传感器原理及应用实验指导书

合集下载

传感器实验指导书2023

传感器实验指导书2023

传感器实验指导书
一、实验目的
本实验旨在帮助学生了解和掌握各种传感器的原理及应用,通过实际操作加深对传感器技术的理解,提高实践能力和创新思维。

二、实验器材
电阻式传感器
电容式传感器
电感式传感器
压电式传感器
磁电式传感器
热电式传感器
光电式传感器
光纤传感器
化学传感器
生物传感器
三、实验步骤与操作方法
电阻式传感器实验:
(1)将电阻式传感器接入电路,测量其阻值;
(2)改变被测物体的电阻值,观察电路中电压或电流的变化;
(3)记录实验数据,分析电阻式传感器的输出特性。

电容式传感器实验:
(1)将电容式传感器接入电路,测量其电容值;
(2)改变被测物体的介电常数,观察电路中电压或电流的变化;
(3)记录实验数据,分析电容式传感器的输出特性。

电感式传感器实验:
(1)将电感式传感器接入电路,测量其电感值;
(2)改变被测物体的磁导率,观察电路中电压或电流的变化;
(3)记录实验数据,分析电感式传感器的输出特性。

压电式传感器实验:
(1)将压电式传感器接入电路,测量其输出电压;(2)施加压力或振动,观察电路中电压的变化;(3)记录实验数据,分析压电式传感器的输出特性。

磁电式传感器实验:
(1)将磁电式传感器接入电路,测量其输出电压;(2)改变磁场强度,观察电路中电压的变化;
(3)记录实验数据,分析磁电式传感器的输出特性。

传感器实验指导书

传感器实验指导书

传感器特性实验目录传感器特性实验目录 (1)一、基础型实验部分 (3)实验一金属箔式应变片单臂电桥性能实验 (3)实验二金属箔式应变片半桥性能实验 (5)实验三金属箔式应变片全桥性能实验 (6)实验四金属箔式应变片单臂、半桥、全桥性能比较 (7)实验五金属箔式应变片全桥温度影响实验 (8)实验六直流全桥的应用—电子秤实验 (9)实验七交流全桥的应用—振动测量实验 (9)实验八压阻式压力传感器压力测量实验 (11)* 实验九扩散硅压阻式压力传感器差压测量 (13)实验十差动变压器位移性能实验 (14)实验十一激励频率对差动变压器特性的影响 (16)实验十二差动变压器零点残余电压补偿实验(1、2) (17)实验十三差动变压器的应用—振动测量实验 (19)实验十四电容式位移传感器位移测量实验 (21)实验十五电容式位移传感器的动态特性实验 (23)实验十六直流激励时接触式霍尔位移传感器特性实验 (25)实验十七交流激励时霍尔式位移传感器特性实验 (26)实验十八霍尔位移传感器振动测量 (27)实验十九霍尔式位移传感器的应用―电子秤实验 (28)实验二十霍尔转速传感器测速实验 (28)实验二十一磁电式转速传感器测速实验 (29)* 实验二十二用磁电式传感器测量振动实验 (30)实验二十三压电式传感器振动测量实验 (31)实验二十四电涡流传感器位移实验 (32)实验二十五被测体材质对电涡流传感器特性影响实验 (33)实验二十六被测体面积大小对电涡流传感器的特性影响实验 (34)实验二十七电涡流传感器测量振动实验 (35)实验二十八电涡流传感器的应用―电子秤实验 (36)* 实验二十九电涡流转速传感器 (37)实验三十光纤传感器的位移特性实验 (38)实验三十一光纤传感器测量振动实验 (39)实验三十二光纤传感器测量转速实验 (40)实验三十三光电转速传感器的转速测量实验 (41)实验三十四利用光电传感器测转速的其它方案* (43)实验三十五热电偶测温性能实验 (43)实验三十六热电偶冷端温度补偿实验 (45)实验三十七热电阻测温特性实验 (46)实验三十八集成温度传感器温度特性实验 (48)实验三十九气体流量的测定实验* (51)实验四十气敏(酒精)传感器气体浓度测量实验 (52)实验四十一湿度传感器湿度测量实验 (53)实验四十二移相器实验 (53)实验四十三相敏检波器实验 (55)实验四十四SET传感器特性实验软件操作 (59)二、增强型实验部分 (65)实验一热释电远红外传感器辐射特性 (65)实验二--- 实验五、光电传感器特性实验(光敏电阻、光电池、光敏二极管、光敏三极管) (67)实验六光纤温度传感器实验 (70)实验七光纤压力传感器实验 (71)实验八光栅位移传感器(原理型)实验 (71)实验九增量型光电编码器传感器(原理型)实验 (73)实验十超声测距传感器实验 (74)* 实验十一超声波传感器的运用 (75)实验十二矩传感器原理实验 (75)* 实验十三扭矩传感器的不同形式 (77)实验十四PSD位置传感器位置测量实验 (77)实验十五PSD位置传感器微振动测量实验 (79)* 实验十六PSD位置传感器用于自动定位 (79)实验十七CCD图像传感器线(圆)径测量实验 (79)实验十八J型热电偶温度特性实验 (83)实验十九T型热电偶温度特性实验 (83)实验二十半导体热敏电阻温度特性实验 (83)实验二十一表面无损探伤实验 (83)实验二十二指纹传感器(带控制输出)认知实验 (84)* 实验二十三指纹传感器计算机图像采集实验 (88)* 实验二十四红外辐射温度传感器实验 (88)* 实验二十五颜色识别传感器颜色识别实验 (89)* 实验二十六微波传感器运用实验 (90)* 实验二十七zigbee无线传感器网络实验 (90)* 实验二十八光栅位移传感器(测量型)实验(1) (90)* 实验二十九光栅位移传感器(测量型)实验(2) (91)* 实验三十环境监测实验(另附)一、基础型实验部分实验一金属箔式应变片单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

汽车传感器与测试技术实验指导书(2个实验)

汽车传感器与测试技术实验指导书(2个实验)

实验一位移传感器性能实验一、实验目的:1、、了解电涡流传感器原理;2、掌握电涡流传感器的应用方法;二、基本原理:电涡流传感器的基本原理通以高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。

三、需用器件与单元:电涡流传感器、电涡流传感器实验模块、测微头、直流电源、数显单元(主控台电压表)、测微头、铁圆片。

四、实验步骤:测微头的组成与使用测微头组成和读数如图8-2测微头读数图图8-2 测位头组成与读数测微头组成:测微头由不可动部分安装套、轴套和可动部分测杆、微分筒、微调钮组成。

测微头读数与使用:测微头的安装套便于在支架座上固定安装,轴套上的主尺有两排刻度线,标有数字的是整毫米刻线(1mm/格),另一排是半毫米刻线(0.5mm/格);微分筒前部圆周表面上刻有50等分的刻线(0.01mm/格)。

用手旋转微分筒或微调钮时,测杆就沿轴线方向进退。

微分筒每转过1格,测杆沿轴方向移动微小位移0.01毫米,这也叫测微头的分度值。

测微头的读数方法是先读轴套主尺上露出的刻度数值,注意半毫米刻线;再读与主尺横线对准微分筒上的数值、可以估读1/10分度,如图8-2甲读数为3.678mm,不是 3.178mm;遇到微分筒边缘前端与主尺上某条刻线重合时,应看微分筒的示值是否过零,如图6-2乙已过零则读2.514mm;如图8-2丙未过零,则不应读为2mm,读数应为1.980mm。

测微头使用:测微头在实验中是用来产生位移并指示出位移量的工具。

一般测微头在使用前,首先转动微分筒到10mm处(为了保留测杆轴向前、后位移的余量),再将测微头轴套上的主尺横线面向自己安装到专用支架座上,移动测微头的安装套(测微头整体移动)使测杆与被测体连接并使被测体处于合适位置(视具体实验而定)时再拧紧支架座上的紧固螺钉。

当转动测微头的微分筒时,被测体就会随测杆而位移。

电涡流传感器测位移1)电涡流传感器和测微头的安装、使用参阅图8-5。

传感器实验指导书

传感器实验指导书

传感器(检测与转换)实验指导书李欣编著目录实验一电阻式传感器的单臂电桥性能实验 (3)实验二电阻式传感器的半桥性能实验 (6)实验三电阻式传感器的全桥性能实验 (8)实验四变面积式电容传感器特性实验 (10)实验五差动式电容传感器特性实验 (13)实验六差动变压器的特性实验 (14)实验七自感式差动变压器的特性实验 (16)实验八光电式传感器的转速测量实验 (18)实验九接近式霍尔传感器实验 (20)实验十涡流传感器的位移特性实验 (22)实验十一温度传感器及温度控制实验(AD590) (24)实验十二超声波传感器的位移特性实验 (27)附录一计算机数据采集系统的使用说明 (29)附录二检测与转换技术(传感器)实验台使用手册 (31)实验一电阻式传感器的单臂电桥性能实验一、实验目的1、了解电阻应变式传感器的基本结构与使用方法。

2、掌握电阻应变式传感器放大电路的调试方法。

3、掌握单臂电桥电路的工作原理和性能。

二、实验所用单元电阻应变式传感器、调零电桥、差动放大器板、直流稳压电源、数字电压表、位移台架。

三、实验原理及电路1、电阻丝在外力作用下发生机械变形时,其阻值发生变化,这就是电阻应变效应,其关系为:ΔR/ R=Kε,ΔR为电阻丝变化值,K为应变灵敏系数,ε为电阻丝长度的相对变化量ΔL/ L。

通过测量电路将电阻变化转换为电流或电压输出。

2、电阻应变式传感如图1-1所示。

传感器的主要部分是下、下两个悬臂梁,四个电阻应变片贴在梁的根部,可组成单臂、半桥与全桥电路,最大测量范围为±3mm。

11─外壳2─电阻应变片3─测杆4─等截面悬臂梁5─面板接线图图1-1 电阻应变式传感器3、电阻应变式传感的单臂电桥电路如图1-2所示,图中R1、R2、R3为固定,R为电阻应变片,输出电压U O=EKε,E为电桥转换系数。

图1-2 电阻式传感器单臂电桥实验电路图四、实验步骤1、固定好位移台架,将电阻应变式传感器置于位移台架上,调节测微器使其指示15mm 左右。

传感器实验指导书

传感器实验指导书

前言CSY系列传感器与检测技术实验台主要用于各大、中专院校及职业院校开设的“传感器原理与技术”“自动化检测技术”“非电量电测技术”“工业自动化仪表与控制”“机械量电测”等课程的实验教学。

CSY系列传感器与检测技术实验台上采用的大部分传感器虽然是教学传感器(透明结构便于教学),但其结构与线路是工业应用的基础,希望通过实验帮助广大学生加强对书本知识的理解,并在实验的进行过程中,通过信号的拾取,转换,分析,掌握应具有的基本的操作技能与动手能力。

CSY2000与3000系列传感器与检测技术实验台是本公司多年生产传感技术教学实验装置的基础上,为适应不同类别、不同层次的专业需要而设计的新产品。

其优点在于:1、适应不同专业的需要,不同专业可以有不同的菜单,本公司还可以为用户的特殊要求制作模板。

2、能适应不断发展的形势,作为信息拾取的工具,传感器发展很快,可以不断补充新型的传感器模板。

3、可以利用实验台的信号源、实验电路、传感器用于学生课程设计、毕业设计和自制装置。

为了让老师、学生尽快熟悉掌握实验台的使用方法,本手册列举了一些实验示范例子,老师、学生通过实验示范例子举一反三可以自己组织开发很多实验顶目。

本手册由于编写时间、水平所限,难免有疏漏错误之处,热切期望老师与学生们提出宝贵的意见,予以完善,谢谢。

目录CSY-2000型传感器与检测技术实验台说明书 (5)CSY-3000型传感器与检测技术实验台说明书 (8)示范实验目录2000系列基本实验举例实验一应变片单臂电桥性能实验 (11)实验二应变片半桥性能实验 (17)实验三应变片全桥性能实验 (18)实验四应变片单臂、半桥、全桥性能比较实验 (20)实验五应变片直流全桥的应用—电子秤实验 (21)实验六应变片温度影响实验 (22)实验七移相器、相敏检波器实验 (23)实验八应变片交流全桥(应变仪)的应用—振动测量实验 (27)实验九压阻式压力传感器测量压力特性实验 (30)*实验十压阻式压力传感器应用—压力计实验 (32)实验十一差动变压器的性能实验 (32)实验十二激励频率对差动变压器特性影响实验 (37)实验十三差动变压器零点残余电压补偿实验 (38)实验十四差动变压器测位移特性实验 (39)实验十五差动变压器的应用—振动测量实验 (41)实验十六电容式传感器测位移特性实验 (43)实验十七线性霍尔传感器测位移特性实验 (45)实验十八线性霍尔传感器交流激励时位移特性实验 (48)实验十九开关式霍尔传感器测转速实验 (50)实验二十磁电式转速传感器测转速实验 (51)实验二十一压电式传感器测振动实验 (53)实验二十二电涡流传感器测量位移特性实验 (57)实验二十三被测体材质对电涡流传感器特性影响实验 (60)实验二十四被测体面积大小对电涡流传感器特性影响实验 (61)实验二十五电涡流传感器测量振动实验 (62)实验二十六光纤位移传感器测位移特性实验 (63)实验二十七光电传感器测量转速实验 (66)实验二十八光电传感器控制电机转速实验 (67)实验二十九温度源的温度调节控制实验 (75)实验三十 Pt100铂电阻测温特性实验 (79)实验三十一Cu50铜电阻测温特性实验 (85)实验三十二 K热电偶测温特性实验 (86)实验三十三 K热电偶冷端温度补偿实验 (92)实验三十四 E热电偶测温特性实验 (95)实验三十五集成温度传感器(AD590)的温度特性实验 (96)实验三十六气敏传感器实验 (99)实验三十七湿度传感器实验 (100)实验三十八数据采集系统实验—静态举例 (102)实验三十九数据采集系统实验—动态举例 (104)3000系列实验(包含2000系列基本实验外,还包含以下实验。

传感器技术实验指导书

传感器技术实验指导书

实验四电涡流传感器位移特性实验一、实验目的:1、了解电涡流传感器测量位移的工作原理和特性。

2、了解不同的被测体材料对电涡流传感器性能的影响。

3、了解电涡流传感器位移特性与被测体的形状和尺寸有关。

二、基本原理:电涡流式传感器是一种建立在涡流效应原理上的传感器。

电涡流式传感器由传感器线圈和被测物体(导电体—金属涡流片)组成,如图4-1所示。

根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz~2MHz)I1时,线圈周围空间会产生交变磁场H1,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流I2,而I2所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z发生变化。

我们可以把被测导体上形成的电涡等效成一个短路环,这样就可得到如图4-2的等效电路。

图中R1、L1为传感器线圈的电阻和电感。

短路环可以认为是一匝短路线圈,其电阻为R2、电感为L2。

线圈与导体间存在一个互感M,它随线圈与导体间距的减小而增大。

图4-1电涡流传感器原理图图4-2电涡流传感器等效电路图根据等效电路可列出电路方程组:通过解方程组,可得I1、I2。

因此传感器线圈的复阻抗为:线圈的等效电感为:线圈的等效Q值为:Q=Q0{[1-(L2ω2M2)/(L1Z22)]/[1+(R2ω2M2)/(R1Z22)]}式中:Q0—无涡流影响下线圈的Q值,Q0=ωL1/R1;Z22—金属导体中产生电涡流部分的阻抗,Z22=R22+ω2L22。

由式Z、L和式Q可以看出,线圈与金属导体系统的阻抗Z、电感L和品质因数Q值都是该系统互感系数平方的函数,而从麦克斯韦互感系数的基本公式出发,可得互感系数是线圈与金属导体间距离x(H)的非线性函数。

因此Z、L、Q均是x的非线性函数。

虽然它整个函数是一非线性的,其函数特征为"S"型曲线,但可以选取它近似为线性的一段。

湿度传感器环境湿度测量实验指导书

湿度传感器环境湿度测量实验指导书

湿度传感器环境湿度测量实验指导书湿度传感器环境湿度测量实验指导书一、实验目的通过使用湿度传感器,对环境湿度进行实时测量,并将其输出到监测设备上。

通过本次实验,可以使学生了解湿度传感器的工作原理、选择合适的传感器进行测量,并对其输出进行实时监测。

二、实验原理湿度传感器是一种能够测量空气湿度的传感器,其测量原理为利用电容法、电阻法、热导法等技术对气体水分含量进行测量。

其中,电容法是一种常用的湿度传感器测量方法,其原理为利用一对平行板电极分别将湿度元件表面的吸湿层与一个测量电容器锁定在一起,当空气中的水分子与湿度元件表面的吸湿层分子相互作用时,吸湿层的电容值发生变化,从而通过测量电容器的电容值的变化来计算出环境湿度值。

三、实验器材1.湿度传感器;2.温湿度计;3.电路板;4.电源;5.直流稳压电源;6.串联电阻;7.多用表。

四、实验步骤1.将电路组装完成后,接通直流稳压电源;2.使用多用表检测电路连通情况,确认电路正常工作;3.放置湿度传感器,并使用温湿度计检测环境湿度值;4.读数并记录实验数据。

五、实验注意事项1.在实验中,要注意湿度传感器的选择,不同类型的传感器会有差异,因此要根据实际需要选择适当的传感器;2.实验中不要将湿度传感器暴露在阳光下,避免直接受热;3.多用表的选择要根据实验需要选择,比如需要对电容值进行测量,就要选择电容表;4.在进行实验时,要注意走线的正确连接,避免出现电路连接错误的情况;5.在进行实验过程中,要仔细观察和记录数据,并在实验结束后,对实验结果进行分析和总结。

六、实验结论通过本次实验,我们了解了湿度传感器的工作原理、选择合适的传感器进行测量,并对其输出进行实时监测。

在实验中,我们还需要注意选用适当的工具和方法,以确保实验顺利进行。

最终我们得到了实验数据,并在实验结束后进行了数据分析和总结,为今后的工作提供了有力的基础。

传感器实验仪实验指导书(应变 电容 霍尔 光电_光纤)2020.10.15

传感器实验仪实验指导书(应变 电容 霍尔 光电_光纤)2020.10.15

目录实验一金属箔式应变计三种桥路性能比较 (2)实验二电容传感器性能实验 (5)实验三霍尔式传感器—直流激励特性 (7)实验四光电开关传感器转速测量 (9)实验五光纤位移传感器静态实验 (11)实验一 金属箔式应变计三种桥路性能比较一、实验目的1、掌握应变传感器的基本工作原理;2、掌握应变传感器的测量电路(电桥电路);3、学习传感器与计算机进行通信的方法;4、掌握利用虚拟仪器技术进行数据采集;5、掌握对测试数据进行静态特性分析的方法;6、验证单臂、半桥、全桥的性能及相互之间关系。

二、预习要求1、认真阅读实验指导书,明确本次实验的目的,首先从理论上明白三种桥式电路的工作原理以及在本次实验中作用。

2、按照实验指导书的实验内容及步骤写出详细的实验步骤。

3、绘制与之对应的实验线路图,并说明详细的接线方法。

三、实验原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:/R R K ε∆=。

式中/R R ∆为电阻丝电阻的相对变化,K 为应变灵敏系数,/l l ε=∆为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

单臂电桥输出电压/4o U EK ε=,只有一个桥臂电阻是应变片,其余为固定电阻。

半桥测量电路中,将受力性质相反的两应变片接入电桥邻边,其余两个临边接固定电阻,输出电压/2o U EK ε=,其输出灵敏度比单臂桥提高了一倍;全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,当应变片初始阻值:R1= R2= R3= R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压o U KE ε=。

其输出灵敏度比半桥提高了一倍,非线性误差和温度误差均得到改善。

四、实验仪器(所需单元及部件)直流稳压电源、差动变换器I 、电桥、电压表、砝码、应变片传感器、电源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

使用说明CSY系列(CSY.CSY10.CSY10A.CSY10B)传感器系统实验仪是用于检测仪表类课程教学实验的多功能教学仪器。

其特点是集被测体、各种传感器、信号激励源、处理电路和显示器于一体,可以组成一个完整的测试系统。

通过实验指导书所提供的数十种实验举例,能完成包含光、磁、电、温度、位移、振动、转速等内容的测试实验。

通过这些实验,实验者可对各种不同的传感器及测量电路原理和组成有直观的感性认识,并可在本仪器上举一反三开发出新的实验内容。

实验仪主要由实验工作台、处理电路、信号与显示电路三部分组成。

各款实验仪的传感器配置及布局是:(具体布局详见各款仪器工作台布局图)一、位于仪器顶部的实验工作台部分,左边是一副平行式悬臂梁,梁上装有应变式、热敏式、P-N结温度式、热电式和压电加速度五种传感器。

平行梁上梁的上表面和下梁的下表面对应地贴有八片应变片,受力工作片分别用符号和表示。

其中六片为金属箔式片(BHF-350)。

横向所贴的两片为温度补偿片,用符号和表示。

片上标有“BY”字样的为半导体式应变片,灵敏系数130。

(CSY10B型应变梁上只贴有半导体应变计。

)热电式(热电偶):串接工作的两个铜一康铜热电偶(T分度)分别装在上、下梁表面,冷端温度为环境温度。

分度表见实验指导书。

(CSY10B型上梁表面安装一支K分度标准热电偶。

)热敏式:上梁表面装有玻璃珠状的半导体热敏电阻MF-51,负温度系数,25℃时阻值为8~10K。

P-N结温度式:根据半导体P-N结温度特性所制成的具有良好线性范围的集成温度传感器。

压电加速度式:位于悬臂梁自由端部,由PZT-5双压电晶片、铜质量块和压簧组成,装在透明外壳中。

实验工作台左边是由装于机内的另一副平行梁带动的圆盘式工作台。

圆盘周围一圈安装有(依逆时针方向)电感式(差动变压器)、电容式、磁电式、霍尔式、电涡流式、压阻式等传感器。

电感式(差动变压器):由初级线圈Li和两个次级线圈L。

绕制而成的空心线圈,圆柱形铁氧体铁芯置于线圈中间,测量范围>10mm。

电容式:由装于圆盘上的一组动片和装于支架上的两组定片组成平行变面积式差动电容,线性范围≥3mm。

磁电式:由一组线圈和动铁(永久磁钢)组成,灵敏度0.4V/m/s。

霍尔式:半导体霍尔片置于两个半环形永久磁钢形成的梯度磁场中,线性范围≥3mm。

电涡流式:多股漆包线绕制的扁平线圈与金属涡流片组成的传感器,线性范围>1mm。

MPX压阻式:摩托罗拉扩散硅压力传感器,差压工作,测压范围0~50K P。

精度1%。

(CSY10B)湿敏传感器:高分子湿敏电阻,测量范围:0~99%RH。

气敏传感器:MQ3型,对酒精气敏感,测量范围10-2000PPm,灵敏度R O/R >5。

光敏传感器:半导体光导管,光电阻与暗电阻从nMΩ至nKΩ双孔悬臂梁称重传感器:称重范围0~500g,精度1%。

光电式传感器装于电机侧旁。

两副平行式悬臂梁顶端均装有置于激振线圈内的永久磁钢,右边圆盘式工作台由“激振I”带动,左边平行式悬臂梁由“激振II”带动。

为进行温度实验,左边悬臂梁之间装有电加热器一组,加热电源取自15V直流电源,打开加热开关即能加热,工作时能获得高于温度30℃左右的升温。

以上传感器以及加热器、激振线圈的引线端均位于仪器下部面板最上端一排。

实验工作台上还装有测速电机一组及控制、调速开关。

(CSY10B装有激振转换开关)两支测微头分别装在左、右两边的支架上。

(CSY10B只有右边一支)二、信号及仪表显示部分:位于仪器上部面板低频振荡器:1~30Hz输出连续可调,Vp-p值20V,最大输出电流1.5A,Vi 端插口可提供用作电流放大器。

音频振荡器:0.4KHz~10KHz输出连续可调,Vp-p值20V,180°、0°为反相输出,Lv端最大功率输出1.5A。

直流稳压电源:±15V ,提供仪器电路工作电源和温度实验时的加热电源,最大输出1.5A 。

±2V~±10V ,档距2V ,分五档输出,提供直流信号源,最大输出电流1.5A 。

数字式电压/频率表:3 位显示,分2V 、20V 、2KHz 、20KHz 四档,灵敏度≥50mV ,频率显示5Hz~20KHz 。

指针式直流毫伏表:测量范围500Mv 、50mV 、5mV 三档,精度2.5%。

数字式温度计:K 分度热电偶测温,精度±1℃。

(CSY 10B 型)三、处理电路:位于仪器下部面板电桥:用于组成应变电桥,面板上虚线所示电阻为虚设,仅为组桥提供插座。

R 1、R 2、R 3为350Ω标准电阻,W D 为直流调节电位器,W A 为交流调节电位器。

差动放大器:增益可调直流放大器,可接成同相、反相、差动结构,增益1-100倍。

光电变换器:提供光纤传感器红外发射、接收、稳幅、变换,输出模拟信号电压与频率变换方波信号。

四芯航空插座上装有光电转换装置和两根多模光纤(一根接收,一根发射)组成的光强型光纤传感器。

电容变换器:由高频振荡、放大和双T 电桥组成。

移相器:允许输入电压20Vp-p ,移相范围±40°(随频率不同有所变化)。

相敏检波器:集成运放极性反转电路构成,所需最小参考电压0.5Vp-p ,允许最大输入电压≦20Vp-p 。

电荷放大器:电容反馈式放大器,用于放大压电加速度传感器输出的电荷信号。

电压放大器:增益5倍的高阻放大器。

涡流变换器:变频式调幅变换电路,传感器线圈是三点式振荡电路中的一个元件。

温度变换器(信号变换器):根据输入端热敏电阻值、光敏电阻及P -N 结温度传感器信号变化输出电压信号相应变化的变换电路。

低通滤波器:由50Hz 陷波器和RC 滤波器组成,转折频率35Hz 左右。

使用仪器时打开电源开关,检查交、直流信号源及显示仪表是否正常。

仪器下部面板左下角处的开关控制处理电路的工作电源,进行实验时请勿关掉。

12指针式毫伏表工作前需输入端对地短路调零,取掉短路线后指针有所偏转是正常现象,不影响测试。

请用户注意,本仪器是实验性仪器,各电路完成的实验主要目的是对各传感器测试电路做定性的验证,而非工程应用型的传感器定量测试。

各电路和传感器性能建议通过以下实验检查是否正常:1.应变片及差动放大器,参考附图2进行单臂、半桥和全桥实验,各应变片是否正常可用万用表电阻档在应变片两端测量其阻值。

各接线图两个节点间即为一实验接插线,接插线可多根迭插,并保证接触良好。

2.半导体应变片,进行半导体应变片直流半桥实验。

3.热电偶,按附图4接线,加热器打开即可,观察随温度升高热电势的变化。

4.热敏式,按附图5接线,进行“热敏传感器实验”,电热器加热升温,观察随温度升高“V0”端输出电压变化情况,注意热敏电阻是负温度系数。

5.P-N结温度式,进行P-N结集成温度传感器测温实验,注意电压表2V档显示值为绝对温度T(K氏温度)。

6.进行“移相器实验”,用双踪示波器观察两通道波形。

7.进行“相敏检波器实验”,相敏检波端口序数请参照附图6,其中4端为参考电压输入端。

8.进行“电容式传感器特性”实验,接线参照附图7。

当振动圆盘带动动片上下移动时,电容变换器V0端电压应正负过零变化。

9.进行“光纤传感器——位移测量”,光纤探头可安装在原电涡流线圈的横支架上固定,端面垂直于镀铬反射片,旋动测微头带动反射片位置变化,从“V0”端读出电压变化值。

光电变换器“F0”端输出频率变化方波信号。

测频率变化时可参照“光纤传感器——转速测试”步骤进行。

10.进行光电式传感器测速实验,V F端输出的是频率信号。

11. 进行光敏电阻测光实验,信号变换器输出电压变化范围>1V。

12. 进行气敏传感器特性实验,特别注意加热电压一定不能>±2V。

13. 进行湿敏传感器特性演示实验,注意控制激励信号的频率及幅值。

14. 进行扩散硅压力传感器实验,试验传感器差压信号输出情况。

15.将低频振荡器输出信号送入低通滤波器输入端、输出端用示波器观察,注意根据低通输出幅值调节输入信号大小。

16.进行“差动变压器性能”实验,检查电感式传感器性能,实验前要找出次级线圈同名端,次级所接示波器为悬浮工作状态。

17.进行“霍尔式传感器直流激励特性”实验,接线参照附图9,直流激励信号绝对不能大于2V!否则一定会造成霍尔元件烧坏。

18.进行“磁电式传感器”实验,磁电传感器两端接差动放大器输入端,差动放大器增益适当控制,用示波器观察输出波形,参见附图12。

19.进行“压电加速度传感器”实验,接线参见附图13,传感器引线屏蔽层必须接地。

此实验与上述第12项内容均无定量要求。

20.进行“电涡流传感器的静态标定”实验,接线参照图11,其中示波器观察波形端口应在涡流变换器的左上方,即接电涡流线圈处,右上端端口为振荡信号经整流后的直流电压。

21.如果仪器是带微机接口和实验软件的,请参阅数据采集及处理说明。

数据采集卡已装入仪器中,其中A/D转换是12位转换器,无漏码最大分辨率1/2048(即0.05%),在此范围内的电压值可视为容许误差。

所以建议在做小信号实验(如应变电桥单臂实验)时选用合适的量程(如200mv),以正确选取信号,减小误差。

仪器后部的RS232接口请接计算机串行口工作。

所接串口须与实验软件设置一致,否则计算机将收不到信号。

仪器工作时需良好的接地,以减小干扰信号,并尽量远离电磁干扰源。

仪器的型号不同,传感器种类不同,则检查项目也会有所不同,请自行根据仪器型号选择实验内容。

上述检查及实验能够完成则整台仪器各部分均为正常。

实验时请非常注意实验指导书中实验内容后的“注意事项”,要在确认接线无误的情况下开启电源,尽量避免电源短路情况的发生,加热时“15V”电源不能直接接入应变片、热敏电阻和热电偶。

实验工作台上各传感器部分如相对位置不太正确可松动调节螺丝稍作调整,原则上以按下振动梁松手,周边各部分能随梁上下振动而无碰擦为宜。

附件中的称重平台是在实验工作台左边的悬臂梁旁的测微头取开后装于顶端的永久磁钢上方,铜质砝码做称重实验之用。

实验开始前请检查实验连接线是否完好,以保证实验顺利进行。

本实验仪需防尘,以保证实验接触良好,仪器正常工作温度-10℃~40℃。

目录使用说明实验内容(各型传感器实验仪按需选用)实验一箔式应变片性能――单臂电桥实验二箔式应变片三种桥路性能比较实验三箔式应变片的温度效应实验四应变电路的温度补偿实验五半导体应变片性能实验六半导体应变片直流半桥测试系统实验七箔式应变片与半导体应变片性能比较实验八移相器实验实验九相敏检波器实验实验十箔式应变片组成的交流全桥实验十一激励频率对交流全桥的影响实验十二交流全桥的应用――振幅测量实验十三交流全桥组成的电子秤实验十四差动变压器性能实验十五差动变压器零残电压的补偿实验十六差动变压器的标定实验十七差动变压器的振动测量实验十八差动螺管式电感传感器位移测量实验十九差动螺管式电感传感器振幅测量实验二十激励频率对电感传感器的影响实验二十一热电式传感器――热电偶实验二十二热敏式温度传感器测温实验实验二十三P-N 结集成温度传感器实验二十四光纤位移传感器――位移测量实验二十五光纤传感器-转速测量实验二十六光电传感器的应用――光电转速测试实验二十七霍尔式传感器的直流激励特性实验二十八霍尔式传感器的交流激励特性实验二十九霍尔传感器的应用――振幅测量实验三十霍尔传感器的应用――电子秤实验三十一电涡流式传感器的静态标定实验三十二被测材料对电涡流传感器特性的影响实验三十三电涡流式传感器的振幅测量实验三十四电涡流传感器的称重实验实验三十五电涡流传感器电机测速实验实验三十六磁电式传感器实验三十七压电加速度传感器实验三十八电容式传感器特性实验三十九扩散硅压力传感器(MPX)实验实验四十气敏传感器特性实验四十一湿敏传感器特性演示实验四十二综合传感器—力平衡式传感器实验四十三双平行梁的动态特性—正弦稳态响应实验四十四微机检测与转换—数据采集与处理实验四十五光敏电阻实验实验一 箔式应变片性能――单臂电桥一、实验目地:1. 观察了解箔式应变片的结构及粘贴方式。

相关文档
最新文档