资本资产定价模型 (PPT 55张)
合集下载
资本资产定价模型概述(ppt42张)

6、可以在无风险折现率R的水平下无限制地借 入或贷出资金; 7、所有投资者对证券收益率概率分布的看法一 致,因此市场上的效率边界只有一条; 8、所有投资者具有相同的投资期限,而且只有 一期; 9、所有的证券投资可以无限制的细分,在任何 一个投资组合里可以含有非整数股份;
10、税收和交易费用可以忽略不计; 11、市场信息通畅且无成本; 12、不考虑通货膨胀,且折现率不变; 13、投资者具有相同预期,即他们对预期收益率、 标准差和证券之间的协方差具有相同的预期值。 上述假设表明:第一,投资者是理性的,而且严格 按照马科威茨模型的规则进行多样化的投资,并将 从有效边界的某处选择投资组合;第二,资本市场 是完全有效的市场,没有任何磨擦阻碍投资。
又由(7.3)
dv 1 dE ( r E ( r )E ( r c) M j)
于是
d d d v c c d Er ( c) d vd Er ( c)
2 2 [ ( 1 v ) ( 1 2)c v o v ( r , r ) v ]/ j j m M c Er ( M) Er ( j)
假定2:针对一个时期,所有投资者的预期 都是一致的。
这个假设是说,所有投资者在一个共同的时期内 计划他们的投资,他们对证券收益率的概率分布 的考虑是一致的,这样,他们将有着一致的证券预 期收益率﹑证券预期收益率方差和证券间的协方 差。同时,在证券组合中,选择了同样的证券和同 样的证券数目。 这个假设与下面的关于信息在整个资本市场中畅 行无阻的假设是一致的。
故
2 c o v ( r , r ) d j M M c d Er ( c)v Er ( M) Er ( j) ) c( 1
投资学第章资本资产定价模型剖析ppt课件

比较CAPM:E(ri ) rf i[E(rM ) rf ]
与指数模型的期望形式:
E(ri ) rf i i[E(rM ) rf ] 可知二者差别在于,CAPM认为所有的i都为0。 市场模型:rf E(ri ) i[rf E(rM )] ei
如果CAPM有效,则市场模型等同于指数模型。
E(Ri ) kE(Ci ) ( L1 L2 L3 )
其中,E(Ci )为期望流动性代价; k为所有资产的调整后的平均持有期
为平均市场流动性的市场风险溢价净值 为系统性市场风险敏感度, L1、 L 2、 L3为流动性 E(RM CM ),CM 表示市场平均流动性溢价。
37
流动性的三要素
25
9.3 CAPM符合实际吗?
CAPM的实用性取决于证券分析。 9.3.1 CAPM能否检验 ▪ 规范方法与实证方法 ▪ 实证检验的两类 错误(数据、统计方法) 9.3.2 实证检验质疑CAPM
26
9.3 CAPM符合实际吗?
9.3.3CAPM的经济性与有效性 ▪ CAPM在公平定价领域的广泛应用 ▪ CAPM被普遍接受的原因 9.3.4 投资行业与CAPM的有效性 投资公司更趋向于支持CAPM
39
27
9.4 计量经济学和期望收益-贝塔关系
▪ 计量经济方法可能是引起CAPM被错误拒 绝的原因
▪ 相关改进
➢ 用广义最小二乘法处理残差相关性 ➢ 时变方差模型ARCH
28
9.5 CAPM的拓展形式
两种思路: ▪ 假定的放宽 ▪ 投资者心理特征的应用
29
9.5.1 零模型
有效前沿的三大性质:
▪ 两种有效前沿上的资产组合组成的任意资产组合仍在有 效前沿上
23
9.2.2 指数模型和已实现收益
与指数模型的期望形式:
E(ri ) rf i i[E(rM ) rf ] 可知二者差别在于,CAPM认为所有的i都为0。 市场模型:rf E(ri ) i[rf E(rM )] ei
如果CAPM有效,则市场模型等同于指数模型。
E(Ri ) kE(Ci ) ( L1 L2 L3 )
其中,E(Ci )为期望流动性代价; k为所有资产的调整后的平均持有期
为平均市场流动性的市场风险溢价净值 为系统性市场风险敏感度, L1、 L 2、 L3为流动性 E(RM CM ),CM 表示市场平均流动性溢价。
37
流动性的三要素
25
9.3 CAPM符合实际吗?
CAPM的实用性取决于证券分析。 9.3.1 CAPM能否检验 ▪ 规范方法与实证方法 ▪ 实证检验的两类 错误(数据、统计方法) 9.3.2 实证检验质疑CAPM
26
9.3 CAPM符合实际吗?
9.3.3CAPM的经济性与有效性 ▪ CAPM在公平定价领域的广泛应用 ▪ CAPM被普遍接受的原因 9.3.4 投资行业与CAPM的有效性 投资公司更趋向于支持CAPM
39
27
9.4 计量经济学和期望收益-贝塔关系
▪ 计量经济方法可能是引起CAPM被错误拒 绝的原因
▪ 相关改进
➢ 用广义最小二乘法处理残差相关性 ➢ 时变方差模型ARCH
28
9.5 CAPM的拓展形式
两种思路: ▪ 假定的放宽 ▪ 投资者心理特征的应用
29
9.5.1 零模型
有效前沿的三大性质:
▪ 两种有效前沿上的资产组合组成的任意资产组合仍在有 效前沿上
23
9.2.2 指数模型和已实现收益
资本资产定价理论(ppt 52张)

(三)投资分散化的好处 证券i的实际收益率仍有可能偏离它的证券 特征线,因为有随机误差项存在。将 证券特征线作如下调整:
r r r r i f i mf i i
其中, x f x 分别表示投资于风险资产和市场证券组合的比例 m
r f rm 分别表示投资于风险资产和市场证券组合的预期 收益率
并有:
x x
f
m
1
r p ( 1 ) r m x x r f m m
r p ( r m ) x r r f f m
2 x x x x
3.无风险借入 (1)借入资金并投资于单一风险资产 (2)借入资金并投资于风险组合 4.同时允许无风险借入和贷出 (1)无风险借贷对有效集的影响 可行集变化 有效集变化 (2)无风险借贷对投资组合选择的影响
(二)市场证券组合 1.分离定理 投资者对最优风险资产组合的 选择 与该投资者对风险和收益的 偏好无关,两者可以分离。
2 2 f f 2 2 p mm f mxm f 1 2 m
,
f
m
fm
因为
分别代表无风险资产与市场证券组合的风险 为它们的相关系数
f
0 ,
m m
fm
0
x
p
x
m
p m
r r
p
f
r r
m f m
p
rf ) 资本市场线的斜率为: ( rm ,其垂直截距为 rf, (
股票市场风险管理
第一节 证券组合理论
一、证券组合的收益和风险
资产组合理论的前提条件
第一,证券市场是有效的;
第二,投资者都是风险厌恶者;
资本资产定价模型(CAPM模型)ppt课件

75%投资于福特汽车公司股票。假定两支股票的值
分别为1.2和1.6,投资组合的风险溢价为多少?
解: P 0.251.2 0.751.6 1.5
E(rP ) rf 1.5[E(rM ) rf ] 1.58% 12%
ppt课件
18
证券特征线(Characteristic Line)
证券特征线方程:E(ri ) rf i (E(rm ) rf )
ppt课件
10
资本市场线与证券市场线的内在关系
描述对象不同
CML描述有效组合的收益与风险之间的关系
SML描述的是单个证券或某个证券组合的收益与风险 之间的关系,既包括有效组合有包括非有效组合
风险指标不同
CML中采用标准差作为风险度量指标,是有效组合收 益率的标准差
SML中采用β系数作为风险度量指标,是单个证券或 某个证券组合的β系数
ppt课件
26
我们可以对 rp j 给出另一种解释。由于拥有股票j的风险
为 jm ,即 j乘上市场风险 m是j所带来的风险,而每
单位风险的价格为:
P rm rf m
所以,承担风险资产j的所需求的风险溢价应为:
j
mP
j
m
rm rf
m
j
rm rf
rpj
ppt课件
27
证券市场均衡条件 如证券市场如有N只股票,对于i,j 1,2, , N,在证券
E(zi ) r (z) cov(zi , z)
(1)
ppt课件
24
均方差资产定价原理
其中, (z) 是对投资中总的风险的度量,也就是对不 确定环境中某种状态的概率。 另一方面,由2可知,在市场均衡的条件下,资产 组合的收益E(Z)减去无风险利率r后所得的差,也 必须与证券收益的方差成比例,即有:
分别为1.2和1.6,投资组合的风险溢价为多少?
解: P 0.251.2 0.751.6 1.5
E(rP ) rf 1.5[E(rM ) rf ] 1.58% 12%
ppt课件
18
证券特征线(Characteristic Line)
证券特征线方程:E(ri ) rf i (E(rm ) rf )
ppt课件
10
资本市场线与证券市场线的内在关系
描述对象不同
CML描述有效组合的收益与风险之间的关系
SML描述的是单个证券或某个证券组合的收益与风险 之间的关系,既包括有效组合有包括非有效组合
风险指标不同
CML中采用标准差作为风险度量指标,是有效组合收 益率的标准差
SML中采用β系数作为风险度量指标,是单个证券或 某个证券组合的β系数
ppt课件
26
我们可以对 rp j 给出另一种解释。由于拥有股票j的风险
为 jm ,即 j乘上市场风险 m是j所带来的风险,而每
单位风险的价格为:
P rm rf m
所以,承担风险资产j的所需求的风险溢价应为:
j
mP
j
m
rm rf
m
j
rm rf
rpj
ppt课件
27
证券市场均衡条件 如证券市场如有N只股票,对于i,j 1,2, , N,在证券
E(zi ) r (z) cov(zi , z)
(1)
ppt课件
24
均方差资产定价原理
其中, (z) 是对投资中总的风险的度量,也就是对不 确定环境中某种状态的概率。 另一方面,由2可知,在市场均衡的条件下,资产 组合的收益E(Z)减去无风险利率r后所得的差,也 必须与证券收益的方差成比例,即有:
资本资产定价模型(PPT 81张)

二、因素模型
2.3、单因素模型的常用形式: 如果CAPM成立,而且指数所代表的组合刚 i 好是市场组合,则 不应当显著区别于0;
R e i i iR m i
也被称为Jensen指数(或者Jensen’s Alpha),代表了投资的超额收益率,与夏普 比率同为评价投资基金或策略的重要指标。
2.2、单因素模型与CAPM的关系: (1)CAPM是基于事前视角的均衡模型,而 因素模型是基于事后视角的模型,可以不考 虑市场均衡; (2)CAPM可以看作一类特殊的单因素模型; (3)CAPM中所用预期收益率不可观测,因 素模型为真实收益率,可观测。
二、因素模型
2.2、单因素模型与CAPM的关系: 如果只有一种系统性风险,即市场组合代表 的风险,则根据CAPM有
例如:通货膨胀对黄金生产企业、出口导 向企业、销售商有着不同的影响
二、因素模型
2.1、单因素模型 单因素模型回报率
风险
r E r me i i i i
2 i 2 2 i m 2 e
2 ij i j m
不同证券收益率之间的协方差
二、因素模型
Eri rf i (rm rf ) 4% 0.8 (10% 4%) 4% 4.8% 8.8%
二、因素模型
2.1、单因素模型 实现的收益率总是可以划分为期望部分和 非期望之和
r i Er i u i
将实现的不确定性划分为系统性风险和特 异性风险
大 纲
第二部分:因素模型与套利定价理论(APT) 1、单因素模型 2、多因素模型 3、套利定价(APT)模型 第三部分:理论应用 1、投资衡量 2、项目成本核算 3、监管核算
资本资产定价模型(PPT 81页)

构建组合,买入1单位A组合,卖出1单位B 组合,事后实现的收益为
rA rB (ErA F ) (ErB F )
该策略没有初始投Er入A ,Er但B 事0 后实现了确定 为正的收益,存在套利机会。
因此,敏感系数相同的组合应当有相同的 期望收益,敏感系数为0的组合期望收益率 等于无风险收益rf 。
可以写成
ri rf i (rm rf ) ei
Ri i iRm ei
Ri Rm
i
Ri i iRm ei
ri Eri 1iF1 2iF2 3iF3 ...niFn ei
Fk
ki
n
n
n
rp wk Erk wk k F wkek
n
Eri Erj rf ik (ErFk rf ) k 1
Q.E.D
Er rf 1(RF1 rf ) 2 (RF 2 rf )
4% 0.5 (10% 4%) 0.75 (12% 4%) 13%
3.6、例子
如果组合A的收益率等于12%(不等于13%),则存在套利 机会。
n
n
rf ik (ErFk rf ) ik Fk
k 1
k 1
两者结合可以得到
n
Erj rf ik (ErFk rf ) k 1
3.5、多因素套利定价理论的证明 由于组合i与组合j具有相同的beta,因而应
当具有相同的期望收益率,可以得到
Eri rf i (rm rf )
4% 0.8 (10% 4%) 4% 4.8% 8.8%
ri Eri ui ri Eri m ei
资本资产定价(CAPM)理论PPT精品文档83页

程的能力。
– Friedman
• 关于一种理论的假设,我们关心的问题并不是它们是 否完全描述了现实,因为它们永远不可能。我们关心 的是,它们是否充分地接近我们所要达到的目的,而 对这个问题的回答是:该理论是否有效,即,它是否
能够进行充分准确的预测。
– 假设1:在一期时间模型里,投资者以期望回报率 和标准差作为评价证券组合好坏的标准。
• CAPM是现代金融经济学的中心之一。 • CAPM给出了资产的风险和收益之间关
系的一种精确预测
– 为评估可行投资提供了一个基准收益率 – 帮助我们对没上市证券的回报率作出预测
• Although the CAPM does not fully withstand empirical tests, it is widely used because its accuracy suffices for many important applications.
What if
• We will approach the CAPM by posing the question “what if”, where the “if” part refers to a simplified world. Positing an admittedly unrealistic world allows a relatively easy leap to “then” part. Once we accomplish this, we can add complexity to the hypothesized environment one step at a time and see how the conclusions must be amended. This process allows us to derive a reasonably realistic and comprehensible model.
– Friedman
• 关于一种理论的假设,我们关心的问题并不是它们是 否完全描述了现实,因为它们永远不可能。我们关心 的是,它们是否充分地接近我们所要达到的目的,而 对这个问题的回答是:该理论是否有效,即,它是否
能够进行充分准确的预测。
– 假设1:在一期时间模型里,投资者以期望回报率 和标准差作为评价证券组合好坏的标准。
• CAPM是现代金融经济学的中心之一。 • CAPM给出了资产的风险和收益之间关
系的一种精确预测
– 为评估可行投资提供了一个基准收益率 – 帮助我们对没上市证券的回报率作出预测
• Although the CAPM does not fully withstand empirical tests, it is widely used because its accuracy suffices for many important applications.
What if
• We will approach the CAPM by posing the question “what if”, where the “if” part refers to a simplified world. Positing an admittedly unrealistic world allows a relatively easy leap to “then” part. Once we accomplish this, we can add complexity to the hypothesized environment one step at a time and see how the conclusions must be amended. This process allows us to derive a reasonably realistic and comprehensible model.
资本资产定价(PPT 65张)

从投资学的角度来看,所谓收益,就是投资者通过投 资所获得的财富增加。投资金融资产的收益来自两个 方面,由资产价格变化而产生的资本利得和持有资产 期间所得的现金流; 所谓风险,就是指金融市场主体在从事金融活动的过 程中由于市场环境的变化或自身的决策失误等原因造 成其收益的不确定性,换言之,就是实际收益偏离预 期收益的可能性。
思考:N=2时,
2 22 2 2 x x 2 x x p A A B B A B AB
22 22 x x 2 x x AA B B A B AB
N=3时,???
经营风险:指源于日常操作和工作流程失误而带来的风险。(证 券交易对电子技术的依赖程度不断加深)
10
2、按能否分散分类
(1)系统性风险
是由那些影响整个金融市场的风险因素所引起的,这 些因素包括经济周期、国家宏观经济政策的变动等。
其影响所有金融变量的可能值,因此不能通过分散投 资相互抵消或削弱。因此又称不可分散风险,即使一 个投资者持有一个充分分散化的投资组合也要承担这 一部分风险。
26
证明(7—12)式中的方差:
Var ( RP ) Ps [ R PS R P ] 2
2 P
s 1 m
P [( X
s 1 s
m
A
R As X B R BS ) ( X A R A X B R B )] 2
P [X
s 1
m
m
s
2 ( R R ) X ( R R )] A As A B Bs B
20
2.证券组合的收益、风险的衡量
由于证券的风险具有相互抵消的可能性,证券组合的风 险就不能简单地等于单个证券的风险以投资比重为权数 的加权平均数。用其收益率的标准差表示:
思考:N=2时,
2 22 2 2 x x 2 x x p A A B B A B AB
22 22 x x 2 x x AA B B A B AB
N=3时,???
经营风险:指源于日常操作和工作流程失误而带来的风险。(证 券交易对电子技术的依赖程度不断加深)
10
2、按能否分散分类
(1)系统性风险
是由那些影响整个金融市场的风险因素所引起的,这 些因素包括经济周期、国家宏观经济政策的变动等。
其影响所有金融变量的可能值,因此不能通过分散投 资相互抵消或削弱。因此又称不可分散风险,即使一 个投资者持有一个充分分散化的投资组合也要承担这 一部分风险。
26
证明(7—12)式中的方差:
Var ( RP ) Ps [ R PS R P ] 2
2 P
s 1 m
P [( X
s 1 s
m
A
R As X B R BS ) ( X A R A X B R B )] 2
P [X
s 1
m
m
s
2 ( R R ) X ( R R )] A As A B Bs B
20
2.证券组合的收益、风险的衡量
由于证券的风险具有相互抵消的可能性,证券组合的风 险就不能简单地等于单个证券的风险以投资比重为权数 的加权平均数。用其收益率的标准差表示:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i
上式结论也适用于由无风险资产和风险资产组合构 成的投资组合的情形。在图(7-9)中,这种投资组 合的预期收益率和标准差一定落在AB线段上。
11
投资于无风险资产A和风险资产组合B的可行集 ——许多线段AB构成的区域
R
p
﹡D
R r i f R r p f P
Ri
B
★
i
A(rf ) ★
5
二、资本市场线 CML
(一)允许无风险贷出下的可行集与有效集 1.无风险贷款或无风险资产的定义 无风险贷款相当于投资于无风险资产,其收益是确定的, 其风险(标准差)应为零。 无风险资产收益率与风险资产收益率之间的协方差也等于 零。 现实生活中,到期日和投资期相等的国债是无风险资产。
为方便起见,常将1年期的国库券或货币市 场基金当作无风险资产。
17
(二)无风险借款对有效集的影响
1、允许无风险借款下的投资组合
在推导马科维茨有效集的过程中,我们假定投资者可 以购买风险资产的金额仅限于他期初的财富。然而,在 现实生活中,投资者可以借入资金并用于购买风险资产。 由于借款必须支付利息,而利率是已知的,在该借款 本息偿还上不存在不确定性。因此我们把这种借款称为 无风险借款。
iff i
x ,其中 [ 0 , ] p i i p i
x x 1 ,其中 x x [ 0 , 1 ] f i f, i
③
②
8
该组合的预期收益率和标准差的关系为:
p R ( 1 ) r p f
i
p R i i
y f ( x ) b k x
2
一、CAPM模型的基本假设
1.存在着大量投资者,每个投资者的财富相对于所有投 资者的财富总和来说是微不足道的。
2.所有投资者都在同一证券持有期计划自己的投资行为。 3.投资者投资范围仅限于公开金融市场交易的资产,譬 如股票、债券、借入或贷出无风险的资产安排等。 4.假定投资者可以在固定的无风险利率基础上借入或贷 出任何额度的资产。
5.对资产交易没有制度性限制,比如说卖空是可行的。
3
一、CAPM模型的基本假设
6.不存在证券交易费用及税赋。 7.所有投资者均是理性的,追求投资资产组合 方差最小化,期望收益率最大,这意味着他们 都采用马科维茨的资产选择模型。 8.所有投资者对证券的评价和经济局势的看法 都一致,这样,投资者关于有价证券收益率的 概率分布期望是一致的。
p
图7-10
14
4.无风险贷款对投资组合选择的影响
I3 O T C A 0 (1)
p
E( Rp )
I2 I1 D
E( Rp )
I3 I2 I1 T O’ A 0 C (2)
p
D
O
图—10 无风险贷款下的投资组合选择
15
• 对于厌恶风险程度较轻,从而其选择的投资组 合位于弧线DT上的投资者而言,其投资组合的 选择将不受影响。 • 因为只有弧线DT上的组合才能获得最大的满足 程度,如图10—(1)所示。 • 对于该投资者而言,他仍将把所有资金投资于 风险资产,而不会把部分资金投资于无风险资 产。
R
R R i f R r p f P
p
i
Ri
★
B
★
A(rf )Biblioteka 0i
p
图7-8
10
(2)投资于无风险资产A和风险资产组合B的情形
假设风险资产组合B是由风险证券C和D组成。B一定 位于经过C、D两点的向上凸出的弧线上。
R r i f R f ( ) r p P f P
依据马科维茨模型,给定一系列证券的价格和无风险利率, 所有投资者的证券期望收益率与协方差矩阵相等,从而产 生了有效集(效率边界)和一个独一无二的最优风险资产 组合,这一假定也被称为同质期望或信念。
4
马科维茨投资组合理论的缺陷
• 忽略无风险资产的存在,只考虑风险资产的投资; • 忽略借入资金,只考虑自有资金的投资。 投资者可以构建无风险资产和风险资产之间的投资 组合,直接导致了投资者可行集的扩展和有效边界 的优化,同时,也使投资者可获取的最大效用上升。
﹡ C
0
i
p
图7-9
12
无风险贷款情形下的可行集
R
p
特殊的B?
R r i f R r p f P
Ri
T
﹡D
i
★
B ﹡
A(rf ) ★
﹡ C
0
i
p
图7-9*
13
3、无风险贷款对有效集的影响
NB
R
p
线段AT+TB
﹡B
T
◆
★
N ﹡ C
A(rf ) ★
0
p (min)
6
2、允许无风险贷款下的投资组合 (1)投资于无风险资产A和单个风险资产B的情形 设: 收益 无风险资产 A 风险资产 B 风险 比例
rf
f 0
xf
xi
Ri
i
7
该新组合p的预期收益率和标准差
R x p x fr f iR i
2 p 22 f f 22 i i
①
22 i i
x x 2 x x x
•
R r i f R f ( ) r p P f P
i
(7-17)
• 其中,
Ri rf
i0
为单位风险报酬,又称为夏普比率
• 由这两种资产构成的投资组合的预期收益率和风险一 定落在AB这个线段上,见图(7-8)
9
投资于无风险资产A和单个风险资产B的可行集 ——线段AB
16
• 对于较厌恶风险的投资者而言,由于代表其原来 最大满足程度的无差异曲线与线段AT相交,因此 不再符合效用最大化的条件。 • 因此该投资者将选择其无差异曲线与线段AT的切 点O’所代表的投资组合,如图10—(2)所示。 • 对于该投资者而言,他将把部分资金投资于风险 资产,而把另一部分资金投资于无风险资产。
第7章
资本资产定价
第三节 资本资产定价模型
1
第三节 资本资产定价模型
(Capital Asset Pricing Model ,CAPM)
• CAPM是由夏普(William Sharpe)、 林特纳(John Lintner)、特里诺(Jack Treynor)和莫森(Jan Mossin)等人在现代投资组合理论的基础上提出的, 在投资学中占有很重要的地位,并在投资决策和公司 理财中得到广泛的运用。 • 1963年,夏普研究简化马科维茨模型取得了重大的进 展,提出了单因素模型,极大地减少了挑选资产组合 所需的工作量,1964年提出了著名的资本资产定价模 型。资本资产定价模型的进步在于以系数作为度量资 产风险的指标