的概念及其计算2. 随机事件与样本空间3. 古典概型、几何概型及其应用4. 条件概率、独立性及其应用5. 贝叶斯公式的应用6. 随机变量及其概率分布7. 数学期望、方差及其应用8. 离散型和连续型随机变量及其性质9. 正态分布及其应用二. 第二章数据的搜集1. 调查与抽样2. 问卷设计及其质量评估3. 采样方法及其应用4. 质量控制及其应用5. 数据质量评估三. 第三章数据的表示和分析1. 描述统计学基本概念及其应用2. 基本统计量及其计算方法3. 频率分布表与图的绘制4. 偏态与峰态的概念及其计算5. 相关系数及其应用6. 线性回归分析及其应用7. 方差分析及其应用四. 第四章指数与对数函数1. 指数函数及其性质2. 对数函数及其性质3. 指数与对数的运算法则4. 指数函数、对数函数的图像与性质5. 带底数的指数函数、对数函数及其运算法则6. 指数函数、对数函数的应用五. 第五章三角函数1. 角度与弧度的转换2. 常用角度的三角函数及其图像3. 三角函数的周期性及其应用4. 三角函数的基本公式及其应用5. 立体角与球面三角学的基本概念六. 第六章数列和数学归纳法1. 数列的概念及其性质2. 等差数列与等比数列的求和公式3. 递推与递归数列及其应用4. 数学归纳法的基本思想及其应用七. 第七章函数的基本概念1. 函数的定义及其性质2. 常用函数的图像与性质3. 函数的分类及其应用4. 复合函数的定义与应用5. 反函数的定义与应用八. 第八章一次函数与二次函数1. 一次函数的定义、图像、性质及其应用2. 二次函数的定义、图像、性质及其应用3. 一次函数、二次函数的解析式及其应用4. 一次函数、二次函数的应用九. 第九章不等式与方程1. 不等式的基本概念及其性质2. 一次不等式的求解方法及其应用3. 二次不等式的求解方法及其应用4. 绝对值不等式的求解方法及其应用5. 方程的基本概念及其性质6. 一次方程的解法及其应用7. 二次方程的解法及其应用十. 第十章平面向量1. 平面向量的基本概念及其表示方法2. 平面向量的数量积、向量积及其性质3. 向量共线、垂直的判定及其应用4. 平面向量的应用,如平移、旋转等十一. 第十一章平面几何图形的性质1. 基本特征及其图形的分类2. 三角形的基本性质3. 四边形、多边形的基本性质4. 圆的基本性质5. 圆锥、圆柱、球体的基本概念及其应用。
职教高考数学知识点归纳总结大全

职教高考数学知识点归纳总结大全一、数列与数列的通项公式1. 等差数列- 定义:等差数列是指数列中相邻两项之差保持不变的数列。
- 通项公式:$a_n = a_1 + (n - 1)d$2. 等比数列- 定义:等比数列是指数列中相邻两项之比保持不变的数列。
- 通项公式:$a_n = a_1 \cdot q^{(n-1)}$3. 递推数列- 定义:递推数列是指数列中的每一项都可以通过前面的一项或多项计算得到的数列。
- 通项公式:递推数列常常使用递推关系式表示。
二、函数及其性质1. 一次函数- 定义:一次函数是指函数表达式中最高次数为1的函数。
- 表达式:$y = kx + b$2. 二次函数- 定义:二次函数是指函数表达式中最高次数为2的函数。
- 表达式:$y = ax^2 + bx + c$- 平移变换:二次函数的图像可以通过平移变换进行位置调整。
3. 指数函数- 定义:指数函数是指函数表达式中自变量为指数形式的函数。
- 表达式:$y = a^x$4. 对数函数- 定义:对数函数是指函数表达式中自变量为对数形式的函数。
- 表达式:$y = \log_a x$三、三角函数1. 正弦函数- 定义:正弦函数是指函数值与对应角的正弦值相等的函数。
- 表达式:$y = \sin x$2. 余弦函数- 定义:余弦函数是指函数值与对应角的余弦值相等的函数。
- 表达式:$y = \cos x$3. 正切函数- 定义:正切函数是指函数值与对应角的正切值相等的函数。
- 表达式:$y = \tan x$四、空间几何与立体几何1. 立体的表面积和体积计算- 立方体:表面积 $S = 6a^2$,体积 $V = a^3$- 圆柱体:侧面积 $S = 2 \pi rh$,底面积 $B = \pi r^2$,总面积 $A = 2\pi r(r+h)$,体积 $V = \pi r^2h$- 圆锥体:侧面积 $S = \pi rl$,底面积 $B = \pi r^2$,总面积 $A = \pi r^2 + \pi rl$,体积 $V = \frac{1}{3}\pi r^2h$- 球体:表面积 $S = 4 \pi r^2$,体积 $V = \frac{4}{3}\pi r^3$2. 空间几何的定理- 毕达哥拉斯定理:直角三角形两直角边的平方和等于斜边的平方。
湖北中职技能高考 数学知识总汇(上)

湖北技能高考数学基础知识总汇(上)预备知识:1、完全平方与(差)公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b22、平方差公式: a2-b2=(a+b)(a-b)3、立方与(差)公式: a3+b3=(a+b)(a2-ab+b2) a3±b3=(a-b)(a2±ab+b2)4、韦达定理:;求根公式:。
第一章集合与简易逻辑一.集合1、集合得有关概念与运算(1)集合得特性:确定性、互异性与无序性;(2)元素a与集合A之间得关系:a∈A,或aA;(3)常用数集及其符号:自然数集N、整数集Z、正整数集、有理数集Q、实数集R。
(4)集合得表示方法:列举法、描述法、图示法。
2、子集定义:A中得任何元素都属于B,则A叫B得子集;记作:AB,注意:AB时,A有以下可能:A=φ、A=B、A得元素比B少且A得元素都属于B。
3、真子集定义:A就是B得子集 ,且B中至少有一个元素不属于A;记作:A⫋B。
4、补集定义: 。
5、交集与并集:交集:;并集:6、集合中元素得个数得计算: 若集合中有个元素,则集合得所有不同得子集个数为)个,所有真子集得个数就是个,所有非空真子集得个数就是个。
二.简易逻辑:充分条件与必要条件:若,则p叫q得充分条件;若,则p叫q得必要条件;若,则p叫q得充要条件;第二章不等式一、不等式得基本性质:1、特殊值法就是判断不等式命题就是否成立得一种方法,此法尤其适用于不成立得命题。
2、中间值比较法:先把要比较得代数式与“0”比,与“1”比,然后再比较它们得大小。
3、实数大小得基本性质:4、不等式得性质:(1)传递性:(2)加法性质:(3)乘法性质:(4)作差法比较两数(或两式)得大小或证明不等式成立:作差→变形(通分、配方、分解因式等→判断符号。
也可以求比来比较大小。
二.均值定理:1、内容:两个数得算术平均数不小于它们得几何平均数。
即:若,则(当且仅当时取等号)2、基本变形:①(当且仅当时取等号);②若,则 。
中职高中数学知识点全总结有例题

中职高中数学知识点全总结有例题一、代数基础1. 有理数- 定义:整数和分数统称为有理数。
- 运算:加法、减法、乘法、除法,以及它们的混合运算。
2. 整式与分式- 整式:由数和字母的有限次加、减、乘、除、乘方运算组成的代数式。
- 分式:分子和分母都是整式的有理式,分子不为零。
3. 一元一次方程与不等式- 方程:含有未知数的等式。
- 解方程:求出使方程成立的未知数的值。
- 不等式:表示不等关系的式子。
4. 二元一次方程组- 定义:含有两个未知数的一次方程组。
- 解法:代入法、消元法。
5. 一元二次方程- 定义:形如 \(ax^2 + bx + c = 0\) 的方程,其中 \(a \neq 0\)。
- 解法:因式分解、配方法、公式法。
例题:解方程 \(x^2 - 5x + 6 = 0\)。
解:因式分解得 \((x - 2)(x - 3) = 0\),所以 \(x = 2\) 或 \(x= 3\)。
二、平面几何1. 点、线、面- 点:没有大小,只有位置。
- 线:由无数个点组成,有长度,没有宽度。
- 面:由无数条线组成,有长度和宽度。
2. 三角形- 性质:三角形内角和为180度。
- 类型:等边三角形、等腰三角形、直角三角形。
3. 四边形- 性质:四边形内角和为360度。
- 类型:矩形、菱形、正方形、平行四边形。
4. 圆- 定义:平面上所有与给定点(圆心)距离相等的点的集合。
- 性质:圆的周长(C)与直径(D)的关系为 \(C = \pi D\)。
5. 相似与全等- 全等:两个图形大小和形状完全相同。
- 相似:两个图形大小不一定相同,但形状相同,对应角相等,对应边成比例。
例题:证明两个三角形相似。
解:若两个三角形的三组对应角分别相等,则这两个三角形相似。
三、立体几何1. 立体图形- 定义:由平面围成的几何体。
- 类型:棱柱、棱锥、圆柱、圆锥、球等。
2. 体积与表面积- 体积:立体图形所占空间的大小。
- 表面积:立体图形所有面的总面积。
职高数学必考知识点总结

职高数学必考知识点总结一、集合与函数1. 集合的概念集合是由一些确定的对象所构成的整体,可以用大括号{}表示。
例如,集合A={1,2,3,4,5}表示由1,2,3,4,5这些对象组成的集合A。
2. 集合的运算集合的运算包括并集、交集和差集。
- 并集:集合A和集合B的并集,表示为A∪B,是包含了所有属于A或B中的元素的新集合。
- 交集:集合A和集合B的交集,表示为A∩B,是包含了同时属于A和B中的元素的新集合。
- 差集:集合A和集合B的差集,表示为A-B,是包含了属于A但不属于B的元素的新集合。
3. 函数的概念函数是一种对应关系,它把一个集合的每个元素映射到另一个集合的唯一元素上。
常用的表示方法有图像法、集合法和公式法。
4. 函数的图像函数的图像是指函数的输入和输出之间的对应关系所确定的点所构成的集合。
5. 函数的性质函数的性质有定义域、值域、单调性、奇偶性等。
其中,定义域是函数中所有可能的输入值的集合,值域是函数中所有可能的输出值的集合。
单调性是指函数在定义域内的增减关系。
二、代数1. 一元一次方程一元一次方程是指只含有一个未知数的一次方程,通常表示为ax+b=0。
解方程的步骤一般是移项、合并同类项、消元和求解。
2. 一元一次不等式一元一次不等式是指只含有一个未知数的一次不等式,通常表示为ax+b>0或ax+b<0。
解不等式的步骤一般是移项、合并同类项、消元和求解。
3. 二元一次方程二元一次方程是指含有两个未知数的一次方程,通常表示为ax+by=c。
解方程的步骤一般是消元、求解。
4. 幂的运算幂的运算包括幂的乘法、幂的除法、幂的加法和幂的减法。
5. 分式的运算分式的运算包括分式的乘法、分式的除法、分式的加法和分式的减法。
6. 因式分解因式分解是把一个多项式表示为多个一次式的乘积的过程。
一般采用提公因式法、公式法和分组法进行因式分解。
三、几何1. 直线和角直线是由一系列不同点组成的集合,角是由两条射线共同端点组成的图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.向量的线性运算(加法、减法、数乘运算):l=λa+λb 称 l 可以用 a、b 线性表示。 4.平面向量的坐标运算:
k 2 ,则有
;一般式方程时, l 1 l 2 A1 A 2 B1 B 2 0 (优点:对斜
率是否存在不讨论)
(4)交点:求两直线交点,即解方程组
A1 A2
x x
B1y C B2yC
1 0 2 0
4.点到直线的距离:设点 P(x0 ,y0) ,直线 l : Ax By C 0, P 到 l 的距离为 d
a2 an1
(2) 三.等比数列:
1.定义: an1 q(q 0) 。 an
2.通项公式: an a1q n1 (其中:首项是 a1 ,公比是 q )。
3.前
n 项和]: Sn
a1
anq
1 q
na1 ,( q 1) a1 (1 qn )
1 q
,
(q
(推导方法:乘公比,错位相减)。
1)
; 求根公式:
。
一.数列:(1)前 n 项和:
第六章 数列
; (2)前 n 项和与通项的关系:
;(3)
;(4)常数列的等差数列,
非零常数列是等比数列。(5)观察法求通项公式:根据前几项的规律分析项和项数 n 的关
系。如果是摇摆数列,奇负偶正乘以
;奇正偶负乘以
。
二.等差数列 :
1.定义: an1 an d 。2.通项公式: an a1 (n 1)d (关于 n 的一次函数),
(1)坐标运算:设 a x1, y1 , b x2 , y2 ,则 a b x1 x2 , y1 y2
设 A、B 两点的坐标分别为(x1,y1),(x2,y2),则 AB x2 x1, y2 y1 。
(2)实数与向量的积的运算律: 设 a x, y,则λ a x, y x, y。
②
代数法:方程组
(
x
a)
2
(
y
b)
2
r
2
用代入法,得关于 x (或 y )的一元二次方程,其判别
Ax Bx C 0
式为 ,则: 0 l 与 C 相切; >0 l 与 C 相交; <0 l 与 C 相离. 注意:几何法优于代数法
4.求圆的切线方法
①若已知切点(x0,y0)在圆上,则切线只有一条。利用相切条件求 k 值即可。 ②若已知切线过圆外一点(x0,y0),则设切线方程为 y-y0=k(x-x0),再利用相切条件求 k,这时必有两条切线,不要漏掉平行于 y 轴的切线,当解出的 k 只有一根时,一定要解 出 k 不存在的直线(x=x0)。此时圆心和切点的连线垂直于切线。 5.圆与圆的位置关系:已知两圆圆心分别为 O1、O2,半径分别为 r1、r2,则
3.直线和圆的位置关系: 设圆圆 C : (x a) 2 ( y b) 2 r 2 (r>0) ; 直线 l : Ax By C 0(A2 B 2 0) ;
Aa Bb C
圆心 C(a, b) 到直线 l 的何法: d r 时, l 与 C 相切; d<r 时, l 与 C 相交; d>r 时, l 与 C 相离.
(4)若 a=b,b=c ,则 a=c 一定成立。若 a∥b,b∥c ,则 a∥c 不一定成立(b=0)。向量问 题一定要关注特殊的 0,直线问题一定要关注特殊的 K 不存在情况。 (5)两非零向量 a、b 不共线,欲 ka+b 与 a+kb 共线,用 a、b 的系数为 0,来确定 k 的值。
第八章 直线和圆的方程
(3)平面向量的数量积(内积):
①定义: a b
a
b
cos
a
0, b
0,00
180 0
,
0 a 0 .
①平面向量的数量积的几何意义:向量 a 的长度| a |与 b 在 a 的方向上的投影| b | cos 的乘
积;
③、坐标运算:设 a x1, y1 , b x2 , y2 ,则 a b x1x2 y1 y2 ;
n(n 1) 错位相减法:“差比之积”的数列:如 an=(2n-1)2n 。
五.灵活运用一些解题技巧:①1-q2n=(1+qn)• (1-qn) 用于等比数列前 n 项和公式化简;②等 比数列中 a17+a18+a19+a20=(a1+a2+a3+a4)q16 =S20-S16; ③等差数列中 a9+a10=a3+a4+12d 。 ④a2+a4+……+an-2+an=a1+a3+……+an-3+an-1+(n/2)d。⑤等差数列常用求差、等比数列常用求比解决问 题。
Ax0 By 0 C A2 B2
.
5.两条平行线间的距离公式:设两条平行直线 l1: Ax By C1 0,l 2: Ax By C 2 0(C1C 2) ,它
们之间的距离为 d ,则有 d C1C 2 .
A2 B2
6.关于某点(或某直线)对称:利用直线垂直、平行解决。
7.直线 l2 与已知直线 l1:Ax+By+C1=0 平行,则可设 l2 为 Ax+By+C2=0;若 l2 与 l1 垂直则可设 l2 为-Bx+Ay+C2=0 再求解。
说明:① Sn
a1(1 q n ) (q 1 q
1)
;
② Sn
a1 anq (q 1) ; 1 q
③当 q 1 时为常数列,
Sn na1 。
4.等比中项: G b ,即 G 2 ab (或 G ab ,等比中项有两个)
aG 5.等比数列的主要性质:
(1)等比数列an ,若 n m u v ,则 an am au av
湖北技能高考数学基础知识总汇(下)
预备知识:
1.完全平方和(差)公式: (a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
2.平方差公式:
a2-b2=(a+b)(a-b)
3.立方和(差)公式:
a3+b3=(a+b)(a2-ab+b2)
a3±b3=(a-b)(a2±ab+b2)
4.韦达定理:
向量的减法
a
b
b a
ab 起点相同,指向被减向量
(2)实数与向量的积:①定义:实数 与向量 a 的积是一个向量,记作: a 。 ②它的长度:| a || | | a | 。
③:它的方向:当 0 , a 与 a 的方向相同;当 0, a 与 a 的方向相反;当 0 时, a =0 。
向量 a 的模| a |:| a |2 a a x2 y 2 ;模| a | x2 y 2
④、设
是向量 a
x1 ,
y1
,
b
x2 ,
y2 的夹角,则 cos
5、重要结论: (1)两个向量平行的充要条件:
x1x2 y1 y2
。
x12 y12 x2 2 y2 2
设 a x1, y1 , b x2 , y2 ,则 a/ / b a b x1 y2 x2 y1 0 ( R)
第七章 平面向量
1.向量的有关概念:向量的定义、向量的模、零向量、单位向量、负向量、共线向量、相等 向量、相反向量。 2.向量的运算:(1)、向量的加减法:a+0=0+a=a; a+b=b+a; (a+b)+c=a+(b+c)。
三角形法 则
向量的加
法
平行四边形法
则
b
a
b
a
ab b
a 首尾相连
b ab a
a1an 也就是: a1 an a2 an1 a3 an2 。如图所示: a1, a2, a3,, an2, an1, an
a2 an 1
特别地:若 (2)等比数列若 an>0 或 an<0,则 d>0;若 d<0,则 an 正负交替出现,但奇数项同号、偶数项同 号,有时用于确定结果的取舍。 四.求数列的前 n 项和的常用方法:分析通项,寻求解法 1.公式法:等差、等比数列 ;2.分部求和法:如 an=2n+3n;3.裂项相消法:如 an= 1 ;4.
3.前
n
项和:(1). S n
n(a1 an ) 2
(2).
Sn
na1
n(n 1) 2
d
(即
Sn
= An2+Bn)
4.等差中项: A a b 或 2A a b
2
5.等差数列的主要性质:
(1)等差数列an ,若 n m p q ,则 an am a p aq 。特别地,若
则
。
a1an 也就是: a1 an a2 an1 a3 an2 ,如图所示: a1, a2 , a3,, an2, an1, an
一、直线
1.直线的倾斜角和斜率
(1)直线的倾斜角α∈[0,π)、两条直线的夹角α∈[0,π/2]、两个向量的夹角α∈
[0,2π]。
(2)直线的斜率,即 k tan ( 900 )
(3)斜率公式:经过两点 P1(x1,y1)、P2(x2,y2)的直线的斜率为 k
y x
2 2
y1 x1
(x
2
x
1 0)
显然,两个向量平行,其横、纵坐标成比例,如 a=(1,2)、b=(3,6)、c=(-5,-10)两两平行。