数理统计第四章 方差分析

合集下载

单因素试验的方差分析——概率论与数理统计(李长青版)

单因素试验的方差分析——概率论与数理统计(李长青版)

其次, 同一品种下数据表现出来的差异称为试验(随
机)误差, 这是由客观条件的偶然干扰造成, 与因素(品种) 无直接联系.
方差分析正是分析两类误差的有效工具.
本问题只考虑品种一种因素,故是单因素试验,即只有
一个因子,记为 A, 5个不同的品种就是该因子的5个不同 的水平,分别记为 A1 , A2 , A3 , A4 , A5 , 由于同一品种在不 同的田块上的亩产量不同,故可以认为一个品种的亩产 量 就是一个母体,在方差分析中,总是假定各母体相互独 立地服从同方差的正态分布,即第 j 个品种的亩产量是 一个随机变量,它服从正态分布:
nj
ns , 称为总平均,
它是从 s 个总体中抽得的样本的样本均值.
用样本值 xij 与总平均
x 之间的偏差平方和来反映
种子品种代 号 (水平)
重复试验序号及作物实测产量 1 128 125 148 2 126 137 132 3 139 125 139 4 130 117 125 5 142 106 151 133 122 139
A1 A2
A3
这里试验的指标是作物产量, 作物是因素, 三种种 子品种代表三个不同的水平. 首先,形成数据差异的直接原因是种子的不同品 种.因此, 每个品种下产量的均值差异检验是我们的主 要任务.这种由因素(种子品种)造成的差异称为条件(系 统)误差.
H 0 : 1 2 s 0, H1 : 1 , 2 , , s 不全为零.
(二) 离差平方和分解 引入记号
nj
1 xj nj
s
x
i 1
ij
( j 1, 2,
, s) 水平Aj下的样本均值,
称为组内平均(或列平均)

数理统计 单因素方差分析

数理统计 单因素方差分析

表1 试验数据的形式
总体
观测值
样本容量
1 2 s
y11 , y12 , y1 n1 y 21 , y 22 , y 2 n2 y s 1 , y s 2 , y sn s
n1 n2 ns
1、方差分析的任务是: (1) 检验s 个总体均值是否相等,即
H 0 : 1 2 s H 1 : 1 , 2 , , s 不全相等

1 s ni i ,称为总平均, n i 1
i i 称为水平 Ai 的效应。
从而模型可以写为:
yij i ij 2 ~ N ( 0 , ) ij ni i 0 i
(i 1,2,, s; j 1,2,, ni )
来源
因子 误差 总和
平方和
318 .98
395 .46
714 .44
自由度
3
均方
106 .33 28.25
F 3.76
14
17
3.76 F0.05 (3,14) 3.34
拒绝H 0
例3
例4
5、未知参数的估计
不管 H 0 是否为真,
2
SE ˆ 因此 为 2 的无偏估计。 n s
因此,给定检验水平 时,拒绝域为:
F F ( s 1, n s )
表2 方差分析表 来源 因子 误差 总和 平方和
S A ni y ny
i 1 2 i s 2
自由度 均方
s 1
SA s1
SE n s
F
S A ( s 1) S E (n s)
S E ST S A

数理统计部分 方差分析与协方差分析 回归方程 非参数统计PPT课件

数理统计部分 方差分析与协方差分析 回归方程 非参数统计PPT课件
• 素的A水平与B因素的B水平搭配安排试验所得到的样本为X,
相应的观测值为x。
第26页/共54页
SST
(x i jk x••• ) 2
i jk
SSE
(x i jk x i j• ) 2
i jk
SSA
( x i •• x ••• ) 2
i jk
SSB
( x • j • x ••• ) 2
处理
苗高
1
19, 23, 21, 13
2
21, 24, 27, 20
3
20, 18, 19, 15
4
22, 25, 27, 22
第14页/共54页
data ex;do a=1 to 3;do i=1 to 5 ; input x @@; output;end;end; cards; 19 23 21 13 21 24 27 20 20 18 19 15 22 25 27 22 ; proc anova; class a;model x=a; means a/duncan cldiff;run;
第42页/共54页
第43页/共54页
四、双因素协方差分析
• (一)不考虑交互作用的双因素协方差分析
方差来源 平方和 自由 均方和 F值 度
A
QA

r-1 MQA FA
显著性
B
QB
s-1 MQB FB
误差
QE
rs-r-s MQE
总和
QT
rs-2
第44页/共54页
第45页/共54页
data ex;do a=1 to 3 ;do b=1 to 5 ; input x y @ @;output; end; end; cards; 8 2.85 10 4.24 12 3.00 11 4.94 10 2.88 10 3.14 12 4.50 7 2.75 12 5.84 10 4.06 12 3.88 10 3.86 9 2.82 10 4.94 9 2.89 ; proc glm;class a b ;model y=x a b/solution; lsmeans a b/stderr pdiff;run;

方差分析的基本思想

方差分析的基本思想

第一节方差分析的基本思想1、方差分析的意义前述的t检验和u检验适用于两个样本均数的比较,对于k个样本均数的比较,如果仍用t检验或u检验,需比较次,如四个样本均数需比较次。

假设每次比较所确定的检验水准=0.05,则每次检验拒绝H0不犯第一类错误的概率为1-0.05=0.95;那么6次检验都不犯第一类错误的概率为(1-0.05)6=0.7351,而犯第一类错误的概率为0.2649,因而t检验和u检验不适用于多个样本均数的比较。

用方差分析比较多个样本均数,可有效地控制第一类错误。

方差分析(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出,以F命名其统计量,故方差分析又称F检验。

2、方差分析的基本思想下面通过表5.1资料介绍方差分析的基本思想。

例如,有4组进食高脂饮食的家兔,接受不同处理后,测定其血清肾素血管紧张素转化酶(ACE)浓度(表5.1),试比较四组家兔的血清ACE浓度。

表5.1对照组及各实验组家兔血清ACE浓度(u/ml)对照组实验组A降脂药B降脂药C降脂药61.24 82.35 26.23 25.4658.65 56.47 46.87 38.7946.79 61.57 24.36 13.5537.43 48.79 38.54 19.4566.54 62.54 42.16 34.5659.27 60.87 30.33 10.9620.68 48.23329.92 372.59 229.17 191.00 1122.68 () 6 6 7 7 26 (N )54.99 62.10 32.74 27.29 43.18 ()18720.97 23758.12 8088.59 6355.43 56923.11 ()由表5.1可见,26只家兔的血清ACE浓度各不相同,称为总变异;四组家兔的血清ACE浓度均数也各不相同,称为组间变异;即使同一组内部的家兔血清ACE 浓度相互间也不相同,称为组内变异。

方差分析(ANOVA)PPT参考课件

方差分析(ANOVA)PPT参考课件

三、多个样本均数的两两比较
34
2020/1/15
方差分析能说明什么问题?
不拒绝H0,表示拒绝总体均数相等的证据不
足 分析终止
拒绝H0,接受H1, 表示总体均数不全相等
哪两两均数之间相等?哪两 两均数之间不等?
需要进一步作多重比较
35
2020/1/15
能否用T检验呢 当有k个均数需作两两比较时,比较的次数共 有c= = k!/(2!(k-2)!)=k(k-1)/2
18~岁 21.65 20.66
… … 18.82 16 22.07 8.97
30~岁 27.15 28.58
… … 23.93 16 25.94 8.11
45~60岁 20.28 22.88 … … 26.49 16 25.49 27 7.19
2020/1/15
基本步骤
(1)建立假设,确定检验水准
2020/1/15
单因素方差分析 (1) 方差齐性检验
结果分析
2020/1/15
Test of Homogeneity of Variances
no
Levene Statistic 3.216
df1 2
df2 33
Sig. .053
Levene方法检验统计量为3.216,其P值为0.053,可 认为样本所来自的总体满足方差齐性的要求。
方差分析(ANOVA)
1
2020/1/15
n4
n3 n2 n1
Y4
Y3 Y2
Y1
2
2020/1/15
例子:某研究者在某单位工作人员中进行了体重指 数(BMI)抽样调查,随机抽取不同年龄组男性受试 者各16名,测量了被调查者的身高和体重值,由此按 照BMI=体重/身高2公式计算了体重指数,请问,不 同年龄组的体重指数有无差异。

数理统计课件-方差分析(zijiyong)

数理统计课件-方差分析(zijiyong)

计算各水平样本均值: ①假定从第i个总体中抽取一个容量为ni的简单随机样本, 第i个总体的样本均值为该样本的全部观察值总和除 以观察值的个数 ni ②计算公式为
x
xi
j 1
ij
ni
(i 1,2,, k )
式中: ni为第 i 个总体的样本观察值个数 xij 为第 i 个总体的第 j 个观察值
通过对数据 误差来源的 分析来判断 不同总体的 均值是否相 等
四、方差分析的基本思想和原理
(一)两类误差 1. 组内误差 组内误差:在因素的同一水平(同一个总体)下,样本的各
2.
观察值之间的差异 比如,同一种颜色的饮料在不同超市上的销售量是不同的 不同超市销售量的差异可以看成是随机因素的影响,或者 说是由于抽样的随机性所造成的,称为随机误差 组间误差 组间误差:在因素的不同水平(不同总体)下,各观察值之 间的差异 比如,同一家超市,不同颜色饮料的销售量也是不同的 这种差异可能是由于抽样的随机性所造成的,也可能是由 于颜色本身所造成的,后者所形成的误差是由系统性因素 造成的,称为系统误差
然后加以比较进行统 计判断,得出结论。
ANOVA 由英国统 计学家R.A.Fisher首 创,为纪念Fisher, 以F命名,故方差分析 又称 F 检验 (F test)。
注:方差分析(Analysis of Variance,简称ANOVA),又称 “变异数分析”或“F检验”.
学习目标:
本章的主要学习目标是要求学生在理解方差分 析基本思想的基础上,掌握单因素和双因素方差分 析的应用原理;重点是要学会方差分析的操作与应 用。
SST=SSE+SSA
实例
超市 (j)
1 2 3 4 5 合计

概率论与数理统计单因素试验的方差分析讲课文档

概率论与数理统计单因素试验的方差分析讲课文档

乙 1580 1640 1640 1700 1750
丙 1460 1550 1600 1620 1640 1740 1660 1820

第三页,共21页。
1510 1520 1530 1570 1680 1600
第三页,共21页。
引例
灯泡的使用寿命——试验指标
灯丝的配料方案——试验因素(唯一的一个) 四种配料方案(甲乙丙丁)——四个水平
第十八页,共21页。
第十八页,共21页。
例2的上机实现步骤
1、输入原始数据列,并存到A,B,C列;
第十九页,共21页。
第十九页,共21页。
2、选择Stat>ANOVA>one-way(unstacked)
第二十页,共21页。
各水平数据放同一列 各水平数据放在不同列
第二十页,共21页。
第二十一页,共21页。
r
SSE
i1
ni
T 2 X ij n j1
r2 i
i1 i
第十五页,共21页。
ni
其中 T i X ij , j1 同一水平 下观测值 之和
r
T Ti i1
所以观测 值之和
第十五页,共21页。
例2 P195 2 以 A、B、C 三种饲料喂猪,得一个月后每猪 所增体重(单位:500g)于下表,试作方差分析。
饲料
增重
A
51
40
43
48
B
23
25
26
C
23
28
解:T1 51404348182,
T2 232526 74,
T 1 8 2 7 4 5 1 3 0 7
T3 232851
dfAr12, dfEnr936,

方差(概率论与数理统计)

方差(概率论与数理统计)
方差分析的基本思想
方差分析通过比较不同组数据的分散程度,判断不同因素对数据变 异的贡献程度,从而进行多因素比较。
方差分析的适用条件
进行方差分析前需要满足独立性、正态性和方差齐性等条件,以确 保分析结果的准确性和可靠性。
方差分析的步骤
包括建立假设、计算自由度、计算F值、进行显著性检验等步骤,最 终得出各因素对数据变异的贡献程度和显著性水平。
统计学推断
在统计学中,方差分析、回归分析和生存分析等方法都涉及到方差的 概念和应用。
质量控制
在生产过程中,方差分析可以用于检测产品质量的一致性和稳定性。
社会科学研究
在社会学、心理学和经济学等社会科学领域,方差分析常用于研究不 同组别之间的差异和变化。
02
方差的计算方法
离差平方和的分解
离差平方和是由数据点与平均值的偏差平方和组成的,即每个数据点与平 均值的差的平方的总和。
其中,n是数据点的数量,组内离差平方和是每个数据点 与其所属类别的平均值的偏差平方和的总和,组间离差平 方和是不同类别的平均值之间的偏差平方和。
方差的计算实例
首先计算每个数据点与平均值的偏差的平方: {0, 1, 2, 3, 4}。
最后,根据方差的计算公式,方差 = (5-1) / 5 * 30 + 1 / 5 * 0 = 24。
假设有一个数据集{1, 2, 3, 4, 5},其平均值为3。
然后求出偏差的平方的总和:0 + 1 + 4 + 9 + 16 = 30。
03
方差与其他统计量的关 系
方差与期望值的关系
方差是衡量数据离散程度的统计量,而期望值是数据的平均 水平。方差和期望值之间存在密切的关系,通常表示为方差 等于期望值的平方减去数据点的平方。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方差分析
本章内容: 方差分析的有关概念、自由度的计算;柯赫伦分解定理 (不证);单因素、双因素实验数据方差分析法。 重点: 单因素、双因素方差分析 本章课时: 6~8 课时
1
• •
引言: 在工农业生产及产品试制中,常常需要分析哪几种因素对生产的质量 和产量起显著影响,并希望知道起显著作用的因素在什么时候,对生产起最 好的影响。
t(n r )
13

给定置信概率 1 ,使 得
p { | T | t ( n r ) } 1 .
2

p{ X i X
j
t ( n r ) S E
2
1 ni

1 nj
i 1 ni 1 nj
j
Xi X
j
t ( n r ) S E
QE
r

2
( ( n i 1) ) ( n r ) .
2 2 i 1
则E ( Q E )
r
( n r ) .
2
2 )

• •
E (Q A )

i 1
ni E ( X i X )
r 2
2
( r 1)


i 1
ni ( i ) ,
0 0 0 0

解:据 r=4, n1 =7, n2 =5, n3 =8, n4 =6, n=26. 方差来源 组间 组内 离差平方和 44374.6 149970.8 自由度 3 22 均方离值 14791.5 6816.8 2.17 F值
总和
• •
194345.4
,据
25
F 0 F 0 .0 5 ( 3 , 2 2 )
X i,
X
j
相互独立
( X i X j ) (i j )


N ( 0 ,1) 1 1 ni nj 1 2 Q E (n r ) 2
T
( X i X j ) (i j ) SE 1 ni 1 nj
15
• • • •
一)下面介绍一般数学模型: 设因子A有r个不同水平A1,A2,…, Ar ; 因子B有s个不同水平B1,B2,…,Bs 。 pq 对每种情况Ai Bj进行一次独立试验,共得 个试验结果 Xij ,由下表给出
因子B
因子A
B1 A1
A2
X 11 X
21
B2
X 12 X
22

: 1 2 r
Q A / ( ( r 1))
2
成立下,作统计量
SA SE
2 2
Q E / ( ( n r ))
2
Байду номын сангаас
Q A / ( r 1) Q E / (n r )
F ( r 1, n r ).
10

3 )

给定显著性水平 使得

Bs
X
1s
X
i
均值
1
X X
X
2s
2

Ar

X
r1

X
r2

X
X
rs
s

X
r
均值 X j
X
1
X
2

X
其中
X
i

1 s
s

j 1 r
X
ij
,
i 1, 2 , , r ,
X
j

1 r 1

i 1 r
X
s
ij
,
j 1, 2 , , s , 1 r
r
X
rs

ni
X ij ,
i 1, 2 , , r (组内平均)(1)
r
X
n

i 1
j 1 ni r
X ij ,
其中 n
j 1

i 1
n(总平均) i


因此 X

1 n
ni X
i
(2)
据(1),(2)可得
r

i 1 j 1
ni
(X
ij
X i )( X
i
X ) 0
Q Q 为总离方差 ; E 组内离方差; A 组间离方差。
Q T : 描述全部数据离散成都; :
•Q

E
描述 X i j 抽样误差的大小程度;
反映了各母体均值 i 之间差异程度。
QA :
7
• • • • • • •
二)为了作出假设 H 的统计量,下面讨论 Q 和Q 的统计性质。
0
E
A
1 )

QE
均值(x i ) 1680
A1 A2 A3 A4
1580
1460 1510
1640
1550 1520
1640
1600 1530
1700
1620 1570
1750
1640 1600
1662
1636.25 1568.33
希望通过上表推断:灯泡不同配料方案对灯泡寿命有无显著影响。 如果影响显著,那么用那一种配料为好。 在统计学上,称灯泡品种为因素,称因素的不同状态为水平。 这里有4种水平— A , A, A, A 4 。 3 2 1
p { F F ( r 1, n r ) }
• •
4 )

得到拒绝域 F
F ( r 1, n r ) .
列出方差分析表,计算 方差来源 组间 组内 总和
F0
离差平方和
r
自由度
2
均方离值
SA
2 2
F值
F0 SA SE
2 2
QA

i 1
ni ( X i X )
2

1
r
n
ni i
8
i 1
• • • •

SE
2
QE nr
QA r 1
2
则 则
2
ESE ,
2 2
SA
2
ES A
2
2

r 1
1
r
ni ( i ) .
2
i 1
显然有
ESE ES A.
(柯赫伦定理) 设 X 从于 N ( 0 ,1) ,又设
的利用实验结果的信息,这就是方差分析。
2
一、一元方差分析
eg1. 某灯泡厂用四种不同配料方案制成的灯丝生产四批灯泡,在每 一批中取若干个做寿命实验,得如下数据(单位:小时)。
灯泡种类 ( Ai )
寿命(单位:h)( x ij ) 1600 1610 1650 1680 1700 1720 1660 1680 1800 1740 1800
X
可写作 ij
X
i ij , i 1, , r .
ij N ( 0 , )
2
2
其中,各 i j 相互独立 , i , 为未知参数。
5

1)在上作假设: H 0 : 1 2 r
H 1 : 1 , 2 , r 不全相等
1
2
3
4
1
2
3
4
1
2
3
4
0
1
2
3
4
4
下面对更一般问题建立数学模型
母体
X X
1
子样
X X
11
子样均值
X X
12


X X
1 n1
X X
1
2
21
22
2 n2
2

X
r

X
r1

X
r2

X
rnr

X
r

2
假定 那么
X
i
N ( i ,
2
) ,

ij
X ij i N (0 , ).
6
r

因此 Q
T


i 1 r j 1 ni
ni
r
(X
ij
X )
2


i 1 r j 1
ni
[( X
ij
X i) (X
i
X )]
2


i 1 j 1
(X
ij
X i)
2

i 1
ni ( X
i
X )
2

• •
QT
QE QA
QT Q E Q A
F 0 .0 5 (3, 2 2 ) 3 .0 5
0
接受原假设 H ,无显著影响。
12
• 原假设不成立时,需要对未知参数作区间估计
拒绝
H
0
,作出

2
i k (i k )
)
区间估计
ni 2 X j N ( j , ) nj E (X i X j) i j 1 1 2 D(X i X j) ( ) ni nj X i N (i,

例如在农业科学试验中,为了提高农作物的收获量,因地制宜的选择 品种,常常需要比较不同品种的种子,施不同种类、不同数量的肥料对农作 物收获量的影响。并从中找出最适宜于该地区的作物品种、肥料的种类和数 量,以提高单位面积的产量。
相关文档
最新文档