人教版六年级数学《解比例应用题》教学设计

合集下载

人教版数学六年级下册第17课解比例教学设计(精推3篇)

人教版数学六年级下册第17课解比例教学设计(精推3篇)

人教版数学六年级下册第17课解比例教学设计(精推3篇)〖人教版数学六年级下册第17课解比例教学设计第【1】篇〗教学目标:1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。

2、学会应用比例的意义和基本性质解决实际问题。

教学重点:掌握解比例的方法,会解比例。

教学难点:应用比例的意义和基本性质解决生活中的实际问题。

教法设计:讲解法、对比法、归纳法。

学法设计:合作交流、对比归纳。

教学准备:多媒体课件教学过程:一、复习铺垫,引入新课(一)汇报预习案上复习题。

1、解下列方程.χ=×2、应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?把组成的比例写出。

6∶10和9∶155∶1和6∶23、在括号里填上适当的数。

3:9=():156:0.8=():4可以根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

(板书课题)看到课题你想了解些什么?(出示学习目标)二、自主探究,合作交流,完成预习案。

三、汇报展示,引导点拨1、从题目中你获得了哪些信息?2、理解题意根据题意可知“模型的高度:原塔高度=1:10”,已知原塔的高度为320m,如果设模型的高χ米,则可列出比例式为():320=1:10根据比例的基本性质,两个外项χ与10相乘的积()两内项320与1的积。

(填等或不等):3、列式解答指名板演,老师点拨。

小结:这种方法叫做用比例解决实际问题。

4、小结解比例的方法及应注意的问题。

四、知识检测,达标提升1、解下面的比例2、解下面的比例(1)8︰12=X︰45(2)0.4︰X=1.2︰23、博物馆展出了一个高为19.6厘米的秦代将军俑模型,它的高度与实际高度的比是1:10。

这个将军俑的实际高度是多少?五、拓展延伸,总结激励作业布置:练习八7、10题。

板书:解比例1、什么叫做解比例例:1.5:2.5=6:X解2.5×6=1.5X1.5X=15X=10X:320=1:10解10X=320X=32教学内容:教材第42页例2、例3。

人教版数学六年级上册比的应用优秀教案(精选3篇)

人教版数学六年级上册比的应用优秀教案(精选3篇)

人教版数学六年级上册比的应用优秀教案(精选3篇)〖人教版数学六年级上册比的应用优秀教案第【1】篇〗教学内容教科书第27页的第4~5题,练习六的第4~6题.教学目的1.进一步理解用比例知识解答应用题的方法,用比例的方法正确解答有关应用题.2.沟通整数、分数、比和比例等知识的联系,会用不同知识,从不同角度,多种方法解答有关应用题.3.通过一题多解,培养学生思维的变通性和灵活性.教具、学具准备自制多媒体课件.教学过程一、揭示课题今天我们复习用比例的知识解答应用题.二、回忆用比例解应用题,具体步骤有哪些呢?让学生互相说一说,再指名说,最后教师总结如下:(1)判断.概括出题中两种有关联的量,找出题中隐蔽的定量,从而确定两种相关联的量成什么比例.(2)设未知数x,列方程.如果成正比例关系,列式是:x∶y=x1∶y1;如果成反比例关系,列式是:xy=x1y1.(3)解方程.(4)验算.(5)答题.三、分层练习1.基本练习.(1)判断下面每题中的两种量成什么比例.①速度一定,所行的路程和时间.②一本书的总字数一定,每行的字数与行数.③苹果的单价一定,购买的数量和总价.④工作总量一定,工作效率和魇奔洌/P>(2)实际运用.①晶晶借了一本112页的《安徒生童话》,她4天看了28页.以这样的速度,预计几天可以看完?学生独立练习后,小组内交流思考的'过程,教师巡视指导.②用一批纸装订同样大小的练习本,如果每本16张,可以装订300本.如果每本18张,可以装订多少本?学生独立练习后,小组内交流思考的过程,教师巡视指导.③蚯蚓能消化许多垃圾,有人将7.5吨垃圾运到一个蚯蚓养殖厂,78天后,这些垃圾全部被消化了.这个养殖厂一年可以消化约多少吨垃圾呢?学生独立练习后,小组内交流思考的过程,教师巡视指导,此题有两种答案.2.综合练习.(1)一篇文章原稿每行30个字,共96行,如果改为每行32个字,一页纸35行的版式,那么这篇文章需打印多少行?共需几页纸?提醒学生理解题目的意思后再独立解答,然后全班交流,教师评价.解:设需打印x行.30×96=32xx=9090÷35=2(页)……20(行)答:这篇文章需打印90行,共需3页纸.(2)扬扬骑车从家经过游乐场到少年宫,全程需1.5小时,如果她以同一速度从家骑车直接到少年宫,可以省多少时间?学生独立解答后,先在小组内交流思考的过程,再在全班交流,教师评价.可能出现的答案有:(1)解:设从家直接到少年宫,要x小时.(2)解:设可以省x小时.(11+7)∶1.5=15∶x (11+7)∶1.5=15∶(1.5-x)18x=1.5×15 或(11+7)∶1.5=(11+7-15)∶x18x=22.5 解答过程略.x=1.251.5-1.25=0.25(小时)答:可以省0.25小时.3.发展练习.六(2)中队少先队员订《少年科学》杂志,全中队共交了792元,各小队订阅情况如下表,请用自己喜欢的方法算出各小队应交的钱数.第一小队 10本()元第二小队 12本()元第三小队 11本()元学生独立用各种方法算,算完后互相交流各自的方法及思路,再在全班交流.可能的方法有:方法一:792÷(10+12+11)=24(元)方法二:792×10/33=240(元)24×10=240(元) 792×12/33=288(元)24×12=288(元) 792×11/33=264(元)24×11=264(元)答(略).答(略).方法三:解:设第一小队应交x元.792∶(10+12+11)=x∶10x=240答(略).〖人教版数学六年级上册比的应用优秀教案第【2】篇〗教学内容:冀教版小学数学六年级上二单元第5课时(比的应用)教学目标:1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;2、培养学生应用所学数学知识解决实际问题的能力,使学生真正成为课堂的主人;3、通过实例使学生感受到数学来源于生活,生活离不开数学。

人教版数学六年级下册解比例教案模板(精推3篇)

人教版数学六年级下册解比例教案模板(精推3篇)

人教版数学六年级下册解比例教案模板(精推3篇)〖人教版数学六年级下册解比例教案模板第【1】篇〗教学目的1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.教学重点通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.教学难点通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.教学过程一、复习准备.下面每题中的两种量成什么比例关系?(1)速度一定,路程和时间.(2)总价一定,每件物品的价格和所买的数量.(3)小朋友的年龄与身高.(4)正方体每一个面的面积和正方体的表面积.(5)被减数一定,减数和差.谈话引入:我们今天运用正反比例的知识来解决实际问题.(板书:用比例知识解应用题)二、探讨新知.(一)教学例5(用比例解答下题)修一条公路,总长12千米,开工3天修了1。

5千米.照这样计算,修完这条路还要多少天?1.学生读题,独立解答.2.学生反馈:3.分析:(1)为什么需要用正比例解答?(2)12和要求的天数之间有什么关系?4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的`对应关系.(二)反馈.1.某车队运送一批救灾物品,原计划每小时行60千米,6。

5小时到达灾区,实际每小时行了78千米.照这样计算,行完全程需要多少小时?2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?三、巩固反馈.1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?2.某车间有男工25人,女工20人.如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?4.两个底面半径相等的圆柱体,第一个圆柱的高是第二个圆柱高的.第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?四、课堂总结.通过这堂课的学习,你有什么收获?〖人教版数学六年级下册解比例教案模板第【2】篇〗教学目标:1、了解比在生活中的广泛应用。

人教版六年级数学《解比例应用题》教学设计

人教版六年级数学《解比例应用题》教学设计

《解比例应用题》教学设计【教学内容】义务教育课程标准实验教科书《数学》(人教版六年级下册)教材P59―60内容。

【教学目标】1.理解用比例解决问题的一般方法和技巧,学会用比例解决一般问题。

2.通过与前面旧知识的解决问题的方法对比,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力。

3. 发展学生的应用意识和实践能力。

【教学重点】运用正反比例解决实际问题。

【教学难点】正确判断两种量成什么比例。

【教材分析】解比例应用题是在学生理解了正、反比例的意义并学会解比例的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用.教材通过两个例题讲解正、反比例应用题的解法,通过讲解使学生掌握正反比例应用题的特点以及解题的步骤。

用正、反比例解应用题首先要根据题意分析数量关系,能从题目中找出两种相关联的量,这两种量中相对应的两个数的比值(或者积)是否一定,从而判断这两种量中是否成正(或者反)比例,然后设未知数列比例解答.判断的过程是正、反比例意义实际应用的过程,所以是比例应用题的难点,要予以高度重视.同时还要引导学生对“比例分配与正比例应用题”“正比例应用题与反比例应用题”这两组概念加以区别,从多角度、多方位提高学生对比例概念的理解和运用能力.【学情分析】解比例应用题是在学生已经掌握了“比例的基本知识”、同时在四五年级学习了简单的“归一应用题”的基础上进行教学的。

所以本节课可以重点体现“学生是数学学习的主人”, “以学生为中心”,“一切为了学生的发展”的教学理念。

学生对用比例解决问题已经有了一定的知识沉淀,所以在设计本节课时,老师力求让学生积极参与教学过程,通过让学生独立思考、小组讨论、自我展示、一题多解等多种形式的教学,完成“要我学”为“我要学”的转变过程;强化以人为本,重视培养学生的学习能力,突出学生的自主学习性,建立新型师生关系,营造民主的教学氛围。

另外,在练习的设计上,本节课力图通过加强对比训练,提高学生分析问题、解决问题的能力。

人教版数学六年级下册用比例解决问题优秀教案(推荐3篇)

人教版数学六年级下册用比例解决问题优秀教案(推荐3篇)

人教版数学六年级下册用比例解决问题优秀教案(推荐3篇) 人教版数学六年级下册用比例解决问题优秀教案【第1篇】用比例解决问题【教学目标】知识目标:使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路。

能力目标:能进一步熟练地判断成正比例的量和成反比例的量,加深对正反比例概念的理解,沟通知识间的联系。

情感目标:培养学生良好的解答应用题的习惯。

【教学重难点】重点:使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路。

难点:能进一步熟练地判断成正反比例的量,加深对正反比例概念的理解,沟通知识间的联系。

【教学过程】一、复习铺垫,引入新课(课件出示)判断下面每题中的两种量成什么比例?(1)速度一定,路程和时间.(2)路程一定,速度和时间.(3)单价一定,总价和数量.(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.(5)全校学生做操,每行站的人数和站的行数.二、探究新知1.教学例5(1)学生再次读题,理解题意。

思考和讨论下面的问题:①问题中有哪三种量?哪一种量一定?哪两种量是变化的?②它们成什么比例关系?你是根据什么判断的?③根据这样的比例关系,你能列出等式吗?(2)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。

也就是说,两家的水费和用水的吨数的比值是相等的。

(3)根据正比例的意义列出方程解:设李奶奶家上个月的水费是元。

=8=28×10==352.教学例6(1)出示例6情境图,你能说出这幅图的意思吗?题目中已知条件和所求的问题分别是什么?(指名回答)(2)学生根据例5的解题思路思考:题中已知两种量?什么是一定的?(总用电量)已知的两个量成什么关系?为什么?(因为“每天用电量×天数=总用电量”,所以每天用电量和天数成反比例关系。

)(3)学生独立解答,组织交流。

(4)指名板演,全班讲解。

解:设原来5天的用电量现在可以用几x天。

25x=100×5x=(100×5)/25x=20回顾与反思:解决这类问题的关键是什么?(找出哪两个量的乘积一定,只要两个量的乘积一定,就可以用比例关系解答。

人教版六年级数学下册《解比例应用题》教学设计

人教版六年级数学下册《解比例应用题》教学设计

《解比例应用题》教学设计【教学内容】义务教育课程标准实验教科书《数学》(人教版六年级下册)教材P59―60内容。

【教学目标】1.理解用比例解决问题的一般方法和技巧,学会用比例解决一般问题。

2.通过与前面旧知识的解决问题的方法对比,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力。

3. 发展学生的应用意识和实践能力。

【教学重点】运用正反比例解决实际问题。

【教学难点】正确判断两种量成什么比例。

【教材分析】解比例应用题是在学生理解了正、反比例的意义并学会解比例的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用.教材通过两个例题讲解正、反比例应用题的解法,通过讲解使学生掌握正反比例应用题的特点以及解题的步骤。

用正、反比例解应用题首先要根据题意分析数量关系,能从题目中找出两种相关联的量,这两种量中相对应的两个数的比值(或者积)是否一定,从而判断这两种量中是否成正(或者反)比例,然后设未知数列比例解答.判断的过程是正、反比例意义实际应用的过程,所以是比例应用题的难点,要予以高度重视.同时还要引导学生对“比例分配与正比例应用题”“正比例应用题与反比例应用题”这两组概念加以区别,从多角度、多方位提高学生对比例概念的理解和运用能力.【学情分析】解比例应用题是在学生已经掌握了“比例的基本知识”、同时在四五年级学习了简单的“归一应用题”的基础上进行教学的。

所以本节课可以重点体现“学生是数学学习的主人”, “以学生为中心”,“一切为了学生的发展”的教学理念。

学生对用比例解决问题已经有了一定的知识沉淀,所以在设计本节课时,老师力求让学生积极参与教学过程,通过让学生独立思考、小组讨论、自我展示、一题多解等多种形式的教学,完成“要我学”为“我要学”的转变过程;强化以人为本,重视培养学生的学习能力,突出学生的自主学习性,建立新型师生关系,营造民主的教学氛围。

另外,在练习的设计上,本节课力图通过加强对比训练,提高学生分析问题、解决问题的能力。

人教版数学六年级下册用比例解决问题教案模板(推荐3篇)

人教版数学六年级下册用比例解决问题教案模板(推荐3篇)

人教版数学六年级下册用比例解决问题教案模板(推荐3篇) 人教版数学六年级下册用比例解决问题教案模板【第1篇】教学目的:1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

2、通过合作交流、尝试练习,提高学生运用比例的基本性质解比例的能力。

3、培养学生的知识迁移的能力,增强学生的合作意识。

教学重点:使学生掌握解比例的方法,学会解比例。

教学难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

教学过程:一、回顾旧知,复习铺垫1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?2、判断下面每组中的两个比是否能组成比例?为什么?6:3和8:43、这节课我们继续学习有关比例的知识,学习解比例。

(板书课题)二、引导探索,学习新知1、什么叫解比例?我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

解比例要根据比例的基本性质来解。

2、教学例2。

(1)把未知项设为X。

解:设这座模型的高是X米。

(2)根据比例的意义列出比例:X:320=1:10(3)让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。

根据比例的基本性质可以把它变成什么形式?3x=8×15。

这变成了什么?(方程。

)教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。

因为解方程要写“解:”,所以解比例也应写“解:”。

(4)学生说,教师板书解比例的过程。

教师:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。

3、教学例3。

出示例3:解比例=提问:“这个比例与例2有什么不同?”(这个比例是分数形式。

)这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.5×6让学生在课本上填出求解过程。

2023年人教版数学六年级下册用比例解决问题优秀教案(精选3篇)

2023年人教版数学六年级下册用比例解决问题优秀教案(精选3篇)

人教版数学六年级下册用比例解决问题优秀教案(精选3篇)〖人教版数学六年级下册用比例解决问题优秀教案第【1】篇〗《用比例解决问题》教学设计【教学内容】义务教育课程标准实验教材(人教版)数学六年级下册第三单元“用比例解决问题”(教科书P59—60的例5、例6,以及P60页做一做的内容,练习九3—7题。

)【教材分析】这部分内容是在学过比例的意义和性质,成正、反比例的量的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用。

教材通过例5和例6两个例题,讲解正、反比例应用题的解法,使学生掌握正、反比例应用题的特点以及解题的步骤。

正、反比例应用题,首先要根据题意分析数量关系,能从题中找出两种相关联的量,这两种量中相对应的两个数的比值(或积)是一定,从而判断这两种量是否成正(或反)比例,然后设未知数X,用比例解答。

判断过程也是正反比例意义实际应用的过程。

为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。

正、反比例应用题中所涉及到的基本问题的数量关系是学生以前学过的,并能运用算术法解答,本节课学习内容是在原有解法的基础上,通过自主参与,合作交流、发现归纳出一种用正、反比例关系解决一些基本问题的思路和计算方法。

从而进一步提高学生分析解答应用题的能力。

【学情分析】学生在学习这部分知识之前,已经认识了正比例意义和反比例意义,会判断生活中含有正、反比例意义的数量关系,也会解决生活中有关归一、归总的实际问题。

本节课主要学习用比例的知识来解决含有归一和归总数量关系的实际问题。

教学应用正比例解决问题,教材由张大妈与李奶奶的对话引出求水费的实际问题,为加强知识间的联系,先让学生用学过的方法解决,然后学习用比例的知识解决。

在学习用反比例的意义解决问题时,与学习正比例的方法相似,也是先让学生用已有的方法解决问题,然后学习用反比例的意义判断实际问题,解决问题。

通过解决实际问题使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,也为中学数学、物理、化学学科应用比例知识解决一些问题作较好的准备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《解比例应用题》教学设计
【教学内容】
义务教育课程标准实验教科书《数学》(人教版六年级下册)教材P59―60内容。

【教学目标】
1.理解用比例解决问题的一般方法和技巧,学会用比例解决一般问题。

2.通过与前面旧知识的解决问题的方法对比,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力。

3.发展学生的应用意识和实践能力。

【教学重点】运用正反比例解决实际问题。

【教学难点】正确判断两种量成什么比例。

【教材分析】
解比例应用题是在学生理解了正、反比例的意义并学会解比例的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用.教材通过两个例题讲解正、反比例应用题的解法,通过讲解使学生掌握正反比例应用题的特点以及解题的步骤。

用正、反比例解应用题首先要根据题意分析数量关系,能从题目中找出两种相关联的量,这两种量中相对应的两个数的比值(或者积)是否一定,从而判断这两种量中是否成正(或者反)比例,然后设未知数列比例解答.判断的过程是正、反比例意义实际应用的过程,所以是比例应用题的难点,要予以高度重视.同时还要引导学生对“比例分配与正比例应用题”“正比例应用题与反比例应用题”这两组概念加以区别,从多角度、多方位提高学生对比例概念的理解和运用能力.
【学情分析】
解比例应用题是在学生已经掌握了“比例的基本知识”、同时在四五年级学习了简单的“归一应用题”的基础上进行教学的。

所以本节课可以重点体现“学生是数学学习的主人”,“以学生为中心”,“一切为了学生的发展”的教学理念。

学生对用比例解决问题已经有了一定的知识沉淀,所以在设计本节课时,老师力求让学生积极参与教学过程,通过让学生独立思考、小组讨论、自我展示、一题多解等多种形式的教学,完成“要我学”为“我要学”的转变过程;强化以人为本,重视培养学生的学习能力,突出学生的自主学习性,建立新型师生关系,营造民主的教学氛围。

另外,在练习的设计上,本节课力图通过加强对比训练,提高学生分析问题、解决问题的能力。

【设计理念】
利用比例的知识解答应用题,首先要判断两种相关联的量的关系,判断的过程就是正、反比例意义实际应用的过程,所以是比例应用题的重点,也是难点.正、反比例的应用题,学生在已学过的四则应用题中,实际上已经接触过,只是用归一、归总的方法来解答,因此在教学中可以运用迁移类比的转化思想进行教学,使新知识不新,旧知识不旧,激发学生学习兴趣.首先让学生用以前的方法解答,然后提问:“这道题里有怎样的的比例关系?为什么?”引导学生判断两种量的比例关系,最后根据比例的意义列出等式解答.这样加深了对比例的理解,又揭示了与旧知识的联系,既分散了难点,又教给了思维方法。

通过本节的教学,使学生加深对正、反比例意义的理解,能够正确判断成正、反比例的量,会用比例的知识解答比较容易的应用题.
【教学过程】
一、铺垫孕伏(课件演示:比例的应用)
判断下面每题中的两种量成什么比例关系?
1、速度一定,路程和时间.
2、路程一定,速度和时间.
3、单价一定,总价和数量.
4、每小时耕地的公顷数一定,耕地的总公顷数和时间.
5、全校学生做操,每行站的人数和站的行数.
【设计意图:通过基本数量关系式的分析让学生进一步熟练掌握正反比例的意义,为后面分析应用题做好铺垫。


二、探究新知
(一)引入新课:我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.(板书:解比例应用题)
(二)教学例5(课件演示:教材对话主题图)
例5、张大妈上个月用了8吨水,水费是12.8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少元?
学生利用以前的方法独立解答:
先算出每吨水的价钱,再算10吨水的多少钱?
12.8÷8×10
=1.6×10
=16(元)
【设计意图:通过学生用原来学习的解答归一应用题的方法,能使学生进一步理解:单价一定的意义,为正确列出比例式打好基础了。


2、利用比例的知识解答.
思考:这道题中涉及哪三种量?(水的单价、数量和总价三种量)
哪种量是一定的?你是怎样知道的?(水的单价一定.)
用水的数量和水费总价成什么比例关系?(水的数量和总价成正比例关系.)
教师板书:单价一定,水的数量和总价成正比例
教师追问:两家水的总价和用水量的什么相等?(比值相等,也就是水的单价相等)
怎么列出等式?
解:设李奶奶家上个月水费x元.
8x=12.8×10
x=16
答:李奶奶家上个月水费16元.
3、怎样检验这道题做得是否正确?(学生自主完成)
4、变式练习:张大妈上个月用了8吨水,水费是12.8元,王大爷上个月水费是19.2元,他们家上个月用了多少吨水?
【设计意图:通过变式训练的订正和交流,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没有改变,只是未知量变了,这样可以让学生更加灵活地理解和解答这样的应用题。

】(三)教学例6(课件演示例6主题图)
例6:一批书如果每包20本,要捆18包,如果每包30本,要捆多少包?
1、学生利用以前的算术方法独立解答.
20×18÷30
=360÷30
=12(包)
2、那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)
是一定的,__________和__________成__________比例.所以两次捆书的__________和这道题里的
——————
__________的__________是相等的.
3、如果设要捆x包,根据反比例的意义,谁能列出方程?
30x=20×18
x=360÷30
x=12
答:每捆12包.
4、变式练习
一批书如果每包20本,要捆18包,如果每捆15包,每包多少本?
【设计意图:例6教学沿用了例5的教学形式,但放开了学生,让学生自主探究,明白正、反比例应用题的区别和联系,学生在解答过程中不但学会了分析正、反比例应用题的技巧,同时也能够区分两种应用题的解答方法】
三、全课小结
用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程.
四、随堂练习
1、先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答.
(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成,__________,__________?
(2)王师傅4小时生产了200个零件,照这样计算,__________?
2、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
3、同学们做广播操,每行站20人,正好站18行.如果每行站24人,可以站多少行?
【设计意图:通过由易到难,梯级训练,让学生对用比例解决问题有一个初步的巩固和训练,加深知识印象,同时也对本节课起到系统知识的目的,让学生形成一个完整的知识整体,为后面完成课堂作业做好准备】
五、布置作业
1、一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?
2、用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本.如果每本16张,可以装订多少本?
3、P60---做一做
【设计意图:通过独立作业,让学生理解用比例解决问题的一般方法和技巧,理解应用比例解决问题的优势和好处,培养学生一题多解的解决问题的能力,发展学生的应用意识和实践能力,完成本节课的教学目标。

】【板书设计】
解比例应用题
例5:例6:
单价一定,总价和数量成正比例。

总数量一定,每包本书和包数成反比例。

解:设李奶奶家上个月水费x元.解:设要捆x包
30x=20×18
8x=12.8×10x=360÷30
x=16x=12
答:(略)答:(略)
【教学后记】:正反比例应用题是小学阶段应该掌握的重点内容,这节课通过新旧知识之间的联系和以旧促新教学理念,设计了简单易学的教学过程,学生在学习的过程中,没有感到学习新知识的压力,能够轻松完成学习任务。

同时通过变式训练和拓展训练,让学生掌握了正反比例应用题的相同点和不同点,为后面解答比例问题打好了坚实的基础。

相关文档
最新文档