苏科版数学八年级上册5.2.1平面直角坐标系课件

合集下载

苏科版八年级上册5.2《平面直角坐标系》(第一课时)教案(省级一等奖)

苏科版八年级上册5.2《平面直角坐标系》(第一课时)教案(省级一等奖)

义务教育课程标准实验教科书苏科版八年级上册§5.2 平面直角坐标系(1)一、教学目标1.理解平面直角坐标系的有关概念,会正确画出平面直角坐标系.2.会在给定的平面直角坐标系中,根据点的坐标描出点的位置,会由点的位置写出点的坐标.3.通过感受数学知识的发生和发展,让学生进一步领会“数形结合”的思想,体验将实际问题数学化的过程与方法.二、教学重点、难点【教学重点】1.理解平面直角坐标系的有关概念,会正确画出平面直角坐标系.2.会在给定的平面直角坐标系中,根据点的坐标描出点的位置,会由点的位置写出点的坐标.【教学难点】理解建立平面直角坐标系后,平面内的点与有序实数对的一一对应关系.三、教学方法与教学手段启发讲授,合作探究,学习单,多媒体辅助教学.四、教学过程(一)创设情境同学们,今天老师第一次给大家上课,对大家并不熟悉,如果课上我想有针对性的请某位同学回答问题,你能帮老师设计一个简单、可行的办法吗?【设计意图】一改惯用地复习旧知识、引入新课的手法,从学生熟悉的生活实际出发,设计一个引人入胜的生活情境,让学生获得成功的经验,消除刚上课的不适应感,并将小学曾经学过的数对加深认识,提出有序实数对的概念,通过一正一反的过程,使学生感受教室里存在着一个对应的关系,为接下来建立平面直角坐标系后,平面内的点与有序实数对一一对应作铺垫.(二)新知探究活动一你能描述点P所在的位置吗?【设计意图】将具体问题抽象成数学问题,生活的经验让学生能很快的回答,通过教师一步一步的追问,让学生体会到建立参照物(平面直角坐标系)描述点P的位置的必要性,初步形成平面直角坐标系的雏形,通过“提出问题——构建参照物——说一说对参照物的认识”的过程,让学生亲身经历概念形成的全过程,感受数学概念形成的自然性与合理性,加深学生对平面直角坐标系概念的理解.归纳一平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系.水平方向的数轴称为x轴或横轴,向右为正方向.铅直方向的数轴称为y轴或纵轴,向上为正方向.两轴的交点O是原点.请在学习单上自己构建一个平面直角坐标系.【设计意图】让学生自己先构建一个平面直角坐标系,教师通过巡视,发现学生画图时的不规范之处,再进行纠正,加深学生的印象.活动二现在给你一点A,你能精确的描述它所在的位置吗?再给你一点B,请你精确的描述它所在的位置.若我将平面直角坐标系擦掉,这四个点还能像之前一样精确的描述它们所在的位置吗?想一想,平面直角坐标系到底起到了什么作用?【设计意图】第一个点的作用既是学生巩固之前的描述方法,又是用有序实数对表示点的开始,第二个点的作用是让学生巩固用有序实数对来表示点.教师配合幽默的语言,让学生迅速感知到建立平面直角坐标系后,平面内的点可以用有序实数对来表示.再给你一点C,你能写出与它相对应的有序实数对吗?对应的有序实数对吗?【设计意图】此处的问法和之前不同,从“你能精确的描述它的位置吗?”转换成“写出与它相对应的有序实数对”,上升到规范的语言,进一步让学生掌握在平面直角坐标系中由点的位置写出与它相对应的有序实数对的方法.反过来,又会怎么样呢?带着疑问一起研究.若给你一对有序实数(3,2),你能在平面直角坐标系中,找到一个与它对应的点D吗?再给你一对有序实数(-2,4),你能在平面直角坐标系中,找到一个与它对应的点E吗?通过这个活动,你发现了什么问题?在平面直角坐标系中,用有序实数对(a,b)描述一个点的位置,如果将这点记为点P,那么它的位置如何确定?【设计意图】由于学生首次接触在平面直角坐标系中根据有序实数对画点,故需进行适当的铺垫,让学生经历由特殊到一般、具体到抽象的过程,使学生初步感知到建立平面直角坐标系后,一对有序实数可以确定一个点的位置.活动三回顾整个过程,一共总结出了两句话,你能合起来说一遍吗?归纳二在平面直角坐标系中,一对有序实数可以确定一个点的位置;反过来,任意一点的位置都可以用一对有序实数来表示.(建立平面直角坐标系后,平面内的点与有序实数对一一对应)这样的有序实数对叫做点的坐标.点的坐标通常与表示该点的大写字母写在一起.【设计意图】锻炼学生用简洁、准确的语言表达自己观点的能力.让学生进一步体会建立平面直角坐标系后,平面内的点与有序实数对一一对应的内涵.(三)例题讲解在平面直角坐标系中.(2)写出点M、N的坐标.【设计意图】通过一个简单的实例,让学生熟练掌握在给定平面直角坐标系中,根据点的坐标描出点的位置,由点的位置写出点的坐标的方法,进一步体会建立平面直角坐标系后,平面内的点与有序实数对一一对应的内涵.(四)知识运用再认识将活动和例题中的点放在一起来研究,你可以给这些点分分类吗?归纳三两条坐标轴将平面分成的4个区域称为象限,按逆时针顺序分别记为第一象限、第二象限、第三象限和第四象限.由于坐标轴是象限与象限之间的分界,因此坐标轴不属于任何象限.现在,如果我报几个点的坐标,你能迅速判断出它所在的位置吗?【设计意图】通过这个环节让学生从另一个视角再认识前面的问题,初步培养学生规范化的表达,让学生感受不同象限内的点的坐标的不同之处,之后通过几个快速回答,“逼”出学生模糊的认识:平面直角坐标系各象限内的点的坐标的符号特点及坐标轴上点的坐标的特点.练习在平面直角坐标系中画出下列各点,并指出它们所在象限或坐标轴.A(2,4),B(-3,3),C(-2.5,-2),D(0,-3).【设计意图】进一步巩固平面直角坐标系的相关概念.(五)小结思考通过今天的学习和研究,你对平面直角坐标系有了哪些认识?今天着重研究了平面内的点,若让你继续研究,你还有什么想研究的吗?【设计意图】建立平面直角坐标系的初步目的是将平面内的“形”与“数”结合起来,但最终目的是用它的思想方法解决更多的问题,达到经验的迁移、能力的提升,从而学以致用、学有所用.故小结思考处,也是拓展延伸处:“你还有想研究的问题吗?”让学生主动地提出问题、发现问题、分析问题、解决问题.此处不仅仅是单纯的知识罗列,应该是画龙点睛之笔,承前启后,适当外延,是对整堂课学习的一个提升.(六)作业布置1.书129页2、3、4;2.网络阅读笛卡尔直角坐标系.【设计意图】进一步巩固平面直角坐标系的相关概念,网络阅读笛卡尔直角坐标系,与时俱进,毕竟这是一个互联网+的时代.五、教案设计说明教学内容选自苏科版教材八年级上册第五章第一节“平面直角坐标系”. 平面直角坐标系是在数轴的基础上发展起来的,它使点与数的关系从一维过渡到二维,使有序实数对与平面内的点建立了一一对应的关系,架起了“数”与“形”之间联系的桥梁.本节课的授课内容属于规则下的概念课教学,与其它概念课不同的是本节课的概念可以看作是一个概念群,多而细,所以要逐步让学生理解相应概念,不要操之过急.本节课从学生熟悉的问题入手,让学生一开始“摸得到,看得着”,接着通过描述点P的位置体会建立平面直角坐标系的必要性,从而对其进行深入研究,通过从特殊到一般、具体到抽象的过程,体会建立平面直角坐标系后平面内的点与有序实数对一一对应的关系,最终达到经验的迁移,能力的提升.教学设计突出以下特点:1.以活动为主线本节课的教学中,以学生作为活动的主体,创设恰当的问题情境、环环相扣的活动,引导学生积极思考,大胆探索,最大限度地调动了学生积极参与教学的活动.纵观本节课,共有1个情境,3个活动,情境从学生熟悉的生活情境入手,贯穿一节课,活动一从数学背景切入,凸显出建立平面直角坐标系的必要性,与最后的小结部分首尾呼应,活动二环环相扣,通过从特殊到一般、具体到抽象的过程,让学生归纳出在给定的平面直角坐标系中,根据点的坐标描出点的位置,由点的位置写出点的坐标的方法,初步感受建立平面直角坐标系后,平面内的点与有序实数对一一对应的关系,活动三是对难点的再认识,进一步感受建立平面直角坐标系后,平面内的点与有序实数对一一对应的关系,最终与例题结合再次研究每个象限内的点的坐标的特点.3个活动可谓用“足”、用“透”,以活动开始,以活动结束,贯穿整堂课.2.以方法为支撑课堂上,只有让学生真正“动”起来、“活”起来,学生的学习热情才会高涨,创造力才会加强.所以本节课在教学时,尽可能让学生多说、多做、多悟,让学生充分体会概念的形成过程,力求达到“概念的得出是水到渠成的、自然的,而不是强加于人的”教学境界.3.以思想为灵魂本节课最主要的数学思想就是数形结合的思想,而在整节课的教学时,教师很少提及抽象的“数”、“形”二字,取而代之的是用通俗的语言与学生交流,慢慢渗透“数”与“形”的关系,尊重了学生的认知规律.4.以能力为归宿荷兰数学家弗莱登塔尔提出:学习数学唯一正确的方法是实行“再创造”,也就是由学生本人把要学的东西自己发现或创造出来.本节课多次给予学生发现、创造的机会,如一开始描述点P的位置,让学生体会构建参照物描述点P位置的必要性,创造出平面直角坐标系的雏形,在最后小结环节,实际也是拓展延伸环节,让学生尽情的说,提出一个又一个精彩的问题,如“空间内的点如何描述”,充分给予学生思考、比较、类比、抽象、概括等一系列能力提升的机会.。

苏科版数学八年级上册教学设计《5-2平面直角坐标系(3)》

苏科版数学八年级上册教学设计《5-2平面直角坐标系(3)》

苏科版数学八年级上册教学设计《5-2平面直角坐标系(3)》一. 教材分析《5-2平面直角坐标系(3)》这一节内容,是在学生已经掌握了平面直角坐标系的定义、坐标轴、坐标点等基本知识的基础上进行讲解的。

本节课主要让学生了解平面直角坐标系中图形的性质,能够利用坐标系解决一些实际问题。

教材通过例题和练习题的形式,帮助学生巩固所学知识,提高解决问题的能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对平面直角坐标系的概念和基本知识有了一定的了解。

但学生在解决实际问题时,还存在着一定的困难,对坐标系中图形的性质理解不够深入。

因此,在教学过程中,需要引导学生通过观察、思考、操作等活动,加深对知识的理解,提高解决问题的能力。

三. 教学目标1.理解平面直角坐标系中图形的性质,能够利用坐标系解决一些实际问题。

2.培养学生的观察能力、思考能力和动手操作能力。

3.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.重点:平面直角坐标系中图形的性质。

2.难点:利用坐标系解决实际问题。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生理解知识。

2.实例法:教师通过举例子,让学生直观地理解平面直角坐标系中图形的性质。

3.练习法:学生通过做练习题,巩固所学知识,提高解决问题的能力。

六. 教学准备1.准备相关的例题和练习题,以便学生在课堂上进行操作和练习。

2.准备一些实际问题,让学生在课堂上进行解决。

七. 教学过程1.导入(5分钟)教师通过提问,引导学生回顾平面直角坐标系的基本知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过讲解和展示实例,让学生了解平面直角坐标系中图形的性质,引导学生进行观察和思考。

3.操练(10分钟)学生分组进行讨论,根据教师提供的实际问题,利用所学知识解决问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生独立完成教师提供的练习题,巩固所学知识。

教师选取部分学生的作业进行讲解和评价。

苏科版数学八年级上册说课稿《5-2平面直角坐标系(2)》

苏科版数学八年级上册说课稿《5-2平面直角坐标系(2)》

苏科版数学八年级上册说课稿《5-2平面直角坐标系(2)》一. 教材分析《5-2平面直角坐标系(2)》这一节的内容,是在学生已经掌握了平面直角坐标系的基本概念和初步应用的基础上进行讲解的。

本节课的主要内容是让学生进一步理解坐标系的性质,能够熟练地在坐标系中进行点的坐标计算,并且能够解决一些实际问题。

教材通过引入实际例子,让学生感受到坐标系在生活中的应用,提高学生的学习兴趣和积极性。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于平面直角坐标系的概念和基本性质已经有了一定的了解。

但是,学生在应用坐标系解决实际问题时,还存在一些困难。

因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生的解决问题的能力。

三. 说教学目标1.知识与技能目标:让学生进一步理解平面直角坐标系的性质,能够在坐标系中进行点的坐标计算,并解决一些实际问题。

2.过程与方法目标:通过实际例子,让学生感受坐标系在生活中的应用,培养学生的观察能力和思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。

四. 说教学重难点1.教学重点:让学生掌握平面直角坐标系的性质,能够在坐标系中进行点的坐标计算。

2.教学难点:引导学生将理论知识与实际问题相结合,解决一些复杂的实际问题。

五. 说教学方法与手段在本节课的教学过程中,我将采用讲授法、引导法、实践法等多种教学方法。

通过引导学生观察实际例子,让学生自主探索和合作交流,提高学生的学习兴趣和积极性。

同时,利用多媒体课件和教具,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入新课:通过一个实际问题,引导学生回顾平面直角坐标系的基本概念和性质。

2.讲解与示范:讲解平面直角坐标系的性质,并通过示例让学生在坐标系中进行点的坐标计算。

3.实践与探究:让学生分组讨论,解决一些实际问题,并分享解题过程和心得。

4.总结与拓展:总结本节课的主要内容,布置一些拓展练习,让学生进一步巩固知识。

苏科版八年级数学上册《第5章 平面直角坐标系》

苏科版八年级数学上册《第5章 平面直角坐标系》

初中数学试卷《第5章平面直角坐标系》一、填空1.如图所示,在平面直角坐标系中各点的坐标分别是A ,B ,C ,D ,E ,F ,G .这些点中,点A与点B的坐标相同,线段AB 横轴,纵轴.2.已知点P(3,﹣4),它到x轴的距离是,到y轴的距离是.3.已知点A(2,3)在第一象限,则与点A关于x轴对称的点的坐标为,与点A关于y轴对称的点的坐标为,与点A关于原点对称的点的坐标为.4.已知点P(m﹣3,m+4)在第一象限,则m的取值范围是;如在第二象限,则m的取值范围是.5.在平面直角坐标系中,点A是y轴上一点,若点A的坐标为(a+1,a﹣2),则a= ,另一点B的坐标(a+2,a+3)为.6.已知点P(3k﹣9,1﹣k)在第三象限,且点P的横纵坐标都是整数,求点P关于y轴对称的点的坐标和与关于原点对称的点的坐标为.7.如果讲一个三角形的各顶点的横、纵坐标分别乘以﹣1,则所得的图案与原图案将.8.若点P(x,y)在第二象限角平分线上,则x与y的关系是.9.若将三角形各顶点的纵坐标保持不变,横坐标均乘以﹣1,则所得三角形的形状与原三角形相比;若让纵坐标不变,横坐标均增加2,则所得三角形的形状与原三角形相比;若让横坐标不变,纵坐标均乘以2,则所得三角形的形状与原三角形相比.二、选择:10.在x轴上到点A(3,0)的距离为4的点一定是()A.(7,0) B.(﹣1,0)C.(7,0)和(﹣1,0) D.以上都不对11.在坐标轴上与点M(3,﹣4)距离等于5的点共有()A.2个B.3个C.4个D.1个12.已知一个点的横坐标与纵坐标都是整数,并且它们的乘积等于9,满足这样条件的点共有()A.3个B.6个C.8个D.9个13.在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限14.在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限 B.第二象限 C.第三象限 D.第四象限15.在平面直角坐标系中,点A(5,﹣3)关于原点对称的点的坐标为()A.(﹣5,﹣3) B.(5,3) C.(﹣5,3)D.(5,﹣3)16.点(﹣l,4)关于坐标原点对称的点的坐标是()A.(﹣1,﹣4) B.(1,﹣4)C.(1,4) D.(4,﹣1)17.已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A.原点上B.x轴上C.y轴上D.坐标轴上18.若,则点P(x,y)的位置是()A.在数轴上 B.在去掉原点的横轴上C.在纵轴上 D.在去掉原点的纵轴上19.在平面直角坐标系中,点P(3,2)向下平移两个单位长度后的坐标为()A.(1,2) B.(3,0) C.(5,2) D.(3,4)20.在平面直角坐标系中,点Q(﹣1,3)向右平移3个单位长度后的坐标为()A.(﹣1,0)B.(﹣1,6)C.(2,3) D.(2,6)21.在平面直角坐标系中,将某三角形纵向拉长了2倍,又向右平移了3个单位长度,则所得三角形三个顶点坐标与原来三角形三个顶点坐标相比有何变化()A.先纵坐标不变,横坐标均扩大2倍,横坐标均增加3B.先横坐标不变,纵坐标均扩大2倍,再横坐标不变,纵坐标均增加3C.先横坐标不变,纵坐标均扩大2倍,再纵坐标不变,横坐标均增加3D.先横坐标不变,纵坐标均增加2,再纵坐标不变,横坐标均增加322.在平面直角坐标系中,若一图形各点的横坐标不变,纵坐标分别减3,那么图形与原图形相比()A.向右平移了3个单位长度B.向左平移了3个单位长度C.向上平移了3个单位长度D.向下平移了3个单位长度23.点P(﹣3,4)关于y轴的对称点的坐标是()A.(﹣3,﹣4) B.(3,﹣4)C.(3,4) D.(﹣4,3)24.A为平面直角坐标系内任意一点,顺次连接A点与它关于x轴,y轴和原点的对称点所组成的图形是()A.任意四边形B.正方形C.矩形 D.菱形25.已知点P关于y轴的对称点为(2,y),关于x轴的对称点是(x,﹣2),则点P的坐标是()A.(y,﹣x)B.(x,﹣y)C.(﹣2,2)D.(2,﹣2)三、解答:26.在如图所示的直角坐标系中,描出下列各点:(0,4),(﹣1,1),(﹣4,1),(﹣2,﹣1),(﹣3,﹣4),(0,﹣2),(3,﹣4)(2,﹣1),(4,1),(1,1),(0,4).依次连接各点,观察得到图形,你觉得它像什么?27.已知两点P(﹣3,m),Q(n,5),若PQ平行y轴,求m和n的值.28.已知A(﹣2,0),B(2,0),C(3,2),且A,B,C为一个平行四边形的三个顶点,求第四个顶点D的坐标.29.在平面直角坐标系中,三角形ABC的三个顶点的坐标分别为A(﹣5,0),B(4,0),C(2,5),求S.△ABC30.已知点A(k﹣3,k﹣7)在二、四象限的角平分线上,且点A关于x轴、y轴和原点的对称点分别为B、D、C.(1)在同一坐标系里分别描出四点.(2)判断四边形ABCD的形状.31.如图是某市区部分简图,请你建立适当的坐标系,并分别写出各地的坐标.32.如图,在△ABC中,已知AB=6,AC=BC=5,建立适当的坐标系,把△ABC的各顶点坐标写出来.33.如图所示,是一个菱形衣帽架,建立适当的坐标系,表示菱形个顶点的位置.(菱形的一个角是60°,边长为2)34.在平面直角坐标系中有一个平行四边形ABCD,如果将此平行四边形沿x轴正方向移动3个单位,则各点坐标的变化特征是怎样的?35.在平行四边形ABCD中,AB=3,BC=4,∠A=60°,建立适当的平面直角坐标系,把平行四边形ABCD的各个顶点的坐标写出来.(要求写出一组坐标即可)36.如图一、图二,在两个平面直角坐标系只能够分别有一个四边形.(1)分别写出图一和图二中的四边形的四个顶点坐标.(2)与图一相比,图二中的四边形发生了怎样的变化?(3)与图一相比,图二中的四边形顶点的坐标发生了怎样的变化?37.将一个梯形各顶点的横坐标变为原来的2倍,纵坐标变为原来的,(1)则所得的图形仍为梯形么?(2)它与原梯形相比发生了哪些变化?(3)它的面积与原来梯形的面积之间有什么关系?《第5章平面直角坐标系》参考答案与试题解析一、填空1.如图所示,在平面直角坐标系中各点的坐标分别是A (3,0),B (3,3),C (0,3),D (0,0),E (﹣1,﹣2),F (2,﹣3),G (﹣3,1).这些点中,点A与点B的横坐标相同,线段AB 垂直于横轴,平行于纵轴.【考点】坐标与图形性质.【分析】利用坐标系中各点的位置直接得出各点坐标以及A,B两点的特点和线段AB与横纵坐标的性质.【解答】解:由图象可得出:在平面直角坐标系中各点的坐标分别是:A (3,0),B(3,3),C(0,3),D(0,0),E (﹣1,﹣2),F (2,﹣3),G (﹣3,1).这些点中,点A与点B的横坐标相同,线段AB垂直于横轴,平行于纵轴.故答案为:(3,0),(3,3),(0,3),(0,0),(﹣1,﹣2),(2,﹣3),(﹣3,1).横,垂直于,平行于.【点评】此题主要考查了坐标与图形的性质,根据已知坐标系得出各点坐标是解题关键.2.已知点P(3,﹣4),它到x轴的距离是 4 ,到y轴的距离是 3 .【考点】点的坐标.【分析】根据点的坐标的几何意义即可解答.【解答】解:∵点P(3,﹣4),∴它到x轴的距离是|﹣4|=4,到y轴的距离是|3|=3.故答案填:4、3.【点评】本题主要考查了点的坐标的几何意义,横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.3.已知点A(2,3)在第一象限,则与点A关于x轴对称的点的坐标为(2,﹣3),与点A关于y轴对称的点的坐标为(﹣2,3),与点A关于原点对称的点的坐标为(﹣2,﹣3).【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】利用关于原点对称点的坐标性质和关于x轴、y轴对称点的性质分别得出即可.【解答】解:∵点A(2,3)在第一象限,∴与点A关于x轴对称的点的坐标为:(2,﹣3),与点A关于y轴对称的点的坐标为:(﹣2,3),与点A关于原点对称的点的坐标为:(﹣2,﹣3).故答案为:(2,﹣3),(﹣2,3),(﹣2,﹣3).【点评】此题主要考查了关于原点对称点的坐标性质和关于x轴、y轴对称点的性质,熟练掌握相关的性质是解题关键.4.已知点P(m﹣3,m+4)在第一象限,则m的取值范围是m>3 ;如在第二象限,则m的取值范围是﹣4<m<3 .【考点】点的坐标;解一元一次不等式组.【分析】根据第一象限的点的横坐标与纵坐标都是正数列不等式组求解即可;根据第二象限的点的横坐标是负数,纵坐标是正数列不等式组求解即可.【解答】解:∵点P(m﹣3,m+4)在第一象限,∴,解不等式①得,m>3,解不等式②得,m>﹣4,所以,不等式组的解集是m>3;∵点P(m﹣3,m+4)在第二象限,∴,解不等式①得,m<3,解不等式②得,m>﹣4,所以,不等式组的解集是﹣4<m<3.故答案为:m>3;﹣4<m<3.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.在平面直角坐标系中,点A是y轴上一点,若点A的坐标为(a+1,a﹣2),则a= ﹣1 ,另一点B的坐标(a+2,a+3)为(1,2).【考点】点的坐标.【分析】根据y轴上点的横坐标是0列式求出a的值,然后求出点B的坐标即可.【解答】解:∵点A(a+1,a﹣2)在y轴上,∴a+1=0,解得a=﹣1,∴a+2=﹣1+2=1,a+3=﹣1+3=2,所以,点B的坐标为(1,2).故答案为:﹣1;(1,2).【点评】本题考查了点的坐标,主要利用了y轴上点的横坐标是0,需熟记.6.已知点P(3k﹣9,1﹣k)在第三象限,且点P的横纵坐标都是整数,求点P关于y轴对称的点的坐标和与关于原点对称的点的坐标为(3,﹣1),(3,1).【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】首先利用第三象限点的坐标性质和不等式的解法得出k的值,进而利用关于y轴对称的点的坐标和与关于原点对称的点的坐标的特点得出即可.【解答】解:∵点P(3k﹣9,1﹣k)在第三象限,且点P的横纵坐标都是整数,∴,解得:1<k<3,∴k=2,∴P点坐标为:(﹣3,﹣1),∴点P关于y轴对称的点的坐标和与关于原点对称的点的坐标分别为:(3,﹣1),(3,1).故答案为:(3,﹣1),(3,1).【点评】此题主要考查了关于原点对称点和关于y轴对称点的坐标性质和不等式的解法等知识,根据已知得出P点坐标是解题关键.7.如果讲一个三角形的各顶点的横、纵坐标分别乘以﹣1,则所得的图案与原图案将关于坐标原点中心对称.【考点】关于原点对称的点的坐标.【分析】利用横、纵坐标均乘以﹣1,即横、纵坐标变为相反数,图形关于原点中心对称.【解答】解:∵横、纵坐标均乘以﹣1,∴对应点的横、纵坐标互为相反数,∴对应点关于原点对称,∴所得图形关于坐标原点中心对称,故答案为:关于坐标原点中心对称.【点评】此题主要考查了关于原点对称点的坐标性质,利用横、纵坐标都乘以﹣1,图形关于原点中心对称得出是解题关键.8.若点P(x,y)在第二象限角平分线上,则x与y的关系是x+y=0 .【考点】坐标与图形性质.【分析】根据二四象限角平分线上点的特点即横纵坐标互为相反数解答.【解答】解:∵点P(x,y)在第二象限角平分线上,∴x,y互为相反数,即x+y=0.【点评】解答此题的关键是熟知二四象限角平分线上点的坐标特征.9.若将三角形各顶点的纵坐标保持不变,横坐标均乘以﹣1,则所得三角形的形状与原三角形相比关于y轴对称;若让纵坐标不变,横坐标均增加2,则所得三角形的形状与原三角形相比向右平移2个单位长度;若让横坐标不变,纵坐标均乘以2,则所得三角形的形状与原三角形相比纵向拉长为原来的2倍.【考点】坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.【分析】将三角形各顶点的纵坐标保持不变,横坐标均乘以﹣1,即横坐标都为原来的相反数,由此得到所得三角形的形状与原三角形关于y轴对称;当把原三角形向右平移2个单位长度得到的新三角形的各点的纵坐标不变,横坐标均增加2;若让横坐标不变,纵坐标均乘以2,则所得三角形由原三角形纵向拉长2倍得到.【解答】解:将三角形各顶点的纵坐标保持不变,横坐标均乘以﹣1,则所得三角形的形状与原三角形关于y轴对称;若让纵坐标不变,横坐标均增加2,则所得三角形由原三角形向右平移2个单位长度得到;若让横坐标不变,纵坐标均乘以2,则所得三角形由原三角形纵向拉长2倍得到.故答案为关于y轴对称;向右平移2个单位长度;纵向拉长为原来的2倍.【点评】本题考查了坐标与图象变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度(即:横坐标,右移加,左移减;纵坐标,上移加,下移减).二、选择:10.在x轴上到点A(3,0)的距离为4的点一定是()A.(7,0) B.(﹣1,0)C.(7,0)和(﹣1,0) D.以上都不对【考点】点的坐标.【专题】分类讨论.【分析】x轴上的点纵坐标是0,这点有可能在点A的左边,也有可能在点A的右边.【解答】解:∵3+4=7,3﹣4=﹣1,∴点的横坐标是7或﹣1,∴在x轴上到点A(3,0)的距离为4的点为(7,0)和(﹣1,0).故选C.【点评】本题考查了点到坐标轴距离的含义,到x轴上到一定点等于定长的点的有2个.11.在坐标轴上与点M(3,﹣4)距离等于5的点共有()A.2个B.3个C.4个D.1个【考点】两点间的距离公式.【分析】符合题意的点即在以M为圆心,5为半径画圆上,找圆与坐标轴的交点即可.【解答】解:在坐标轴上与点M(3,﹣4)距离等于5的点在以M为圆心,5为半径画圆上,而圆与坐标轴的交点为(0,0),(0,﹣8),(6,0),共3个,故选B.【点评】本题主要考查了点的坐标的意义以及与图形相结合的具体运用,要把点的坐标和图形有机结合起来求解.12.已知一个点的横坐标与纵坐标都是整数,并且它们的乘积等于9,满足这样条件的点共有()A.3个B.6个C.8个D.9个【考点】点的坐标.【分析】把9分解质因数,然后根据点的坐标解答.【解答】解:∵1×9=(﹣1)×(﹣9)=3×3=(﹣3)×(﹣3)=9,∴点的坐标为(1,9)、(9,1)、(﹣1,﹣9)、(﹣9,﹣1)、(3,3)、(﹣3,﹣3)共6个.故选B.【点评】本题考查了点的坐标,根据乘积是9求出点的横坐标和纵坐标的值是解题的关键.13.在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点(﹣1,m2+1),横坐标<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.【解答】解:∵点P(﹣1,2)的横坐标﹣1<0,纵坐标2>0,∴点P在第二象限.故选:B.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15.在平面直角坐标系中,点A(5,﹣3)关于原点对称的点的坐标为()A.(﹣5,﹣3) B.(5,3) C.(﹣5,3)D.(5,﹣3)【考点】关于原点对称的点的坐标.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),然后直接作答即可.【解答】解:根据中心对称的性质,可知:点A(5,﹣3)关于原点O中心对称的点的坐标为(﹣5,3).故选:C.【点评】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.16.点(﹣l,4)关于坐标原点对称的点的坐标是()A.(﹣1,﹣4) B.(1,﹣4)C.(1,4) D.(4,﹣1)【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】让两点的横纵坐标均互为相反数可得所求的坐标.【解答】解:∵两点关于原点对称,∴横坐标为1,纵坐标为﹣4.故选B.【点评】考查关于原点对称的坐标的特点:两点的横坐标互为相反数;纵坐标互为相反数.17.已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A.原点上B.x轴上C.y轴上D.坐标轴上【考点】点的坐标.【分析】根据坐标轴上的点的特征:至少一个坐标为0解答.【解答】解:若ab=0,则a=0,或b=0,或a,b均为0.当a=0,M在y轴上;当b=0,M在x轴上;当a,b均为0,M在原点;即点M在坐标轴上.故选D.【点评】本题主要考查了点在坐标轴上时点的符号特点,注意考虑问题要全面,坐标轴上的点的特点要记清.18.若,则点P(x,y)的位置是()A.在数轴上 B.在去掉原点的横轴上C.在纵轴上 D.在去掉原点的纵轴上【考点】点的坐标.【分析】根据分式值为0的条件求出y=0,再根据点在x轴上坐标的特点解答.【解答】解:∵,x不能为0,∴y=0,∴点P(x,y)的位置是在去掉原点的横轴上.故选B.【点评】本题考查了点在x轴上时坐标的特点,特别注意要保证条件中的式子有意义.19.在平面直角坐标系中,点P(3,2)向下平移两个单位长度后的坐标为()A.(1,2) B.(3,0) C.(5,2) D.(3,4)【考点】坐标与图形变化-平移.【专题】数形结合.【分析】把点P(3,2)向下平移两个单位长度后,横坐标不变,纵坐标减去2即可得到平移后点的坐标.【解答】解:点P(3,2)向下平移两个单位长度后的坐标为(3,0).故选B.【点评】本题考查了坐标与图象变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度(即:横坐标,右移加,左移减;纵坐标,上移加,下移减).20.在平面直角坐标系中,点Q(﹣1,3)向右平移3个单位长度后的坐标为()A.(﹣1,0)B.(﹣1,6)C.(2,3) D.(2,6)【考点】坐标与图形变化-平移.【专题】数形结合.【分析】把点Q(﹣1,3)向右平移3个单位长度后,所得点的纵坐标不变,横坐标加上3即可.【解答】解:点Q(﹣1,3)向右平移3个单位长度后的坐标为(2,3).故选C.【点评】本题考查了坐标与图象变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度(即:横坐标,右移加,左移减;纵坐标,上移加,下移减).21.在平面直角坐标系中,将某三角形纵向拉长了2倍,又向右平移了3个单位长度,则所得三角形三个顶点坐标与原来三角形三个顶点坐标相比有何变化()A.先纵坐标不变,横坐标均扩大2倍,横坐标均增加3B.先横坐标不变,纵坐标均扩大2倍,再横坐标不变,纵坐标均增加3C.先横坐标不变,纵坐标均扩大2倍,再纵坐标不变,横坐标均增加3D.先横坐标不变,纵坐标均增加2,再纵坐标不变,横坐标均增加3【考点】坐标与图形变化-平移.【分析】将某三角形纵向拉长了2倍,就是把原来三角形三个顶点的纵坐标扩大2倍,当再向右平移了3个单位长度,就是在纵坐标扩大2倍后,横坐标都增加3.【解答】解:将某三角形纵向拉长了2倍,又向右平移了3个单位长度,则把原来三角形三个顶点的纵坐标扩大2倍后,再把纵坐标不变,横坐标都增加3.故选C.【点评】本题考查了坐标与图象变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度(即:横坐标,右移加,左移减;纵坐标,上移加,下移减).22.在平面直角坐标系中,若一图形各点的横坐标不变,纵坐标分别减3,那么图形与原图形相比()A.向右平移了3个单位长度B.向左平移了3个单位长度C.向上平移了3个单位长度D.向下平移了3个单位长度【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:此题规律是(x,y﹣3),照此规律可知图形与原图形相比向下平移了3个单位长度.故选D.【点评】本题考查了图形的平移变换,在平面直角坐标系中,图形的平移与图形上某点的平移相同.23.点P(﹣3,4)关于y轴的对称点的坐标是()A.(﹣3,﹣4) B.(3,﹣4)C.(3,4) D.(﹣4,3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:点P(﹣3,4)关于y轴的对称点的坐标是(3,4).故选C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.24.A为平面直角坐标系内任意一点,顺次连接A点与它关于x轴,y轴和原点的对称点所组成的图形是()A.任意四边形B.正方形C.矩形 D.菱形【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),关于x 轴、y轴的对称点分别是(x,﹣y),(﹣x,y),然后直接作答即可.【解答】解:∵A为平面直角坐标系内任意一点,顺次连接A点与它关于x轴,y轴和原点的对称点,∴对应点横、纵坐标绝对值相等,只是符号不同,∴这4个点所组成的图形是矩形.故选:C.【点评】本题考查了关于x轴、y轴以及关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.25.已知点P关于y轴的对称点为(2,y),关于x轴的对称点是(x,﹣2),则点P的坐标是()A.(y,﹣x)B.(x,﹣y)C.(﹣2,2)D.(2,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:设P(m,n),∵点P关于y轴的对称点为(2,y),∴m=﹣2,∵关于x轴的对称点是(x,﹣2),∴n=2,∴P(﹣2,2)故选:C.【点评】此题主要考查了关于x、y轴对称的点的坐标特点,关键是掌握点的坐标的变化规律.三、解答:26.在如图所示的直角坐标系中,描出下列各点:(0,4),(﹣1,1),(﹣4,1),(﹣2,﹣1),(﹣3,﹣4),(0,﹣2),(3,﹣4)(2,﹣1),(4,1),(1,1),(0,4).依次连接各点,观察得到图形,你觉得它像什么?【考点】坐标与图形性质.【分析】根据各点坐标,在坐标系中描出即可,进而确定它的形状.【解答】解:如图所示:是五角星.【点评】此题主要考查了确定点的坐标,根据坐标系中点的确定位置得出是解题关键.27.已知两点P(﹣3,m),Q(n,5),若PQ平行y轴,求m和n的值.【考点】坐标与图形性质.【分析】根据平行于y轴点的坐标横坐标相等,纵坐标不同进而得出即可.【解答】解:∵两点P(﹣3,m),Q(n,5),PQ平行y轴,∴n=﹣3,m≠5.【点评】此题主要考查了坐标与图形的性质,利用平行于y轴点的坐标性质得出是解题关键.28.已知A(﹣2,0),B(2,0),C(3,2),且A,B,C为一个平行四边形的三个顶点,求第四个顶点D的坐标.【考点】坐标与图形性质.【分析】建立平面直角坐标系,然后根据平行四边形的性质找出点D的位置即可.【解答】解:如图,点D的坐标为(﹣1,2)或(﹣3,﹣2)或(7,2).【点评】本题考查了坐标与图形性质,熟练掌握平行四边形的性质是解题的关键,作出图形更形象直观.29.在平面直角坐标系中,三角形ABC的三个顶点的坐标分别为A(﹣5,0),B(4,0),C(2,5),求S.△ABC【考点】坐标与图形性质;三角形的面积.【分析】利用已知点的坐标画出图形进而求出图形面积即可.【解答】解:如图所示:∵A(﹣5,0),B(4,0),C(2,5),=×9×5=22.5.∴S△ABC【点评】此题主要考查了坐标与图形的性质,利用已知点得出在坐标系中位置是解题关键.30.已知点A(k﹣3,k﹣7)在二、四象限的角平分线上,且点A关于x轴、y轴和原点的对称点分别为B、D、C.(1)在同一坐标系里分别描出四点.(2)判断四边形ABCD的形状.【考点】坐标与图形性质.【分析】(1)根据第二四象限角平分线上的点的横坐标与纵坐标互为相反数列方程求出k值,从而求出点A的坐标,再根据关于x轴、y轴对称点的坐标和关于原点的对称点的位置,顺次连接即可;(2)根据图形判断即可.【解答】解:(1)∵点A(k﹣3,k﹣7)在二、四象限的角平分线上,∴k﹣3+k﹣7=0,解得k=5,所以,点A(2,﹣2);如图所示;(2)四边形ABCD是正方形.【点评】本题考查了坐标与图形性质,主要利用了平面直角坐标系中描出点的位置的方法.31.如图是某市区部分简图,请你建立适当的坐标系,并分别写出各地的坐标.【考点】坐标确定位置.【分析】以超市为坐标原点,建立平面直角坐标系,然后写出各地的坐标即可.【解答】解:如图,超市(0,0),医院(3,1),文化宫(0,3),体育馆(﹣1,5),火车站(4,3.8).【点评】本题考查了坐标位置的确定,是开放型题目,根据坐标原点位置的不同,答案也不相同,但熟练掌握平面直角坐标系的特点是解题的关键.32.(2013秋•乐清市期末)如图,在△ABC中,已知AB=6,AC=BC=5,建立适当的坐标系,把△ABC 的各顶点坐标写出来.【考点】坐标与图形性质.【分析】首先以A点为原点建立坐标系,过点C作CD⊥BA于点D,根据等腰三角形的性质可得AD=BD=AB,再利用勾股定理可计算出CD的长,进而得到答案.【解答】解:以A点为原点建立坐标系,过点C作CD⊥BA于点D,∵AB=6,∴AD=BD=3,∴CD==4,∴A点坐标为:(0,0),C点坐标为;(3,4),B点坐标为:(0,6),。

5.2平面直角坐标系(二~三)(解析版)

5.2平面直角坐标系(二~三)(解析版)

5.2平面直角坐标系(二~三)【推本溯源】1、回顾上节如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)△ABC的面积是3;(2)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1的坐标(2,2);(3)将△ABC绕着点O按顺时针方向旋转90°得到△A2B2C2,写出C2的坐标(3,1).2.点的平移点P(a,b)先向右平移m个单位长度,再向上平移n个单位长度得到点(a+m,b+n);点P(a,b)先向左平移m个单位长度,再向下平移n个单位长度得到点(a-m,b-n);3.点的对称P(a,b)关于x轴对称的点的坐标为(a,-b);P(a,b)关于y轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b).4.一三、二四象限的角平分线第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a)。

5.坐标轴的平行平行于x 轴的直线上的点的纵坐标相同;平行于y 轴的直线上的点的横坐标相同6.以不同的点作平面直角坐标系点的坐标、位置、与平面直角坐标系关系:(1)在同一个平面直角坐标系中,点的位置不变,则点的坐标不变;若点的位置改变,则点的坐标改变。

(2)建立不同的平面直角坐标系,则点的位置不变,点的位置改变。

【解惑】例1:在平面直角坐标系中,点(2,3)P -关于x 轴对称的点P '的坐标是()A .(2,3)--B .(2,3)-C .(2,3)-D .(2,3)【答案】D【分析】根据关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数,即可求解.【详解】解:点(2,3)P -关于x 轴对称的点P '的坐标是(2,3),故选:D .【点睛】本题考查了关于x 轴对称的两个点的坐标特征,熟练掌握关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.例2:已知点()3,2M -与(),N x y 在同一条平行于x 轴的直线上,且点N 到y 轴的距离等于4,那么点N 的坐标为()A .()4,2或()4,2-B .()4,2-或()4,2--C .()4,2-或()4,2-D .()4,2或()4,2--【答案】B【分析】根据平行于x 轴的直线上的点的纵坐标相等可得点N 的纵坐标为2-,再分点N 在y 轴的左边和右边两种情况求出点N 的横坐标,然后解答即可.【详解】解:∵点()3,2M -与点(),N x y 在同一条平行于x 轴的直线上,∴点N 的纵坐标为2-,∵点N 到y 轴的距离为4,∴点N 的横坐标为4或4-,∴点N 的坐标为()4,2-或()4,2--;故选:B .【点睛】此题考查了平面直角坐标系中点的坐标规律,熟练掌握平行于x 轴的直线上的点的纵坐标相等是解题的关键.例3:在直角坐标系中,把点(),2A m 先向右平移1个单位,再向上平移3个单位得到点B .若点B 的横坐标和纵坐标相等,则m =()A .2B .3C .4D .5【答案】C【分析】先根据平移方式确定点B 的坐标,再根据点B 的横坐标和纵坐标相等列方程,解方程即可.【详解】解: 点(),2A m 先向右平移1个单位,再向上平移3个单位得到点B ,∴()1,23B m ++,即()1,5B m +,点B 的横坐标和纵坐标相等,∴15m +=,∴4m =,故选C .【点睛】本题考查平面直角坐标系内点的平移,一元一次方程的应用等,解题的关键是掌握平面直角坐标系内点平移时坐标的变化规律:横坐标右加左减,纵坐标上加下减.例4:如图,在平面直角坐标系中,已知点(3,3)A ,(0,5)B ,若在坐标轴上找一点C ,使得ABC 是等腰三角形,则这样的点C 有()A .4个B .5个C .6个D .7个【答案】D 【分析】由题意知A 、B 是定点,C 是动点,所以要分情况讨论:以AC 、AB 为腰、以AC 、BC 为腰或以BC 、AB 为腰.则满足条件的点C 可求.【详解】解:由题意可知:以AC 、AB 为腰的三角形有3个;以AC 、BC 为腰的三角形有2个;(1)填空:点A 的坐标是______,点(2)将ABC 先向左平移3个单位长度,再向上平移(3)求ABC 的面积.【答案】(1)()41-,,()5,3(2)见解析(3)72ABC S =△【分析】(1)直接利用已知点的位置得出各点坐标即可;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)解:34212ABC S =⨯---△【点睛】此题主要考查了平移变换以及三角形面积求法,应点位置是解题关键.【摩拳擦掌】1.(2023·全国·七年级假期作业)已知点12A (,),过点A 向x 轴作垂线,垂足为M ,则点M的坐标为()A .10(,)B .20(,)C .(0,1)D .2(0,)【答案】A【分析】根据垂直于x 轴的直线上的点的横坐标都相等,x 轴上的点的纵坐标为0来进行求解.【详解】解:()1,2A ,点A 向x 轴作垂线,垂足为M ,M ∴点的纵坐标为0,横坐标与A 点相等,即()1,0M .故选:A .【点睛】本题主要考查了点的坐标,熟记垂直于x 轴的直线上的点的横坐标都相等是解答关∵()0,30A ,()20,10,B ∴130203002ABO S =⨯⨯=V ∵OA 上有31个格点,OB 上的格点有()2,1,(【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点(),P x y 关于y 轴的对称点P '的坐标是(),x y -,即可得出a ,b 的值,即可得出答案.【详解】解: 点(),2021A a 和点()2022,B b 关于y 轴对称,2022a \=-,2021b =,202220211a b ∴+=-+=-.故答案为:1-.【点睛】此题主要考查了关于y 轴对称点的性质,正确得出a ,b 的值是解题关键.6.(2022春·上海闵行·七年级上海市民办文绮中学校考阶段练习)已知点()3M m ,与点()4N n ,关于x 轴对称,那么m n +=______.【答案】1-【分析】根据关于x 轴对称的点的坐标特征即可解答.【详解】解:∵点()3M m ,与点()4N n ,关于x 轴对称,∴3n =,4m =-,∴431m n +=-+=-,故答案为1-;【点睛】本题考查了关于x 轴对称的点的坐标特征,熟记关于x 轴对称的点坐标特征是解题的关键.7.(2023·全国·七年级假期作业)已知点()2,3P a b -,先向左平移2个单位,再向下平移3个单位,恰好落在原点上,则P 点坐标为___________.【答案】()2,3【分析】根据平移的规律:上加下减,左减右加,列出方程即可求解.【详解】解:∵点()2,3P a b -,先向左平移2个单位,再向下平移3个单位得()22,33P a b ---,且改点恰好落在原点上,∴220a -=,330b --=,解得1a =,1b =-.∴22a =,33b -=,∴()2,3P .故答案为:()2,3.【点睛】此题主要考查了坐标的平移,关键是利用平移的规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.在x 轴的负半轴上的点的横坐标0<,纵坐标为0.8.(2023春·广东东莞·七年级校考期中)已知点()43A ,,AB y ∥轴,且5AB =,则点B 的坐标为__________.【答案】()48,或()4,2-【分析】分:①点B 在点A 的上边,②点B 在点A 的下边两种情况讨论求解.【详解】解:∵AB y ∥轴,∴设点()4,B y ,①点B 在点A 的上边时,∵5AB =,∴35y -=,解得8y =,点B 的坐标为()48,;②点B 在点A 的下边时,∵5AB =,∴35y -=-,解得=2y -,点B 的坐标为()4,2-;综上所述,点B 的坐标为()48,或()4,2-.故答案为()48,或()4,2-.【点睛】本题考查了坐标与图形性质,解题的关键是:利用平行于y 轴的点的横坐标相同的性质,分情况讨论.9.(2023春·广东肇庆·七年级校考期中)如图,在平面直角坐标系中,已知点()0,4A ,()8,0B ,(),C a b ,点C 在第一象限,CB x ⊥轴,且到x 轴的距离为6.(1)=a__________,b=_________的面积;(2)求ABC(3)如果在第二象限内有一点【知不足】2A .()2023,0B .()2021,1-C .()2022,1【答案】D 【分析】根据图象可得移动4次图象完成一个循环,从而可得出点1当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为()6,0,…,∵202345053÷= ,∴P 的坐标是()2023,1-,故选:D .【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.2.(2023春·黑龙江佳木斯·七年级统考期中)在平面直角坐标系中,点()3,1M m m ++在y 轴上,则点M 的坐标为()A .()0,2-B .()2,0C .()4,0D .()0,4-【答案】A【分析】根据在y 轴上的点横坐标为0求出m 的值即可得到答案.【详解】解:∵点()3,1M m m ++在y 轴上,∴30m +=,∴3m =-,∴1312m +=-+=-,∴()0,2M -,故选A .【点睛】本题主要考查了y 轴上点的坐标特点,熟知在y 轴上的点横坐标为0是解题的关键.3.(2023·全国·七年级假期作业)把点A (),2m m +先向左平移2个单位长度,再向上平移3个单位长度得到点B ,点B 正好落在x 轴上,则点B 的坐标为()A .()50-,B .()70-,C .()40,D .()30,【答案】B 【分析】由平移方式可得平移后的坐标为()2,5m m -+,再根据x 轴上的点的纵坐标为0求出m 的值,即可得出点B 的坐标.【详解】解:点A (),2m m +先向左平移2个单位长度,对应点的坐标为()2,2m m -+,再向上平移3个单位长度得到点B 的坐标为()2,23m m -++,即()2,5m m -+, 点B 正好落在x 轴上,∴50m +=,∴5m =-,∴点B 的坐标为()52,0--,即()70-,.故选:B .【点睛】本题考查由平移方式确定点的坐标,解题的关键是根据平移方式用含m 的代数式表示出平移后的坐标.4.(2023春·湖北黄冈·七年级统考阶段练习)在平面直角坐标系中,将点(2,1)P 向右平移4个单位长度.再向上平移3个单位长度得到点P '的坐标是___________.【答案】(6,4)【分析】根据点的平移坐标变化规律:左减右加,上加下减解答可得.【详解】解:将点()2,1P 向右平移4个单位长度,再向上平移3个单位长度得到点P '的坐标是()24,13++,即()6,4P ',故答案为:()6,4.【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的坐标变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.5.(2023春·黑龙江佳木斯·七年级统考期中)将点()3,2A --先向上平移3个单位长度,再向左平移2个单位长度得到点B ,则点B 的坐标为_________.【答案】()5,1-【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:将点()3,2A --先向上平移3个单位长度,再向左平移2个单位长度得到点B ,则点B 的坐标为()32,23---+,即()5,1-,故答案为:()5,1-.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;【答案】()101220,【分析】首先根据各点的坐标求出长度,找出这些长度之间的规律,然后根据规律即可求解.【详解】解:∵正方形OABC(1)将三角形ABC向右平移7个单位长度,再向下平移A B C.画出三角形111(2)直接写出点1B,1C的坐标.(3)在三角形ABC 内有一点(,)P a b ,请写出按(1)中所述步骤平移后的对应点1P 的坐标.【答案】(1)见解析(2)1(0,5)-B ,16(5,)C -(3)(7,3)a b +-【分析】(1)根据平移的性质作图即可.(2)由图可直接得出答案.(3)根据平移的性质可得答案.【详解】(1)解:如图,三角形111A B C 即为所求.(2)由图可得,点1(0,5)-B ,16(5,)C -.(3) 三角形ABC 向右平移7个单位长度,再向下平移3个单位长度得到三角形111A B C ,∴点1P 的坐标为(7,3)a b +-.【点睛】本题考查作图-平移变换,熟练掌握平移的性质是解答本题的关键.8.(2023春·广东东莞·七年级校考期中)如图,在单位正方形网格中,建立了平面直角坐标系xOy ,试解答下列问题:(1)若将ABC 向右平移6个单位,再向下平移2个单位后得到111A B C △,请画出平移后的111A B C △;(2)求ABC 的面积;(3)已知第一象限内有两点()32P n +,,()6Q n ,.平移线段PQ ,使点P ,Q 分别落在两条坐标轴上.请直接写出点P 平移后的对应点的坐标.【答案】(1)见详解(2)6(3)(0,2)P 或(3,0)-【分析】(1)求出平移后对应点的坐标为111(5,0),(2,3),(3,2)A B C -,再顺次连接各点即可;(2)利用割补法求ABC 的面积即可;(3)()32P n +,,()6Q n ,.两点的水平距离633-=,垂直距离22n n +-=,再分两种情况即可.【详解】(1)解:(1,2),(4,5),(3,0)A B C ---,平移后对应点的坐标为111(5,0),(2,3),(3,2)A B C -,平移后的图象如图所示:(2)解:1113515223222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯ (3)解:()32P n +,,()6Q n ,.两点的水平距离平移线段PQ ,使点P ,Q 分别落在两条坐标轴上,如图所示:点P 平移后的对应点的坐标为(0,2)P 或(3,0)-.【点睛】本题考查了平面直角坐标系内图形的平移问题,结为图形顶点的平移.【一览众山小】1.(2023·全国·七年级假期作业)已知()5,0P -,()4,2Q ,将线段PQ 平移到线段11PQ ,()14,P a -,()1,4Q b ,其中P 与1P 是对应点,则a b 的值是()A .25B .36C .18D .16【答案】AA .()0,10-B .【答案】B 【分析】根据勾股定理求得8PB PB t '==-,在Rt △【详解】解:∵点()6,0A∴8PB PB t'==-在Rt POB '△中,OP t =-,∴()()222168t t -+=-解得:12t =-,∴P 的坐标为()0,12-故选B.【点睛】本题考查了勾股定理与折叠问题,坐标与图形,熟练掌握折叠的性质是解题的关键.3.(2023·湖南长沙·统考三模)如图,在平面直角坐标系中,点()12A ,,()22B ,,()32C ,,()1,2D -,平移这四个点中的一个点,使得这四个点关于y 轴对称,则正确的平移过程是()A .将点A 向左平移3个单位长度B .将点B 向左平移4个单位长度C .将点C 向左平移5个单位长度D .将点D 向右平移6个单位长度【答案】C 【分析】根据轴对称的性质和平移的性质可得答案.【详解】解:A 、将点A 向左平移3个单位长度后坐标为()22A -,,这四个点不关于y 轴对称,错误;B 、将点B 向左平移4个单位长度后坐标为()22B -,,这四个点不关于y 轴对称,错误;C 、将点C 向左平移5个单位长度后坐标为()22C -,,这四个点关于y 轴对称,正确;D 、将点D 向右平移6个单位长度后坐标为()5,2D ,这四个点不关于y 轴对称,错误;故选:C .【点睛】本题考查了轴对称的性质和平移的性质,能够得出平移后的点的坐标是解题的关键.4.(2023·山西·统考中考真题)蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系A .()33,2-B .()33,2C .(2,【答案】A 设正六边形的边长为a ,由正六边形的性质及点【点睛】本题考查了坐标与图形,正六边形的性质,勾股定理,含30度角直角三角形的性质等知识,掌握这些知识是解题的关键.5.(2023春·湖北襄阳·七年级襄阳四中校考阶段练习)已知ABC 的各顶点坐标分别为1()()()12121A B C --,,,,,,将它进行平移,平移后A 移到点()3a -,,B 移到点(3)b ,,则C 移到的点的坐标为_____.【答案】(05),【分析】根据图形平移的性质,利用A 、B 两点坐标平移规律得出点C 平移后的坐标.【详解】解:∵点A 由(12)-,平移到()3a -,,∴ABC 向左平移2个单位长度;∵点B 由(11)-,平移到(3)b ,,∴ABC 向上平移4个单位长度;∴点(21)C ,向左平移2个单位长度,向上平移4个单位长度得(05),;故答案为:(05),.【点睛】本题考查坐标系中图形平移的性质以及坐标系中点的平移与坐标的变化,根据已知确定平移是本题解题关键.6.(2023春·河北邢台·八年级统考期中)已知点()2,6P b ,(1)若点P 与点Q 关于x 轴对称,则Q 点纵坐标是____.(2)若点(),M a a b +与点P 关于原点对称,则b =_____.【答案】6-6【分析】(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)两个点关于原点对称时,它们的坐标符号相反,即点(),P x y 关于原点O 的对称点是(),P x y '--.【详解】解:(1) 点P 与点Q 关于x 轴对称,()2,6P b ,∴Q 点纵坐标是()2,6b -.故答案为:6-;(2) 点(),M a a b +与点P 关于原点对称,()2,6P b ,∴26a b a b =-⎧⎨+=-⎩,解得126a b =-⎧⎨=⎩.故答案为:6.【点睛】本题考查了关于原点对称的点的坐标以及关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.(2023·全国·七年级假期作业)对于平面直角坐标系xOy 中的点(),M a b ,若N 的坐标为(),ka b k +,其中k 为常数,且0k ≠,则M 、N 互为“k 系关联点”,比如:()2,3M 的“2系关联点”为()22,32N ⨯+,即:()4,5N .若点(),2P m -的“1-系关联点”为(),Q x y ,且满足9x y +=-,则m 的值为_____.【答案】6【分析】由点(),2P m -的“1-系关联点”为(),Q x y ,可得x m =-,=3y -,再由9x y +=-,即可求得m 的值.【详解】∵点(),2P m -的“1-系关联点”为(),Q x y ,∴()=1x m ⨯-,()=21y -+-,∴x m =-,=3y -,又∵9x y +=-,∴()3=9m -+--,∴6m =,即m 的值是6.故答案为:6.【点睛】本题考查点的坐标与新定义,熟练掌握新定义并列出方程是解题的关键.8.(2023·四川成都·成都七中校考三模)已知第二象限内的点P 到x 轴的距离为4,到y 轴的距离为3,则P 点的坐标是______.【答案】(3,4)-【分析】根据坐标的表示方法,点P 到x 轴的距离为4,到y 轴的距离为3,且它在第二象限内即可得到点P 的坐标.【详解】解:∵点P 到x 轴的距离为4,到y 轴的距离为3,且它在第二象限内,∴点P 的坐标为(3,4)-.故答案为:(3,4)-.【点睛】此题考查了点的坐标,解题关键在于熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度.9.(2023·全国·七年级假期作业)如图,在平面直角坐标系中,点()1,0A -,点A 第1次向上跳动1个单位至点()11,1A -,紧接着第2次向右跳动2个单位至点()21,1A ,第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…依此规律跳动下去,点A 第2023次跳动至点2023A 的坐标是___________.【答案】()506,1012【分析】设第n 次跳动至点n A ,根据部分点n A 坐标的变化找出变化规律“()412n A n n --,,()41121n A n n +--+,,()42121n A n n +++,,()43122n A n n +++,(n 为自然数)”,依此规律结合202350543=⨯+即可得出点2023A 的坐标.【详解】解:设第n 次跳动至点n A ,-,【答案】( 1.81)【分析】利用行程问题中的相遇问题,找出规律即可解答.【详解】解:由题意知:长方形的边长为图形“凸”的边上,则细线另一端所在位置的点的坐标是_________.【答案】()11-,【分析】根据坐标的特点,长度为2时,对应点为B ,确定长度为4时,对应点为C ,长度为6时,对应点为D ,长度为8时,对应点为E ,长度为11时,对应点为F ,长度为14时,对应点为G ,长度为16时,对应点为H ,长度为18时,对应点为P ,长度为20时,对应点为A ,循环节为20,计算202320÷,看余数判断即可.【详解】解:∵AB EG x ∥∥轴,BC DE HG AP y ∥∥∥∥轴,点D 、C 、P 、H 在x 轴上,()()()1,2,1,2,3,0A B D --,()()3,2,3,2E G ---,∴222233222AB BC CD DE EF FG GH PH AP =========,,,,,,,,,∴长度为2时,对应点为B ,确定长度为4时,对应点为C ,长度为6时,对应点为D ,长度为8时,对应点为E ,长度为11时,对应点为F ,长度为14时,对应点为G ,长度为16时,对应点为H ,长度为18时,对应点为P ,长度为20时,对应点为A ,循环节为20,∵2023201013÷=⋯,∴细线另一端在BC 上,且与B 相距1个单位长度,∴细线另一端所在位置的点的坐标是()11-,故答案为:()11-,.【点睛】本题考查了坐标的特点和坐标的规律,熟练掌握坐标的特点,准确计算出循环节是解题的关键.13.(2023春·广东东莞·七年级校考期中)若点P 到x 轴的距离为5,到y 轴的距离为3,点P 在y 轴的右侧,则点P 的坐标为__________.【答案】()3,5或()3,5-(1)画出ABC 关于x 轴的对称图形111A B C △;(2)画出111A B C △向左平移4个单位长度后得到的(3)如果AC 上有一点(),P m n 经过上述两次变换,那么对应【答案】(1)见解析(2)见解析(3)()4,m n --(2)如图所示,222A B C △即为所求,(3)AC 上有一点(),P m n 关于x 轴的对称的点为长度后得到的点2P 的坐标是()4,m n --,故答案为:()4,m n --【点睛】本题主要考查作图—轴对称变换和平移变换,变换的定义与性质及平面直角坐标系中点的坐标的平移、关于坐标轴对称的特点.16.(2023春·陕西西安·八年级统考阶段练习)如图,点B 的坐标为()3,b b +,且a ,b 满足3a b -+∴()()222203120AB =-+--=⎡⎤⎣⎦,()()22220039AP x x =-+-=+,()()222220145BP x x x =-++=-+,①若90PAB ∠=︒,∴222PA BA PB +=,即2292045x x x ++=-+,∴解得6x =-,∴(6,0)P -;②若90ABP ∠=︒,∴222AB BP AP +=,即2220459x x x +-+=+,∴解得4x =,(4,0)P ∴;综上所述,点P 的坐标为(6,0)-或(4,0).【点睛】本题是几何变换综合题,主要考查了非负数的性质,坐标和图形的性质,待定系数法,三角形的面积,相似三角形的判定与性质,平移的性质等知识,熟练掌握待定系数法和平移的性质是解题的关键.17(春·河北邢台·八年级统考期中)图1所示,在平面直角坐标系中,O 为原点,点()0,2A ,()2,0B -,()4,0C .将点B 向右平移7个单位长度,再向上平移4个单位长度,得到对应点D ,图2所示.(1)求D 点坐标;(2)连接AC 、CD 、AD ,(),4P m 是一动点,若PAD S △【答案】(1)()5,4()1,4P ()。

苏科版-数学-八年级上册-《实数》复习课件1

苏科版-数学-八年级上册-《实数》复习课件1

《平面直角坐标系》复习点拨【课标复习方向】1、理解有序数对的含义,明白有序数对的两个数的前后顺序不能改变;2、能够准确地画出一个平面直角坐标系,理解x轴、y轴、坐标原点及象限的含义;3、平面直角坐标系中的点能够确定它的坐标,反之,给一个有序数对能找出它在坐标平面中对应的点;4、理解并掌握各个象限、x轴、y轴及平行于x轴、y轴的直线上的点的坐标的特征;5、能够用坐标表示地理位置,并能理解由于确定的坐标原点不同,表示同一地理位置的坐标也不相同;6、掌握图形平移后图形上各点的坐标变化的规律以及由图形上点的坐标的变化而确定图形进行怎样的平移.【知识网络】【重点难点】重点:①理解平面直角坐标系,能够把有序数对对应的点在直角坐标系中指出来以及能够把坐标系中的点用有序数对表示出来;②用坐标表示地理位置和用坐标表示平移.难点:①对有序数对的“有序”的理解;②用坐标解决实际问题.【知识要点】一、平面直角坐标系1、有序数对:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).由有序数对的定义知,任意两个不同的数组成有序数对,两个数的排列顺序不同,所表示的意义就不同. 如有序数对(2,4)与(4,2),不妨用来表示“教室里座位的位置”,前者表示“2排4号”,后者表示“4排2号”,可见这两个有序数对表示的是两个不同的位置.初中-数学-打印版初中-数学-打印版2、平面直角坐标系及其有关的概念(1)平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系,如图1.(2)坐标轴:在平面直角坐标系中,水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点. (3)象限:如图1,坐标平面被两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限. 值得的注意是:坐标轴上的点不属于任何象限.(4)点的坐标①点的坐标的确定:对于平面内任意一点P 如图2,过点P 分别向x 轴、y 轴作垂线,垂足在x 轴、y 轴上对应的数a ,b 分别叫做点P 的横坐标、纵坐标,有序实数对(a ,b )叫做点P 的坐标.②点的坐标的特征:象限内点的坐标的特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-),如图1.坐标轴上点的坐标的特征:x 轴上(a ,0),当在x 轴正半轴上a 为正,当在x 轴负半轴上a 为负;y 轴上(0,b ),当在y 轴正半轴上b 为正,当在x 轴负半轴上b 为负;原点为(0,0).平行于坐标轴的直线上点的坐标的特征:平行于x轴的直线上所有点的纵坐标相同;平行于y轴的直线上所有点的横坐标相同.③确定点的位置已知平面直角坐标系内一点的坐标,如P(-3,1),只需在x轴上找出表示-3的点,再在y轴上找出表示1的点,过这两点分别作x轴和y轴的垂线,两垂线的交点就是点P.二、坐标方法的简单应用1、利用坐标表示地理位置的一般步骤(1)建立直角坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.2、图形平移后的坐标变化规律在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).3、由坐标变化导致图形的平移在平面直角坐标系内,如果一个图形各个点的横坐标都加(或减)一个正数a,相应的新图形就是把原图形向右(或左)平移a个单位长度;如果把各个点的纵坐标都加(或减)一个正数b,相应的新图形就是把原图形向上(或下)平移b个单位长度.【典题例析】例1(大连市)在平面直角坐标系中,下列各点在第二象限的是()A.(2,1);B.(2,-1);C.(-2,1);C.(-2,-1).解析:根据平面直角坐标系中象限内点的坐标的特征知,第二象限(-,+),故判断答案为C.评注:本题主要考查平面直角坐标系中象限内点的坐标的特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).例2(杭州市实验区)如图3的围棋盘放在某个平面直角坐标系内,白棋②的坐标为--,那么黑棋①的坐标应该是.(7,4)--,白棋④的坐标为(6,8)初中-数学-打印版初中-数学-打印版解析:由白棋② 的坐标和白棋④的坐标确定原点的位置,建立平面直角坐标系(如图3).从而确定黑棋①的坐标为(-3,-7).评注:用坐标表示位置的关键是确定坐标原点,建立平面直角坐标系.例3(2005年吉林省实验区)如图4,A 点坐标为(3,3),将△ABC 向下平移4个单位得△C BA ''',请你画出△CB A ''',并写出点的坐标.解析:将△ABC 向下平移4个单位得△C B A '''(如图4).由A 点坐标(3,3),可确定△C B A '''三个顶点的坐标为A′(3,-1),B′(2,-3),C′(5,-3).评注:已知一个图形的各顶点的坐标,求经过平移后的图形的各顶点的坐标的规律为:左右平移只改变横坐标,纵坐标不变;上下平移只改变纵坐标,横坐标不变.(图4)。

苏科版数学八年级上册《5.2 平面直角坐标系》教学设计

苏科版数学八年级上册《5.2 平面直角坐标系》教学设计

苏科版数学八年级上册《5.2 平面直角坐标系》教学设计一. 教材分析《苏科版数学八年级上册》第五章第二节“平面直角坐标系”是学生在学习了坐标概念、坐标系的初步知识后,进一步深化对坐标系的理解和应用。

本节内容主要包括平面直角坐标系的定义、坐标轴、坐标点的特征等,旨在帮助学生掌握平面直角坐标系的基本知识,能够熟练地在坐标系中进行点的表示和坐标运算。

二. 学情分析学生在学习本节内容前,已经初步掌握了坐标的概念,对坐标系有了一定的认识。

但是,对于平面直角坐标系的定义、坐标轴的特点、坐标点的表示方法等,还需要进一步的学习和理解。

同时,学生需要通过实例感受和理解坐标系在实际问题中的应用。

三. 教学目标1.知识与技能:理解平面直角坐标系的定义,掌握坐标轴的特点,能够熟练地在坐标系中表示点的位置,进行简单的坐标运算。

2.过程与方法:通过实例分析,培养学生在实际问题中运用坐标系解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的抽象思维能力。

四. 教学重难点1.重点:平面直角坐标系的定义,坐标轴的特点,坐标点的表示方法。

2.难点:坐标系在实际问题中的应用。

五. 教学方法采用讲授法、案例分析法、小组合作法等,结合多媒体教学,引导学生通过观察、思考、实践,理解并掌握平面直角坐标系的知识。

六. 教学准备1.多媒体教学设备。

2.平面直角坐标系的模型或图片。

3.相关案例资料。

七. 教学过程导入(5分钟)教师通过展示生活中的实例,如地图、飞机导航等,引导学生思考坐标系的作用,引出平面直角坐标系的概念。

呈现(10分钟)教师利用多媒体展示平面直角坐标系的模型或图片,同时讲解坐标轴的特点,坐标点的表示方法。

在此过程中,引导学生观察、思考,理解并掌握平面直角坐标系的基本知识。

操练(10分钟)教师给出一些简单的实例,让学生在坐标系中表示点的位置,进行坐标运算。

如给出点的坐标,让学生在坐标系中找到对应的位置;或者给出实际问题,让学生用坐标系解决。

4.3.平面直角坐标系ppt 苏科版

4.3.平面直角坐标系ppt 苏科版
A( 3, 2 ); B( 0,-2 ); C(-3,-2); D(-3, 0 ); E(-1.5,3.5);F( 2,-3 )
y
点A、E、C、 第二象限 第一象限
F分别在第一、二、 (-,+) (+,+)
三、四象限;点B、
1
D分别在y 轴和x 轴 第三象限-1-1o 第1 四象限 x
上.
(-,-) (+,-)
初 中 数 学
八 上
练一练:
2.判断:
(4,3)和(3,4)表示同 一点吗?( 否 )
4 3 2
y
1
B(3,4) A(4,3)
-4-3-2-1OO 1 -1
23
4x
-2
-3
注意:平面内点的坐标是-4 一对有序实数!
初 中 数 学
八 上
巩固练习 1.分别写出图中点A、B、C的坐标
y
A
4
A(4,5) B(-5,-3) -5 C(3,-4)

3、在比夜更深的地方,一定有比夜更黑的眼睛。

4、一切伟大的行动和思想,都有一个微不足道的开始。

5、从来不跌倒不算光彩,每次跌倒后能再站起来,才是最大的荣耀。

6、这个世界到处充满着不公平,我们能做的不仅仅是接受,还要试着做一些反抗。

7、一个最困苦、最卑贱、最为命运所屈辱的人,只要还抱有希望,便无所怨惧。
八 上
一般地,如果Q是直角坐标系中一点,你
能找到与之对应的一对有序实数(m,n)吗?
你是怎样找的?
4y
3
2
m
1
-4-3-2-1OO -1
1
2
3
4x
想一想:
Q(m,n) -2 n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结论
的纵坐标都为0。即(a,0)
2.任何一个在y轴上的点的横坐标为0。 即(0,b),原点的坐标是(0,0)
3.平行于x轴(垂直于y轴)的直线上的点 的纵坐标相等。
4.平行于y轴(垂直于x轴)的直线上的点 的横坐标相等。
反之也成立。
自学检测三: (5 分钟)
1.已知P点坐标为(a-1,a-5)
①点P在x轴上,则a= 5 ;
A (-2,0)
F (0,3) (0,-3)
B
E (3,3) D(4,0)
C (3,-3)
线段BC平行于x轴,垂直于y轴,B、C两点的纵坐标相同; 线段CE平行于y轴,垂直于x轴,C、E两点的横坐标相同;
坐标轴上的点的坐标中至少有一个是0,x轴上点的 纵坐标为0;y轴上的点的横坐标为0。
1.任何一个在x轴上的点
-4 -3 -2 -1 0 -1
1 2 3 4 5x
横轴
(原点) -2
第三象限 -3
第四象限
-4
注 意:坐标轴(x轴、y轴)上的点不属于任何象限。 平面上的点是不是都可以在四个象限内表示呢?
自学指导2:(3分钟)
认真阅读课本p59例1的内容,明确:
1.结合图形,说明什么是点的横、纵坐标?什么是点 的坐标? 2.点(2,3)和点(3,2)表示的是同一个点吗? 3. 确定自己能在直角坐标系中写出任一点的坐标。 4.各个象限内的点的坐标有何特点(从正负性来说)?
5.下列各点分别在坐标平面的什么位置上?
• A(3,2)
第一象限
• B(0,-2)
y轴上
• C(-3,-2)
第三象限
• D(-3,0)
x轴上
• E(-1.5,3.5)
第二象限
• F(2,-3)
第四象限
6.已知P点坐标为(a-1,a-5)
①点P在x轴上,则a= 5 ; ②点P在y轴上,则a= 1 ;
3.如果以“中心广场”为 原点,定为(0,0),每 一个小格的边长为1作为 一个单位长度,你能表示 “碑林”的位置吗?“大
成殿”的位置呢?
6 5 4 3 2 1
-8 -7 -6 -5 -4 -3 -2 -1 0 -1 -2 -3 -4 -5 -6 -7 -8
1 2 345
自学检测1:(3分钟)
1、组成平面直角坐标系的两条数轴的关系是_互_相_垂__直_且 _有_公_共__原_点_,两条数轴分别置于_水_平_位__置_和铅__直_位_置__,取 _向__右__和__向_上_为正方向,水平的数轴叫_x_轴__或_____, 铅横直轴的数轴叫____或___y轴____。纵__轴___和__X_轴_统称坐 标y轴轴,它们的公共原点叫做直角坐标系的_____。
思考:当点P落在下列四个点的位置,则它们的横坐标和纵坐标具
· 有什么特征? P(-,+)y 3
·(P +,+)
2
1
·-4 -3 -2 -1 0
P(-,-)-1
-2
x
1234
·(P +,-)
各个象限内点的坐标的特征:
> > 若点P(a,b)在第一象限,则a___0,b___0; < > 若点P(a,b)在第二象限,则a___0,b___0; < < 若点P(a,b)在第三象限,则a___0,b___0; > < 若点P(a,b)在第四象限,则a___0,b___0.
原点
2别、叫两做条__坐__标_轴__把__平__面_分__为_______四______个_部__分__,__这__四_部_ ,分是分按 什么方第向一确象定限的,?第二你象能限在,图第形三标象限出,这第四四个象象限限吗?
3、x轴和y轴属于哪个象限吗?
不属于
纵轴 y 5
第二象限 4
3 2
第一象限
1
纵轴 y 5
4
( -2,1 ) 3 2
· C 1
坐标是有序 的实数对。
( 2,3 )
A
··B ( 3,2 )
-4 -3 -2 -1 0 -1
-2
· -3
D ( -4,- 3 ) -4
1 2 3 4 5 x 横轴
·E ( 1,- 2 )
例1、写出如图 所示的六边形 ABCDEF各个 顶点的坐标
y
NF
②点P在y轴上,则a= 1 ;
③若a=-3 ,则P在第 3 象限内;
④若a=3,则点P在第 4 象限内.
2.若点P(x,y)在第四象限,|x|=2,
|y|=3,则P点的坐标为 P(2,-3).
3.已知点 P( a,b),Q(3,6)若 PQ ∥ x 轴,则 b的值为___6___,若PQ ∥ Y轴,则a的 值为____3___
A点在y 轴上的坐标为2,叫纵坐标
纵轴 5
4
B(- 4 , 1 )
3 2

1
yA点在平面直角坐标系中
的坐标为(3, 2)
记作:A(3,2)
· · C A
X轴上的坐标 写在前面
-4 -3 -2 -1 0 -1
1 2 3 4 5x
横轴
-2
如图所示,C点的坐
-3
标为_C_(_2_,_3_)_。
-4
练习:写出图中A、B、C、D、E各点的坐标。
为0。
自学检测2:(6分钟)
1.完成P154随堂练习-1T,知识技能-1T 2.点A(3,4)到x轴的距离是__4__,到y轴的
距离是____3___,到原点的距离是___5_。 3.点D(3,0)和点E(0,4)之间的距离为
___5__。 4.若点P(x,y)在第四象限,|x|=2,
|y|=3,则P点的坐标为(2,-3).
③若a=-3,则P在第 三 象限内;
④若a=3 ,则点P在第 四 象限内.
自学指导3: (4 分钟) 1.自学P153“想一想”,并回答所提的问题。 2.完成“做一做”所提的问题。
想一想:
1.点B与点C的纵 坐标相同,线段 BC的位置有什么 特点? 2.线段CE的位置 有什么特点? 3.坐标轴上点的的 坐标有什么特点?
复习回顾:
1. 在平面内,确定一个点的位置需要 几个数据?
2.如果用(3,2)表示第三列第二个 同学,那么第五列第四个同学应该如何表 示?
3.数轴的三要素是什么?
5.2平面直角坐标系 (第一课时)
学习目标:(1分钟)
1.了解平面直角坐标系的有关概念,并能正确 画出直角坐标系。 2.理解点的坐标的含义,了解点的坐标是一个 有序实数对,能在平面直角坐标系中写出点的 坐标。 3.探索并掌握直角坐标系中各个特殊位置上的 点的坐标特点。
亲爱的读者: 春去春又回,新桃换旧符。在那桃花盛开 的地方,在这醉人芬芳的季节,愿你生活像 春天一样阳光,心情像桃花一样美丽,感谢 你的阅读。
4.实数 x,y满足 x2+ y2= 0,则点 P( x,y)
在( A )
A.原点
B.x轴正半轴
C.第一象限
D.任意位置
5.点 A 在第一象限,当 m =
时,点 A
( m + 1,3m - 5)到x轴的距离是它到 y轴距
离的一半 .
回顾与小结:
1.点的坐标的定义,能在平面直角坐标系 中写出一个点的坐标;能根据坐标求出点 到坐标轴的距离。 2.各象限内点的坐标符号特点。 3.x 轴、y轴上的点的坐标特点;原点的 坐标为(0,0)。
平面内点的坐标的确定方法:
对于平面内任意一 y 点P,过点P分别向x a 轴、y轴作垂线,垂足 b 在x轴、y轴上对应的 数a、b分别叫做点P
的横坐标与纵坐标, 有序数对(a,b)叫做 o 点P的坐标
∟ ∟
..A(b,a) p (a, b)
ba
x
点A和点P表示的是同一个点吗?
A点在x 轴上的坐标为3,叫横坐标
3
M
2
A1
-3 -2 -1 1 2 3 4 5 -1
-2 -3
1. M解点:到A(x-轴2,和0)y轴的B(距0离,-各3)是多少?N点的呢?
2.在直角C(坐3标,-系3)中,D任(意4,一0)点到X轴和Y轴的距 离与它的E(横3,坐3标)和纵F坐(标0,有3)怎样的关系? 点到X轴的距离等于纵__坐__标_的__绝_对__值_,到Y轴的 距离等于_横_坐__标_的__绝_对__值_ 。
自学指导1:(3分钟)
认真阅读课本P59例1上面的内容,思考 并完成:
1.P58上面的两个问题。 2.理解平面直角坐标系有关的概念,并会画 出平面直角坐标系。
如图是某市旅游景 点的示意图。
1.你是怎样确定各个景点 的位置的?
2.“大成殿”在“中心广 场”的西、南各多少格? 碑林在“中心广场”的东、 北各多少格?
思考:当点P落在X轴、Y轴上时,它的横坐标、纵坐标又有什么特 征呢?落在原点上呢?
y
任何一个在 y轴上的点的 横坐标都为0。
-4 -3 -2 -1
Байду номын сангаас
·3 P(0,b)
2
1 0
(P a,0)
· 1 2 3 4 5 x
-1
(0,0) -2
落在 原点上的点 的横坐标、纵坐标都 -3
任何一个在 x轴上的点 的纵坐标都为0。
相关文档
最新文档