中考全等三角形专题

合集下载

中考数学复习《全等三角形》专题(卷1)

中考数学复习《全等三角形》专题(卷1)

《全等三角形》中考复习一. 选择题1. 如图,AB=AC,点D,E分别在AB,AC上,添加下列条件,不能判定△ABE≅△ACD的是( )A.BD=CEB.∠BDC=∠BECC.∠ACD=∠ABED.BE=CD2. 如下图,在△ABC中,∠C=90∘,∠B=30∘,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N 为圆心,大于12MN的长为半径画弧,两弧交于点P ,连结AP 并延长交BC于点D.则下列说法中正确的是()①AD是∠BAC的角平分线;②∠ADC=60∘;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.①②③④B.②③④C.①②D.①②③3. 如图,若△MNP≅△MEQ,则点Q应是图中的()A.点AB.点BC.点CD.点D4. 全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图①,若运动方向相反,则称它们是镜面合同三角形如图②,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合如图①,两个镜面合同三角形要重合,则必须将其中一个翻转180∘如图②,下列各组合同三角形中,是镜面合同三角形的是( )A. B. C. D.5. 对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理6. 如图,已知∠AOB,用直尺和圆规按照以下步骤作图:①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画射线O′A′,以O′为圆心,OC的长为半径画弧,交O′A′于点C′③以C′为圆心,CD的长为半径画弧,与第②步中所画的弧相交于点D′④过点D′画射线O′B′根据以上操作,可以判定△OCD≅ΔO′C′D′,其判定的依据是()A.SSSB.SASC.ASAD.HL7. 如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD//OA交OB于点D,点I是△OCD 的内心,连结OI,BI,∠AOB=β,则∠OIB等于()A.180∘−βB.180∘−12β C.90∘+12β D.90∘+β8. 小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带( )A.第1块B.第2块C.第3块D.第4块二. 填空题三角形具有稳定性,所以要使六边形木架不变形,至少要钉上________根木条.如图,在x、y轴上分别截取OA、OB,使OA=OB,再分别以点A、B 为圆心,以大于12AB的长度为半径画弧,两弧交于点C.若C的坐标为(3a,−a+8),则a=________.如图,在菱形ABCD中,已知AB=4,∠ABC=60∘,∠EAF=60∘,点E在CB的延长线上,点F在DC的延长线上,有下列结论:①BE=CF;②∠EAB=∠CEF;③△ABE∼△EFC;④若∠BAE=15∘,则点F到BC的距离为2√3−2.正确序号________.如图,△ABC中,点A的坐标为(0, 1),点C的坐标为(4, 3),如果要使△ABD与△ABC全等,那么点D的坐标是________.三. 解答题如图,小明用五根宽度相同的木条拼成了一个五边形,已知AE//CD,∠A=12∠C,∠B=120∘.(1)∠D+∠E=________度;(2)求∠A的度数;(3)要使这个五边形木架保持现在的稳定状态,小明至少还需钉上________根相同宽度的木条.根据要求完成下列各题.(1)如图1,在∠AOB的内部有一点P.①过点P画直线PC//OA交OB于点C;②过点P画直线PD⊥OA,垂足为D.(2)如图2,AB⊥BF,CD⊥BF,∠1=∠2,试说明∠3=∠E在下面解答中填空.解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠________=90∘(________),∴AB//CD(________)∵∠1=∠2(已知),∴AB//EF(________),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(________)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF= BD,连接BF.(1)线段BD与CD有何数量关系,为什么?(2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.(3)当△ABC满足________条件时,四边形AFBD是正方形?(直接写出结论,不用说明理由)一条大河两岸的A、B处分别立着高压线铁塔,如图所示.假设河的两岸平行,你在河的南岸,请利用现有的自然条件、皮尺和标杆,并结合你学过的全等三角形的知识,设计一个不过河便能测量河的宽度的好办法.(要求,画出示意图,并标出字母,结合图形简要叙述你的方案)参考答案与试题解析一. 选择题1.【答案】D【解析】欲使△ABE≅△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.2.【答案】A【解析】①连接NP,MP,根据SSS定理可得△ANP≅△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30∘,根据直角三角形的性质可知∠ADC=60∘;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30∘,CD=12AD,再由三角形的面积公式即可得出结论.3.【答案】D【解析】此题暂无解析4.【答案】B【解析】认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.5.【答案】B【解析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.6.【答案】A【解析】此题暂无解析7.【答案】B 【解析】此题暂无解析8.【答案】B【解析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.二. 填空题【答案】3【解析】三角形具有稳定性,所以要使六边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【答案】2【解析】此题暂无解析【答案】①②【解析】①只要证明△BAE≅△CAF即可判断;②根据等边三角形的性质以及三角形外角的性质即可判断;③根据相似三角形的判定方法即可判断;④求得点F到BC的距离即可判断.【答案】(4, −1)或(−1, 3)或(−1, −1)【解析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.三. 解答题【答案】180(2)五边形的内角和为(5−2)×180∘=540∘,由(1)可知,∠D+∠E=180∘,又∠B=120∘,∠A=12∠C.设∠A=x,则∠C=2x,∴∠A+∠B+∠C+∠D+∠E=540∘,即x+120∘+2x+180∘=540∘,解得x=80∘,∴∠A=80∘.2【解析】(1)根据平行线性质,两直线平行同旁内角互补即可得到180∘.先由AE//CD,根据平行线的性质得出∠E+∠D=180∘.再根据∠B=120∘,∠A=12∠C,设∠A=x∘,则∠C=2x∘.利用五边形的内角和为540∘列出方程x+120+2x+180=540,求解即可.根据五边形不具有稳定性,而三角形具有稳定性即可求解.【答案】解:(1)①如图,直线PC即为所求;②如图,直线PD即为所求;(2)解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠CDF=90∘(垂直的定义),∴AB//CD(同位角相等,两直线平行)∵∠1=∠2(已知),∴AB//EF(内错角相等,两直线平行),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(两直线平行,同位角相等)【解析】此题暂无解析【答案】解:(1)BD=CD.理由如下:依题意得AF // BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,{∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≅△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF // BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90∘,∴四边形AFBD是矩形.AB=AC,∠BAC=90∘【解析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90∘,由等腰三角形三线合一的性质可知必须是AB=AC.【答案】解:在河南岸AB的垂线BF上取两点C、E,使CE=BE,再定出BF的垂线CD,使A、E、D在同一条直线上,这时测得CD的长就是AB的长.如图所示:【解析】已知等边及垂直,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.。

人教版九年级中考数学 考点复习 全等三角形 专题练习

人教版九年级中考数学   考点复习   全等三角形   专题练习

人教版九年级中考数学考点复习全等三角形专题练习一.选择题(本大题共10道小题)1. 已知图中的两个三角形全等,则∠1等于( )A.47°B.57°C.60°D.73°2. 如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A.∠ABC=∠DCBB.AB=DCC.AC=DBD.∠A=∠D3. 如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD4. 如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )A.AD=AEB.BE=CDC.∠ADC=∠AEBD.∠DCB=∠EBC5. 如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F.若∠BCE=65°,则∠CAF的度数为( )A.30°B.25°C.35°D.65°6. 在正方形网格中,∠AOB的位置如图所示,则下列各点中到∠AOB两边距离相等的点是( )A.点QB.点NC.点RD.点M7. 工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA,OB上分别取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )A.SASB.ASAC.AASD.SSS8. 如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36o.连接AC、BD交于点M,连接OM.下列结论:①∠AMB=36o;②AC=BD;③OM平分∠AOD;④MO平分∠AMD其中正确的结论个数有( )个.A.4B.3C.2D.19. 下面是黑板上出示的尺规作图题需要回答横线上符号代表的内容.如图,已知∠AOB,求作:∠DEF,使∠DEF=∠AOB.作法:(1)以△为圆心,任意长为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,○长为半径画弧交EG于点D;(3)以点D为圆心,* 长为半径画弧交前弧于点F;(4)作⊕,则∠DEF即为所求作的角.A.△表示点EB.○表示PQC.*表示EDD.⊕表示射线EF10. 如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连结CD,连结BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是( )A.∠ADC=∠AEBB.CD∥ABC.DE=GED.BF2=CF·AC二.填空题(本大题共6道小题)11. 如图,点B 、F 、C 、E 在一条直线上,已知FB=CE,AC ∥DF,请你添加一个适当的条件 使得△ABC ≌△DEF.12. 如图,四边形ABCD 中,∠BAC =∠DAC,请补充一个条件 ,使得△ABC ≌△ADC.13. 如图,AC =AD,∠1=∠2,要使△ABC ≌△AED,应添加的条件是 .(只需写出一个条件即可)14. 如图,AC=AD,∠1=∠2,要使ABC AED ≌△△,应添加的条件是______(只需写出一个条件即可)15. 如图,点P 为定角∠AOB 的平分线上的一个定点,点M,N 分别在射线OA,OB 上(都不与点O 重合),且∠MPN 与∠AOB 互补.若∠MPN 绕着点P 转动,那么以下四个结论:①P M =PN 恒成立;②MN 的长不变;③OM+ON 的值不变;④四边形PMON 的面积不变.其中正确的为_____.(填番号)16. 如图,在△ABC 中,AB =AC,点D 在BC 上(不与点B,C 重合).只需添加一个条件即可证明△ABD ≌△ACD,这个条件可以是 (写出一个即可).三.解答题(本大题共6道小题)17. 如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.18. 如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.19. 如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.20. 如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21. 在Rt△ABC中,∠ACB=90°,CB=CA=22,点D是射线AB上一点,连接CD,在CD右侧作∠DCE =90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.22. 如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.。

全等三角形的判定中考题

全等三角形的判定中考题

全等三角形的判定中考题一、已知两个三角形两边及夹角分别相等,根据哪种全等判定定理可以确定这两个三角形全等?A. SSS(三边相等)B. SAS(两边及夹角相等)C. ASA(两角及夹边相等)D. AAS(两角及非夹边相等)(答案:B)二、在△ABC与△DEF中,若∠A=∠D,∠C=∠F,且AC=DF,则依据哪个判定定理可证明两三角形全等?A. SSSB. SASC. ASAD. AAS(答案:C)三、若△PQR与△STU中,PQ=ST,QR=TU,且∠Q=∠T,但∠Q并非PQ与QR的夹角,则根据哪个判定不能直接证明两三角形全等?A. SSSB. SASC. ASAD. 以上均不可(答案:D)四、两个三角形中,如果两个角和一条边分别相等,且这条边是这两个角的夹边,应使用哪个全等判定定理?A. SSSB. SASC. ASAD. AAS(答案:C)五、在△ABC与△MNP中,若AB=MN,BC=NP,且∠B=∠N,但∠B不是AB和BC的夹角,则不能直接通过哪个判定证明两三角形全等?A. SSSB. SASC. AASD. 以上都不是直接证明的依据(答案:B)六、若两个三角形的两个角及非夹边分别相等,应依据哪个全等判定定理来确定它们全等?A. SSSB. SASC. ASAD. AAS(答案:D)七、在△XYZ与△LMN中,若XY=LM,YZ=MN,且∠YZX=∠LMN,但∠YZX并非XY与YZ的夹角,则不能直接应用哪个全等判定?A. SSSB. SAS(答案)C. 这种情况无法判定三角形全等D. AAS八、已知△ABC与△DEF中,∠A=∠D,∠B=∠E,若要证明两三角形全等,还需满足以下条件中的哪一个?A. AB=DEB. AC=EF(非夹角对应的边)C. BC=DF(夹角对应的边,即SAS情况)(答案)D. ∠C=∠F(已有两角相等,再加一角无法判定全等)。

中考数学复习《全等三角形》专题训练-附带参考答案

中考数学复习《全等三角形》专题训练-附带参考答案

中考数学复习《全等三角形》专题训练-附带参考答案一、选择题1.下列选项中表示两个全等的图形的是()A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形2.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,则不一定能使△ABE≌△ACD的条件是()A.AB=AC B.∠B=∠CC.∠AEB=∠ADC D.CD=BE3.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.25°B.30°C.35°D.65°5.如图EF=CF,BF=DF则下列结论不一定正确的是()A.△BEF≌△DCF B.△ABC≌△ADEC.DC=AC D.AB=AD6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2 B.3 C.4 D.57.如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有()A.2对B.3对C.4对D.5对8.如图,AD 是△ABC中∠BAC的平分线,DE⊥AB于点E,△ABC的面积为12,DE =2,AB = 7,则 AC 的长是()A.3 B.4 C.5 D.6二、填空题9.如图,∠ACD=∠BCE,BC=EC,要使△ABC≌△DEC,则可以添加的一个条件是.10.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为.11.如图,在Rt△ABC中,∠BAC=90°,分别过点B,C作过点A的直线的垂线BD,若BD=4cm,CE=3cm则DE= cm.12.如图,把两根钢条AB,CD的中点连在一起做成卡钳,已知AC的长度是6cm,则工件内槽的宽BD是cm.13.如图,△ABC为等腰直角三角形AC=BC,若A(−3,0),C(0,2),则点B的坐标为.三、解答题14.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°(1)求证:△ADE≌△CDE.(2)求∠BDC度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A =25°,∠D =15°,求∠ACB 的度数.16.如图,AB =AC ,AD =AE ,∠BAC =∠DAE.(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,在ABC 中90C ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥于点E ,点F 在BC 上,连接DF ,且AD DF =. (1)求证:CF AE =;(2)若3AE =,BF=4,求AB 的长.18.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD =2BF+DE .1.D2.D3.D4.A5.C6.B7.C8.C9.AC =DC (答案不唯一)10.811.712.613.(2,-1)14.(1)证明:∵DE 是线段AC 的垂直平分线 ∴DA=DC ,AE=CE在△ADE 与△CDE 中:DA=DCAE=CEDE=DE∴△ADE ≌△CDE (SSS );(2)解:∵△ADE ≌△CDE .∴∠DCA=∠A=50°∴∠BDC=∠DCA+∠A=100°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:(1)∵90C ∠=︒∴DC BC ⊥又∵BD 是ABC ∠的平分线DE AB ⊥∴DE DC = 90AED ∠=︒在Rt AED △和Rt FCD △中∵AD DFDE DC =⎧⎨=⎩∴()Rt Rt AED FCD HL ≌△△∴CF AE =.(2)解:由(1)可得3CF AE ==∴437BC BF CF =+=+=∵DE AB ⊥∴90DEB ∠=︒∴DEB C ∠=∠∵BD 是ABC ∠的平分线∴ABD CBD ∠=∠在BED 和BCD △中∵DEB C EBD CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED BCD AAS ≌△△ ∴7BE BC ==∴7310AB BE AE =+=+=∴AB 的长为10.18.(1)证明:∵90BAD CAE ∠=∠=︒∴90BAC CAD ∠+∠=︒ 90CAD DAE ∠+∠=︒ ∴BAC DAE ∠=∠在△BAC 和△DAE 中∵AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴()BAC DAE SAS ≌△△;(2)解:∵90CAE ∠=︒,AC=AE∴45E ∠=︒由(1)知BAC DAE ≌△△∴45BCA E ∠=∠=︒∵AF BC ⊥∴90CFA ∠=︒∴45CAF ∠=︒∴4590135FAE FAC CAE ∠=∠+∠=︒+︒=︒;(3)证明:延长BF 到G ,使得FG FB = ∵AF BG ⊥∴90AFG AFB ∠=∠=︒在△AFB 和△AFG 中∴BF GF AFB AFG AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AFB AFG SAS ≌△△∴AB AG = ABF G ∠=∠∵BAC DAE ≌△△∴AB AD = CBA EDA ∠=∠ CB=ED ∴AG AD = ABF CDA ∠=∠∴CGA CDA ∠=∠∵45GCA DCA ∠=∠=︒∴在△CGA 和△CDA 中GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CGA CDA AAS ≌△△∴CG CD =∵22CG CB BF FG CB BF DE BF =++=+=+ ∴2CD BF DE =+.。

初中中考复习之三角形全等(精编含答案)

初中中考复习之三角形全等(精编含答案)

中考复习之三角形全等一、选择题:1.图是一个风筝设计图,其主体部分(四边形ABCD ABCD)关于)关于BD 所在的直线对称,所在的直线对称,AC AC 与BD 相交于点O ,且AB≠AD,则下列判断不正确...的是【的是【 】】 A .△ABD≌△CBD .△ABD≌△CBD B B B.△ABC≌△ADC .△ABC≌△ADC .△ABC≌△ADC C C C.△AOB≌△COB .△AOB≌△COB .△AOB≌△COB D D D.△AOD≌△COD .△AOD≌△COD .△AOD≌△COD2.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD≌△ACD 的条件是【的条件是【 】】A. AB=ACB. ∠BAC=90°C. BD=AC A. AB=AC B. ∠BAC=90° C. BD=ACD. ∠B=45°D. ∠B=45°D. ∠B=45°3.如图,已知点A 、D 、C 、F 在同一条直线上,在同一条直线上,AB=DE AB=DE AB=DE,,BC=EF BC=EF,要使△ABC≌△DEF,还需要添加一个条件,要使△ABC≌△DEF,还需要添加一个条件是【是【 】】 A A.∠BCA=∠F .∠BCA=∠F .∠BCA=∠F B B B.∠B=∠E .∠B=∠E .∠B=∠EC .BC∥EF .BC∥EFD .∠A=∠EDF .∠A=∠EDF4.如图,AB∥CD,如图,AB∥CD,E E ,F 分别为AC AC,,BD 的中点,若AB=5AB=5,,CD=3CD=3,则,则EF 的长是【的长是【 】】A .4B .3C .2D .15.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是【等的是【 】】 (A) (A)两条边长分别为两条边长分别为4,5,它们的夹角为β (B) (B)两个角是两个角是β,它们的夹边为4(C) (C)三条边长分别是三条边长分别是4,5,5 (D)5 (D)两条边长是两条边长是5,一个角是β6.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO≌△NMO,则只需测出其长度的线段是【的线段是【 】】 A A..PO B .PQ C PQ C..MO D .MQ7.如图,在菱形ABCD 中,对角线AC AC,,BD 相交于点O ,且AC≠BD,则图中全等三角形有【AC≠BD,则图中全等三角形有【 】】A.4对B. 6对.C.8对D.10对二、填空题:1.在Rt△ABC 中,∠ACB=90°,中,∠ACB=90°,BC=2cm BC=2cm BC=2cm,CD⊥AB,在,CD⊥AB,在AC 上取一点E ,使EC=BC EC=BC,过点,过点E 作EF⊥AC 交CD 的延长线于点F ,若EF=5cm EF=5cm,则,则AE= cm AE= cm..2.如图所示,如图所示,AB=DB AB=DB AB=DB,∠ABD=∠CBE,请你添加一个适当的条件,∠ABD=∠CBE,请你添加一个适当的条件,∠ABD=∠CBE,请你添加一个适当的条件 ,, 使使ΔABC≌ΔDBE DBE.. ( (只需添只需添加一个即可加一个即可) )3.如图所示,已知点A 、D 、B 、F 在一条直线上,在一条直线上,AC=EF AC=EF AC=EF,,AD=FB AD=FB,要使△ABC≌△FDE,还需添加一个条件,,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是这个条件可以是 ..(只需填一个即可)(只需填一个即可)4.如图,点D ,E 分别在线段AB AB,,AC 上,上,BE BE BE,,CD 相交于点O ,AE=AD AE=AD,要使△ABE≌△ACD,需添加一个条,要使△ABE≌△ACD,需添加一个条件是件是 (只需一个即可,图中不能再添加其他点或线)(只需一个即可,图中不能再添加其他点或线).5.如图.点D 、E 在△ABC 的边BC 上,AB=AC AB=AC,,AD=AE AD=AE..请写出图中的全等三角形请写出图中的全等三角形 ( ( (写出一对即可写出一对即可写出一对即可)).6.如图,己知AC=BD AC=BD,要使△ABC≌△DCB,则只需添加一个适当的条件是,要使△ABC≌△DCB,则只需添加一个适当的条件是,要使△ABC≌△DCB,则只需添加一个适当的条件是 ( ( (填一个即可填一个即可填一个即可) )三、解答题:1.已知:如图,AB AE =,1=2ÐÐ,=B E ÐÐ,求证:BC ED =2.如图,已知AB=DC AB=DC,,DB=AC(1)求证:∠ABD=∠DCA,注:证明过程要求给出每一步结论成立的依据.)求证:∠ABD=∠DCA,注:证明过程要求给出每一步结论成立的依据.(2)在()在(11)的证明过程中,需要作辅助线,它的意图是什么?)的证明过程中,需要作辅助线,它的意图是什么?3.如图,点D 在AB 上,点E 在AC 上,上,AB=AC AB=AC AB=AC,∠B=∠C.求证:,∠B=∠C.求证:,∠B=∠C.求证:BE=CD BE=CD BE=CD..4.如图,AB∥CD,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB AB,,AC 于E ,F 两点,再分别以E ,F为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP AP,交,交CD 于点M 。

九年级数学中考专题复习全等三角形练习(有答案)

九年级数学中考专题复习全等三角形练习(有答案)

全等三角形一、单选题1.如图,若△OAD △△OBC ,且△O =65°,△C =20°,则△OAD = ( )A .65°B .75°C .85°D .95°2.在下列四组条件中,能判定△ABC△△A′B′C′的是( )A .AB=A′B′,BC=B′C′,△A=△A′B .△A=△A′,△C=△C′,AC=B′C′C .△A=△B′,△B=△C′,AB=B′C′D .AB=A′B′,BC=B′C′,△ABC 的周长等于△A′B′C′的周长3.到三角形三个顶点距离相等的点是( )A .三角形三条边的垂直平分线的交点B .三角形三条角平分线的交点C .三角形三条高的交点D .三角形三条边的中线的交点4.如图所示的是已知BOA ∠,求作B O A BOA '''∠=∠的作图痕迹,则下列说法正确的是( )A .因为边的长度对角的大小无影响,所以孤CD 的半径长度可以任意选取B .因为边的长度对角的大小无影响,所以弧CD ''的半径长度可以任意选取C .因为边的长度对角的大小无影响,所以弧E F ''的半径长度可以任意选取D .以上三种说法都正确5.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个6.如图,在Rt ABC 中,90A ∠=,ABC ∠的平分线BD 交AC 于点D ,3AD =,10BC =,则BDC 的面积是( )A .10?B .15?C .20D .307.如图,已知AO=OB ,OC=OD ,AD 和BC 相交于点E ,则图中全等三角形有( )对.A.1对B.2对C.3对D.4对8.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带△去B.带△去C.带△去D.带△△去9.如图,点A、D、C、E在同一条直线上,AB△EF,AB=EF,△B=△F,AE=12,AC=8,则CD的长为()A.5.5B.4C.4.5D.310.工人师傅常用角尺平分一个任意角做法如下:如图所示,在△AOB的两边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是△AOB的平分线画法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL11.如图:△ABC是等边三角形,AE=CD,AD,BE相交于点P,BQ△AD于Q,PQ=4,PE=1,则AD的长是()A.9B.8C.7D.612.如图,已知AB=AC,AF=AE,△EAF=△BAC,点C、D、E、F共线.则下列结论,其中正确的是()△△AFB△△AEC;△BF=CE;△△BFC=△EAF;△AB=BC.A.△△△B.△△△C.△△D.△△△△二、填空题13.如图,已知△1=△2,请你添加一个条件使△ABC△△BAD,你的添加条件是_______(填一个即可)。

2024年中考数学《全等三角形》专题练习附带答案

2024年中考数学《全等三角形》专题练习附带答案

2024年中考数学《全等三角形》专题练习附带答案学校:___________班级:___________姓名:___________考号:___________知识重点1、全等三角形的概念:(1)能够完全重合的两个三角形叫做全等三角形。

(2)把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

2、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。

3、三角形全等的判定:(1)边边边(SSS):三边分别相等的两个三角形全等。

(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。

(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。

(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。

(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。

一、选择题1.下列各选项中的两个图形属于全等形的是()A.B.C.D.2.如图,△ABC≌△EDC,AC=3cm,DC=5cm,则BE=()A.1cm B.2cm C.3cm D.4cm3.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.30°C.35°D.25°4.小亮设计了如下测量一池塘两端AB的距离的方案:先取一个可直接到达点A,B的点O,连接AO,BO,延长AO至点P,延长BO至点Q,使得OP=AO,OQ=BO再测出PQ的长度,即可知道A,B之间的距离.他设计方案的理由是()A.SAS B.AAS C.ASA D.SSS5.如图,点F,E在AC上AD=CB,∠D=∠B添加一个条件,不一定能证明△ADE≌△CBF的是()A.AD∥BC B.DE∥FB C.DE=BF D.AE=CF6.如图所示∠E=∠D,CD⊥AC于点C,BE⊥AB于点B,AE交BC于点F,且BE=CD,则下列结论不一定正确的是()A.AB=AC B.BF=EF C.AE=AD D.∠BAE=∠CAD 7.如图,OD平分∠AOB,DE⊥AO于点E,DE=5 F是射线OB上的任意一点,则DF的长度不可能是()A.4 B.5 C.5.5 D.68.如图,AD是△BAC的平分线,DE⊥AB于点E,S△ABC=32,DE=4,AB=9,则AC的长是()A.5 B.6 C.7 D.8二、填空题9.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯的水平长度DF 相等,那么判定△ABC与△DEF全等的依据是.10.若△ABC≌△DEF,A与D,B与E分别是对应顶点∠A=50°,∠B=60°则∠F=. 11.如图,△ABC的面积为25cm2,BP平分∠ABC,过点A作AP⊥BP于点P,则△PBC的面积为;12.如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,已知BC=8,DE=2则△BCE 的面积等于.13.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=7cm,CE=5cm,则DE= cm.三、解答题14.如图,点B,C,E,F在同一直线上,AB=DF,AC=DE,BE=CF.求证:AB∥DF.15.如图,在Rt△ABC中∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED≅△ABC.16.如图,在四边形ABCD中,∠B=∠C=90°,E是BC的中点,AE平分∠DAB.求证:CD+AB=AD.17.已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC,求证:(1)OD=OE;(2)OB=OC.18.如图,在△ABC中AC>AB,射线AD平分∠BAC,交BC于点E,点F在边AB的延长线上AF=AC,连接EF.(1)求证:△AEC≌△AEF.(2)若∠AEB=50°,求∠BEF的度数.19.如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AD,CE分别平分∠BAC,∠ACB.(1)求∠AOE得度数;(2)求证:AC=AE+CD.参考答案1.A2.B3.C4.A5.D6.B7.A8.C9.HL10.70°11.12.5cm212.813.1214.解:∵ BE=CF∴BE−CE=CF−CE∴BC=FE∵ AB=DF,AC=DE∴△ABC≌△DFE(SSS)∴∠B=∠F∴AB∥DF.15.证明:∵DE⊥AC,∠DEC=90°又∵∠B=90°∴∠DEC=∠B=90°∵CD∥AB,∴∠A=∠DCE在△CED和△ABC中{∠DCE=∠A CE=AB∠DEC=∠B∴△CED≅△ABC(ASA).16.证明:如图,过点E作EF⊥AD于F∵∠B=90°,AE平分∠DAB∴BE=EF在Rt△EFA和Rt△EBA中{EF=EBAE=AE∴Rt△EFA和≌Rt△EBA(HL).∴AF=AB∵E是BC的中点∴BE=CE=EF在Rt△EFD和Rt△ECD中{EF=ECDE=DE∴Rt△EFD和≌Rt△ECD(HL).∴DF=CD∴CD+AB=DF+AF=AD∴CD+AB=AD.17.(1)证明:∵AO平分∠BAC,CD⊥AB,BE⊥AC ∴OD=OE(2)证明:∵CD⊥AB,BE⊥AC∴∠BDO=∠CEO=90°在△BDO和△CEO中{∠BDO=∠CEO DO=CO∠BOD=∠COE∴△BDO≌△CEO(ASA)∴OB=OC18.(1)证明:射线AD平分∠BAC∴∠CAE=∠FAE 在△AEC和△AEF中{AC=AF∠CAE=∠FAE AE=AE∴△AEC≌△AEF(SAS);(2)解:∵△AEC≌△AEF(SAS)∴∠AEC=∠AEF∵∠AEB=50°∴∠AEC=180°−∠AEB=180°−50°=130°∴∠AEF=∠AEC=130°∴∠BEF=∠AEF−∠AEB=80°∴∠BEF为80°.19.18.(1)解:∵∠BAC=90°,∠ABC=60°∴∠ACB=30°∵AD平分∠BAC,CE平分∠BAC∴∠CAD=12∠BAC=45°,∠ACE=12∠ACB=15°∵∠AOE是△AOC的外角∴∠AOE=∠CAD+∠ACE=60°;(2)证明:在AC上截取CF=CD,连接OF∵CE平分∠ACB∴∠DCO=∠FCO在△DCO和△FCO中{CD=CF∠DCO=∠FCOOC=OC∴△DCO≌△FCO(SAS)∴∠COD=∠COF∵∠AOE=60°∴∠COD=∠COF=60°∴∠AOF=180°−∠AOE−∠COF==60°∴∠AOE=∠AOF∵AD平分∠BAC∴∠EAO=∠FAO在△EAO和△FAO中{∠EAO=∠FAO AO=AO∠AOE=∠AOF∴△EAO≌△FAO(ASA)∴AE=AF∵AC=AF+CF∴AC=AE+CD.。

全等三角形复习专题

全等三角形复习专题

全等三角形复习专题一、全等三角形基本概念与性质全等三角形是指能够完全重合的两个三角形,即形状相同和大小相等的三角形。

全等三角形的性质是全等三角形的边、角及其对应线段之间具有一些特殊的数量关系和位置关系。

如全等三角形的对应边相等,对应角相等,对应线段相等,以及全等三角形的中点连线等于其一边。

二、全等三角形的判定全等三角形的判定是全等三角形研究的核心内容,主要有以下五个判定方法:1、边角边定理(SAS):若两个三角形的两边及其夹角对应相等,则这两个三角形全等。

2、角边角定理(ASA):若两个三角形的两个角及其夹边对应相等,则这两个三角形全等。

3、边边边定理(SSS):若两个三角形的三边对应相等,则这两个三角形全等。

4、角角边定理(AAS):若两个三角形的两个角及其一边对应相等,则这两个三角形全等。

5、斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则这两个直角三角形全等。

三、全等三角形的应用全等三角形在数学、几何、物理等领域中都有广泛的应用。

如证明线段相等、角相等、平行四边形、矩形、菱形、正方形等几何图形的性质和判定,以及解决一些实际问题等。

四、全等三角形的复习策略1、掌握全等三角形的基本概念和性质,理解判定方法的意义和适用范围。

2、熟练掌握全等三角形的判定方法,能够根据题目条件选择合适的判定方法解决问题。

3、熟悉全等三角形的应用,能够将全等三角形的知识应用到实际问题和数学问题中。

4、多做练习题,熟悉各种题型和解题方法,提高解题能力和思维水平。

5、注意对易错点和难点进行重点复习和强化训练,避免出现常见的错误和失误。

全等三角形动点专题在数学的世界里,全等三角形和动点问题是两个重要的概念。

全等三角形是指两个或两个以上的三角形,它们的边长和角度都相等,可以完全重合。

动点问题则涉及到在给定的图形或轨迹上移动的点,以及这些点的变化和规律。

将这两个概念结合起来,我们可以研究一类非常有趣的数学问题,即全等三角形动点专题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学试题专题汇编:全等三角形一、选择题1. (2011安徽芜湖,6,4分)如图,已知ABC △中,45ABC ∠=, F 是高AD 和BE 的交点,4CD =,则线段DF 的长度为( ). A .22B . 4C .32D .42【答案】B2. (2011山东威海,6,3分)在△ABC 中,AB >AC ,点D 、E 分别是边AB 、AC 的中点,点F 在BC 边上,连接DE ,DF ,EF .则添加下列哪一个条件后,仍无法判定△BFD 与△EDF 全等( ). A . EF ∥A BB .BF =CFC .∠A =∠DFED .∠B =∠DFE【答案】C3. (2011浙江衢州,1,3分)如图,OP 平分,MON PA ON ∠⊥于点A ,点Q 是射线OM 上的一个动点,若2PA =,则PQ 的最小值为( )A.1B.2C.3D. 4【答案】B*1. (2011江西,16,3分)如图所示,两块完全相同的含30°角的直角三角形叠放在一起,且∠DAB=30°。

有以下四个结论:①AF ⊥BC ;②△ADG ≌△ACF ; ③O 为BC 的中点; ④AG :DE =3:4,其中正确结论的序号是 .(第6题) AONM QP**2. (2011广东湛江19,4分)如图,点,,,B C F E 在同一直线上, 12∠=∠,BC FE =,1∠ (填“是”或“不是”) 2∠的对顶角,要使ABC DEF ∆≅∆,还需添加一个条件,这个条件可以是 (只需写出一个).【答案】AC DF =三、解答题*2. (2011山东菏泽,15(2),6分)已知:如图,∠ABC =∠DCB ,BD 、C A 分别是∠ABC 、∠DCB 的平分线.求证:AB =DC证明:在△ABC 与△DCB 中(A B C D CB AC BD B C B C B C ∠=∠⎧⎪∠=∠⎨⎪=⎩已知)(公共边)(∵AC 平分∠BCD ,BD 平分∠ABC )∴△ABC ≌△DCB∴AB =DC3. (2011浙江省,19,8分)如图,点D ,E 分别在AC ,AB 上. (1) 已知,BD =CE ,CD=BE ,求证:AB=AC ; (2) 分别将“BD=CE ”记为①,“CD=BE ” 记为②,“AB=AC ”记为③.添加条件①、③,以②为结论构成命题1,添加条件②、③以①为结论构成命题2.命题1是命题2的 命题,命题2是 命题.(选择“真”或“假”填入空格).【答案】(1) 连结BC ,∵ BD=CE ,CD=BE ,BC=CB . ∴ △DBC ≌△ECB (SSS ) ∴ ∠DBC =∠ECB ∴ AB=AC(2) 逆, 假;6. (2011江苏连云港,20,6分)两块完全相同的三角形纸板ABC 和DEF ,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC 和DF 的交点.不重叠的两部分△AOF 与△DOC 是否全等?为什么?【答案】解:全等 .理由如下:∵两三角形纸板完全相同,∴BC =BF ,AB =BD ,∠A =∠D ,∴AB -BF =BD -BC ,即AF =DC .在△AOF 和△DOC 中,∵AF =DC ,∠A =∠D ,∠AOF =∠DOC ,∴△AOF ≌△DOC (AAS ). 10.(2011四川内江,18,9分)如图,在Rt △ABC 中,∠BAC=90°,AC=2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合,连结BE 、EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.【答案】BE=EC ,BE ⊥EC∵AC=2AB ,点D 是AC 的中点 ∴AB=AD=CD∵∠EAD=∠EDA=45° ∴∠EAB=∠EDC=135° ∵EA=ED∴△EAB ≌△EDC∴∠AEB=∠DEC ,EB=ECABCDE∴∠BEC=∠AED=90°∴BE=EC ,BE ⊥EC**13. 在△ABC 中,∠ACB =90o,AC =BC,直线MN 经过点C,且AD ⊥MN 于D,BE ⊥MN于E.⑴当直线MN 绕点C 旋转到图⑴的位置时,求证: DE =AD +BE ⑵当直线MN 绕点C 旋转到图⑵的位置时,求证: DE =AD -BE;⑶当直线MN 绕点C 旋转到图⑶的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系.*2.(2010四川 巴中)如图2 所示,AB = AC ,要说明△ADC ≌△AEB ,需添加的条件不能..是()A .∠B =∠CB. AD = AEC .∠ADC =∠AEB D. DC = BE 【答案】D *5.(2010贵州铜仁)如图,△ABC ≌△DEF ,BE=4,AE=1,则DE 的长是( )A .5B .4C .3D .2【答案】A*1.(2010 天津)如图,已知AC FE =,BC DE =,点A 、D 、B 、F 在一ABCED 图2条直线上,要使△ABC ≌△FDE ,还需添加一个..条件, 这个条件可以是 .【答案】C E ∠=∠(答案不惟一,也可以是AB FD =或AD FB =)***2.(2010江苏南通)(本小题满分8分)如图,已知:点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF .能否由上面的已知条件证明AB ∥ED ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件.......,添加到已知条件中,使AB ∥ED 成立,并给出证明. 供选择的三个条件(请从其中选择一个): ①AB =ED ; ②BC =EF ; ③∠ACB =∠DFE .【答案】解:由上面两条件不能证明AB//ED .有两种添加方法. 第一种:FB =CE ,AC =DF 添加 ①AB =ED证明:因为FB =CE ,所以BC =EF ,又AC =EF ,AB =ED ,所以ABC ≅DEF 所以∠ABC =∠DEF 所以AB//ED第二种:FB =CE ,AC =DF 添加 ③∠ACB =∠DFE证明:因为FB =CE ,所以BC =EF ,又∠ACB =∠DFE AC =EF ,所以ABC ≅DEF 所以∠ABC =∠DEF 所以AB//ED*6.(2010福建宁德)如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,AB DEFC(第25题)第(13)题ACD BEF要使△AE D ≌△AFD ,需添加一个条件是:_______________,并给予证明.【答案】解法一:添加条件:AE =AF ,证明:在△AED 与△AFD 中,∵AE =AF ,∠EAD =∠FAD ,AD =AD , ∴△AED ≌△AFD (SAS ). 解法二:添加条件:∠EDA =∠FDA ,证明:在△AED 与△AFD 中,∵∠EAD =∠FAD ,AD =AD ,∠EDA =∠FDA∴△AED ≌△AFD (ASA ).****12.(2010四川 泸州)如图4,已知AC ∥DF ,且BE =CF .(1)请你只添加一个..条件,使△ABC ≌△DEF ,你添加的条件是 ; (2)添加条件后,证明△ABC ≌△DEF.【答案】(1)添加的条件是AC =DF (或AB ∥DE 、∠B =∠DEF 、∠A =∠D )(有一个即可)(2)证明:∵AC ∥DF ,∴∠ACB =∠F ,∵BE=CF ,∴BC =EF ,在△ABC 和△DEF 中,ACB F AC DF BC EF ===⎧⎪⎨⎪⎩∠∠ ,∴△ABC ≌△DEF. *13.(2010 甘肃)(8分)如图,BAC ABD ∠=∠.(1)要使OC OD =,可以添加的条件为: 或 ;(写出2个符合题意的条件即可)(2)请选择(1)中你所添加的一个条件,证明OC OD =.B DC AEFDOCBA【答案】解:(1)答案不唯一. 如C D ∠=∠,或ABC BAD ∠=∠,或OAD OBC ∠=∠,或AC BD =. ……4分说明:2空全填对者,给4分;只填1空且对者,给2分. (2)答案不唯一. 如选AC BD =证明OC=OD.证明: ∵ BAC ABD ∠=∠,∴ OA=OB. ……………………6分 又 AC BD =,∴ AC-OA=BD-OB ,或AO+OC=BO+OD.∴ OC OD =. ……………………8分18.(2010广西南宁)如图10,已知ADE Rt ABC Rt ∆≅∆,︒=∠=∠90ADE ABC ,BC 与DE 相交于点F ,连接EB CD ,.(1)图中还有几对全等三角形,请你一一列举;(2)求证:EF CF =.【答案】(1)ABE ADC ∆≅∆,EBF CDF ∆≅∆ 2分 (2)证法一:连接CE 3分∵ADE Rt ABC Rt ∆≅∆∴AE AC = 4分 ∴AEC ACE ∠=∠ 5分 又∵ADE Rt ABC Rt ∆≅∆∴AED ACB ∠=∠ 6分 ∴AED AEC ACB ACE ∠-∠=∠-∠即DEC BCE ∠=∠ 7分DO CBA∴EF CF = 8分 证法二:∵ADE Rt ABC Rt ∆≅∆∴EAD CAB AB AD AE AC ∠=∠==,,, ∴DAB EAD DAB CAB ∠-∠=∠-∠即EAB CAD ∠=∠ 3分 ∴)(SAS AEB ACD ∆≅∆ 4分∴ABE ADC EB CD ∠=∠=, 5分 又∵ABC ADE ∠=∠∴EBF CDF ∠=∠ 6分 又∵BFE DFC ∠=∠∴)(AAD EBF CDF ∠≅∠ 7分 ∴EF CF = 8分 证法三:连接AF 3分∵ADE Rt ABC Rt ∆≅∆∴︒=∠=∠==90,,ADE ABC DE BC AD AB 又∵AF AF =∴)(HL ADF Rt ABF Rt ∆≅∆ 5分 ∴DF BF = 6分 又∵DE BC =∴DF DE BF BC -=- 7分即EF CF = 8分22.(2010湖南娄底)如图10,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连结AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ; (2)AB =BC +AD【答案】解:(1)因为E 是CD 的中点,所以DE=CE.因为AB//CD ,所以∠ADE=∠FCE ,∠DAE=∠CFE.所以△ADE ≌△FCE.所以FC=AD.(2)因为△ADE ≌△FCE ,所以AE=FE.又因为BE ⊥AE ,所以BE 是线段AF 的垂直平分线,所以AB=FB.因为FB=BC+FC=BC+AD.所以AB==BC+AD.5、(2009年衡阳市)如图2所示,A 、B 、C 分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个 文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( ) A .AB 中点 B .BC 中点 C .AC 中点 D .∠C 的平分线与AB 的交点 9、(2009年湖北十堰市)下列命题中,错误的是( ).A .三角形两边之和大于第三边B .三角形的外角和等于360°C .三角形的一条中线能将三角形面积分成相等的两部分D .等边三角形既是轴对称图形,又是中心对称图形*12、(2009年广西钦州)如图,在等腰梯形ABCD 中,AB =DC ,AC 、BD 交于点O ,则图中全等三角形共有( ) A .2对 B .3对C .4对D .5对【形AB C D O18、(2009河池)如图,在Rt △ABC 中,90∠=A ,AB =AC =86,点E 为AC 的中点,点F 在底边BC 上,且⊥FE BE ,则△CEF 的面积是( )A . 16B . 18C . 66D . 76*25、 (2009陕西省太原市)如果三角形的两边分别为3和5,那么连接这个三角形三边中点,所得的三角形的周长可能是( )A CB 图2 CBFAEA .4B .4.5C .5D .5.5*28、(2009年牡丹江市)尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS*30、(2009年齐齐哈尔市)如图,为估计池塘岸边A B 、的距离,小方在池塘的一侧选取一点O ,测得15OA =米,OB =10米,A B 、间的距离不可能是( ) A .20米 B .15米 C .10米 D .5米31、(2009年台湾)图(三)、图(四)、图(五)分别表示甲、乙、丙三人由A 地到B 地的路线图。

相关文档
最新文档