绝对值的性质及化简
专题突破:绝对值化简问题专项探究(3大题型)(解析版)—24-25学年七年级数学上册单元(浙教版)

专题突破:绝对值化简问题专项探究绝对值化简常见问题方法总结1、根据绝对值的性质化简(1)牢记绝对值的性质:⎪⎩⎪⎨⎧-==)a(a a )a(a a 0000<)(>或⎩⎨⎧≤-≥=)a(a )a(a a 00(2)在”“=的组合中,当“=”左边的部分未知时,求“| |”内部的数,需要分类讨论;当“=”右边的部分未知时,求“=”右边的值,结果只有一个。
(3)绝对值的非负性应用:当“| |+| |=0”时,则“| |”内部的式子整体=02、已知范围的绝对值化简基本步骤第1步:判断绝对值内部式子的正负;第2步:把绝对值改为小括号;第3步:去括号;第4步:化简合并。
3、绝对值化简与最值问题对应规律(1)当x=a 时,|x-a|的最小值=0;(2)当a ≤x ≤b 时,|x-a|+|x-b|的最小值=|a-b|;(3)若a <b <c ,当x=b 时,|x-a|+|x-b|+|x-c|最小值=c-a;题型一 根据绝对值的性质化简【例1】.(2024春•肇源县期中)若|a |+a =0,则a 是( )A .零B .负数C .负数或零D .非负数【分析】根据绝对值的性质解答即可.【解答】解:若|a |+a =0,则a 是负数或零,故选:C .【变式1-1】.(2024•碑林区校级模拟)如果,那么x =( )A .B .或2C .D .2【分析】根据绝对值的意义求解即可.【解答】解:∵∴.故选:C .【变式1-2】.(2023秋•|m |=|n |,那么m ,n 的关系( )A .相等B .互为相反数C .都是0D .互为相反数或相等【分析】利用绝对值的代数意义化简即可得到m 与n 的关系.【解答】解:∵|m |=|n |,∴m =n 或m =﹣n ,即互为相反数或相等,故选:D .【变式1-3】.(2023秋•渑池县期末)若|a +2|+|b ﹣7|=0,则a +b 的值为( )A .﹣1B .1C .5D .﹣5【分析】根据非负数的性质分别求出a 、b ,计算即可.【解答】解:∵|a +2|+|b ﹣7|=0,∴|a +2|=0,|b ﹣7|=0,∴a+2=0,b﹣7=0,解得,a=﹣2,b=7,则a+b=5,故选:C.【变式1-4】.(2023秋•东莞市月考)若|x﹣1|+|2﹣y|=0,求2x﹣y的值.【分析】根据非负数的性质得出x﹣1=0,2﹣y=0,即可求出x、y的值,从而求出2x﹣y的值.【解答】解:∵|x﹣1|+|2﹣y|=0,又∵|x﹣1|≥0,|2﹣y|≥0,∴x﹣1=0,2﹣y=0,∴x=1,y=2,∴2x﹣y=2×1﹣2=0.【变式1-5】.(2023•南皮县校级一模)若ab≠0,那么+的取值不可能是( )A.﹣2B.0C.1D.2【分析】由ab≠0,可得:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b>0;分别计算即可.【解答】解:∵ab≠0,∴有四种情况:①a>0,b>0,a<0,b<0,③a>0,b<0,④a<0,b>0;①当a>0,b>0时,+=1+1=2;②当a<0,b<0时,+=﹣1﹣1=﹣2;③当a>0,b<0时,+=1﹣1=0;④当a<0,b>0时,+=﹣1+1=0;综上所述,+的值为:±2或0.故选:C.题型二已知范围的绝对值化简【例2】.(2023•成都模拟)化简|π﹣4|+|3﹣π|= .【分析】因为π≈3.414,所以π﹣4<0,3﹣π<0,然后根据绝对值定义即可化简|π﹣4|+|3﹣π|.【解答】解:∵π≈3.414,∴π﹣4<0,3﹣π<0,∴|π﹣4|+|3﹣π|=4﹣π+π﹣3=1.故答案为1.【变式2-1】.(2024春•松江区期中)如果a>3,化简:|1﹣a|﹣|a﹣3|= .【分析】根据绝对值的性质进行解题即可.【解答】解:∵a>3,∴|1﹣a|﹣|a﹣3|=a﹣1﹣(a﹣3)=a﹣1﹣a+3=2.故答案为:2.【变式2-2】.(2024春•海门区校级月考)已知|m|=﹣m,化简|m﹣1|﹣|m﹣2|所得的结果为( )A.2m﹣3B.﹣1C.1D.2m﹣1【分析】由|m|=﹣m,得到m≤0,判断出m﹣1 与m﹣2的正负,然后利用绝对值的性质化简,去括号,合并,即可得到结果.【解答】解:∵|m|=﹣m,∴m≤0,∴m﹣1<0,m﹣2<0,∴|m﹣1|﹣|m﹣2|=﹣(m﹣1)+(m﹣2)=1﹣m+m﹣2=﹣1.故选:B.【变式2-3】.(2022秋•市北区校级期末)当|a|=5,|b|=7,且|a+b|=a+b,则a﹣b的值为( )A.﹣12B.﹣2或﹣12C.2D.﹣2【分析】先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b>0,进一步确定a、b的值,再代入求解即可.【解答】解:∵|a|=5,|b|=7,∴a=±5,b=±7∵|a+b|=a+b,∴a+b≥0,∴a=±5.b=7,当a=5,b=7时,a﹣b=﹣2;当a=﹣5,b=7时,a﹣b=﹣12;故a﹣b的值为﹣2或﹣12.故选:B.【变式2-4】.(2023秋•文登区期末)如图所示,则|﹣3﹣a|﹣|b+1|等于( )A.4+a﹣b B.2+a﹣b C.﹣4﹣a﹣b D.﹣2﹣a+b【分析】先根据数轴判断﹣3﹣a和b+1的正负,再去掉绝对值符号,合并同类项即可.【解答】解:由数轴可知,﹣1<a<0,b>1,∴﹣3<﹣3﹣a<﹣2,b+1>0,∴|﹣3﹣a|﹣|b+1|=(3+a)﹣(b+1)=3+a﹣b﹣1=2+a﹣b.故选:B.【变式2-5】.(2023秋•青羊区校级期末)已知数a,b,c在数轴上的位置如图所示,且|c|>|b|>|a|,化简|a+b|﹣|c﹣b|+|a﹣c|= .【分析】由数轴得c<a<0,b>0,|b|>|a|,进一步判断出a+b>0,c﹣b<0,a﹣c>0,再根据绝对值的意义化简即可.【解答】解:由数轴得c<a<0,b>0,|b|>|a|,∴a+b>0,c﹣b<0,a﹣c>0,∴|a+b|﹣|c﹣b|+|a﹣c|=(a+b)﹣(b﹣c)+(a﹣c)=a+b﹣b+c+a﹣c=2a,故答案为:2a.【变式2-6】.(2023秋•思明区校级期末)如图,化简|a﹣1|= .【分析】判断出a﹣1的取值,再根据绝对值性质计算即可.【解答】解:由题得a<1,∴a﹣1<0,∴|a﹣1|=1﹣a,故答案为:1﹣a.【变式2-7】.(2023秋•余干县期末)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c 0,a+b 0,c﹣a 0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【分析】(1)根据数轴判断出a、b、c的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.题型三绝对值化简与最值问题【例3】.(2022秋•泗阳县期中)式子|x﹣2|+1的最小值是( )A.0B.1C.2D.3【分析】当绝对值有最小值时,式子有最小值,进而得出答案.【解答】解:当绝对值最小时,式子有最小值,即|x﹣2|=0时,式子最小值为0+1=1.故选:B.【变式3-1】.(2023秋•邵阳县校级月考)当a= 时,5﹣|a﹣1|的值最大,最大值为 .【分析】分a<1、a=1和a>1三种情况讨论求出5﹣|a﹣1|≤5,问题随之得解.【解答】解:当a<1时,a﹣1<0,即5﹣|a﹣1|=5﹣(1﹣a)=4+a,∵a<1,∴5﹣|a﹣1|=4+a<5;当a=1时,a﹣1=0,即5﹣|a﹣1|=5;当a>1时,a﹣1>0,即5﹣|a﹣1|=5﹣(a﹣1)=6﹣a,∵a>1,∴﹣a<﹣1,∴5﹣|a﹣1|=6﹣a<5;综上:5﹣|a﹣1|≤5,当且仅当a=1时,5﹣|a﹣1|有最大值,最大值为5,解法二:∵|a﹣1|≥0,∴5﹣|a﹣1|≤5,∴当a=1时,5﹣|a﹣1|的值最大,最大值为5.故答案为:1,5.【变式3-2】.(2023秋•西安校级月考)当x满足 条件时,|x﹣2|+|x+3|有最小值,这个最小值是 .【分析】根据绝对值的性质以及题意即可求出答案.【解答】解:由题意可知:当﹣3≤x≤2时,|x﹣2|+|x+3|有最小值,这个最小值是5.故答案为:﹣3≤x≤2,5.【变式3-3】.(2023春•沙坪坝区校级月考)已知m是有理数,则|m﹣2|+|m﹣4|+|m﹣6|+|m﹣8|的最小值是 .【分析】根据绝对值最小的数是0,分别令四个绝对值为0,从而求得m的四个值,分别将这四个值代入代数式求值,比较得不难求得其最小值.【解答】解:∵绝对值最小的数是0,∴分别当|m﹣2|,|m﹣4|,|m﹣6|,|m﹣8|等于0时,有最小值.∴m的值分别为2,4,6,8.∵①当m=2时,原式=|2﹣2|+|2﹣4|+|2﹣6|+|2﹣8|=12;②当m=4时,原式=|4﹣2|+|4﹣4|+|4﹣6|+|4﹣8|=8;③当m=6时,原式=|6﹣2|+|6﹣4|+|6﹣6|+|6﹣8|=8;④当m=8时,原式=|8﹣2|+|8﹣4|+|8﹣6|+|8﹣8|=12;∴|m﹣2|+|m﹣4|+|m﹣6|+|m﹣8|的最小值是8.故答案为:8.【变式3-4】.(2023秋•新罗区期中)我们已经学习了一个数a的绝对值可分为两种情况:.请用你所学的知识解决下面的问题:(1)若|a﹣3|=5,求a的值;(2)若数轴上表示数a的点位于﹣3与0之间(含端点),化简|a﹣2|﹣|a|;(3)当a= 时,|a﹣5|+|a﹣1|+|a+3|取到最小值,最小值是 .【分析】(1)根据绝对值可得:a﹣3=±5,即可解答;(2)根据已知范围,化简绝对值,再合并即可;(3)分四种情况讨论,即可解答.【解答】解:(1)∵|a﹣3|=5,∴a﹣3=±5,解得:a=8或a=﹣2;(2)∵数轴上表示数a的点位于﹣3与0之间(含端点),∴﹣3≤a≤0,∴|a﹣2|﹣|a|=﹣(a﹣2)+a=﹣a+2+a=2;(3)当a≥5时,原式=a﹣5+a﹣1+a+3=3a﹣3,此时的最小值为3×5﹣3=12;当1≤a<5时,原式=﹣a+5+a﹣1+a+3=a+7,此时的最小值为1+7=8;当﹣3<a≤1时,原式=﹣a+5﹣a+1+a+3=9﹣a,此时的最小值为9﹣1=8;当a≤﹣3时,原式=﹣a+5﹣a+1﹣a﹣3=﹣3a+3,这时的最小值为﹣3×(﹣3)+3=12;综上所述当a=1时,式子的最小值为8,故答案为:1,8.【变式3-5】.(2023秋•芙蓉区校级月考)同学们都知道,|5﹣(﹣2)|表示5与﹣2的差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离,试探索:(1)|5﹣(﹣2)|= ;(2)x是所有符合|x+5|+|x﹣2|=7成立条件的整数,则x= ;(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|的最小值为 ;(4)当x为整数时,|x﹣1|+|x﹣2|+|x﹣3|的最小值为 ;(5)求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣1997|的最小值.【分析】(1)利用题干中的绝对值的几何意义解答即可;(2)利用题干中的绝对值的几何意义解答即可;【解答】解:(1)|5﹣(﹣2)|=|5+2|=7.故答案为:7;(2)∵|x+5|+|x﹣2|=7表示的是在数轴上x所对应的点到﹣5,2两点之间的距离之和等于7,又∵x为整数,∴x=﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2.故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)|x﹣3|+|x﹣6|表示的是在数轴上x所对应的点到3,6两点之间的距离之和,当3≤x≤6时,|x﹣3|+|x﹣6|∴|x﹣3|+|x﹣6|的最小值为3.故答案为:3;(4)|x﹣1|+|x﹣2|+|x﹣3|表示的是在数轴上x所对应的点到1,2,3三点之间的距离之和,∵x为整数,|x﹣1|+|x﹣2|+|x﹣3|取得最小值,∴x=2时,|x﹣1|+|x﹣2|+|x﹣3|的最小值为2.故答案为:2;(5)由(4)的结论可知:当x=999时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣1997|取得最小值,最小值为2×(1+2+...+998)=997002.。
初一数学绝对值知识点与经典例题

初一数学绝对值知识点与经典例题绝对值的性质及化简【绝对值的几何意义】数字a的绝对值是数字轴上代表数字a的点与原点a之间的距离的绝对值记作a.(距离具有非负性)[绝对值的代数意义]正数的绝对值就是它本身;负数的绝对值是它的对立面;0的绝对值是0.注:① 取绝对值也是一种操作。
运算符号是“|”,求一个数的绝对值是根据性质去掉绝对值符号.② 绝对值的本质:一个正数的绝对值就是它本身;负数的绝对值是它的相位反数;0的绝对值是0.③ 绝对值为非负,取绝对值的结果始终为正或0④任何一个有理数都是由两部分组成:符号和它的绝对值,如:?5符号是负绝对值是5【求字母a的绝对值】? a(a?0)?a(a?0)?a(a?0)?①A.0(a?0)②A.③A.?a(a?0)?a(a?0)????a(a?0)?利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:|a|≥0如果几个非负数之和为0,那么这些非负数必须为0,例如:如果a?BC0,那么a?0,b?0,c?0【绝对值的其它重要性质】(1)任何数字的绝对值不小于该数字或该数字的相反数字,即a?a,且a??a;(2)如果是?b、然后是a?B还是a??b、(3)ab?A.B222aa(b?0);?bb(4)|a|?|a|?a;(5)||a|-|b||≤|a±b|≤|a|+|b|a的几何意义:在数字轴上,它表示从该数字的点到原点的距离a?b的几何意义:在数轴上,表示数a.b对应数轴上两点间的距离.[消除绝对值符号]基本步骤:在区域之间找到零点,确定正负,并消除符号。
[绝对值不等式](1)解绝对值不等式必须设法化去式中的绝对值符号,转化为一般代数输入要解决的问题;(2)证明绝对值不等式主要有两种方法:a)去掉绝对值符号,将其转化为一般不等式证明:元素交换法、讨论法和平方法;b)利用不等式:|a |-|b | Q | a+b | Q | a |+| b |,该方法用于对绝对值中的公式进行除法和组合、加减项,以及将要证明的公式与已知公式连接起来。
绝对值化简十种方法

绝对值化简十种方法绝对值是数学中的一个重要概念,它表示一个数与0的距离,因此它的值总是非负的。
在数学中,我们经常需要对绝对值进行化简,以便更好地理解和计算问题。
下面将介绍十种常见的绝对值化简方法。
1. 绝对值的定义:|x| = x (x≥0) 或 |x| = -x (x<0)。
根据这个定义,我们可以将绝对值化为一个简单的表达式。
2. 绝对值的性质:|x| = |-x|。
这个性质告诉我们,绝对值的值与它的符号无关,只与它的绝对值大小有关。
3. 绝对值的加法:|x+y| ≤ |x| + |y|。
这个不等式告诉我们,两个数的绝对值之和不会超过它们的和的绝对值。
4. 绝对值的减法:|x-y| ≥ |x| - |y|。
这个不等式告诉我们,两个数的绝对值之差不会小于它们的差的绝对值。
5. 绝对值的乘法:|xy| = |x| |y|。
这个公式告诉我们,两个数的绝对值之积等于它们的绝对值的积。
6. 绝对值的倒数:1/|x| ≤ 1/x。
这个不等式告诉我们,一个数的倒数的绝对值不会超过它本身的绝对值的倒数。
7. 绝对值的平方:|x|² = x² (x≥0) 或 |x|² = (-x)² (x<0)。
这个公式告诉我们,一个数的绝对值的平方等于它本身的平方。
8. 绝对值的立方:|x|³ = x³ (x≥0) 或 |x|³ = -x³ (x<0)。
这个公式告诉我们,一个数的绝对值的立方等于它本身的立方或相反数的立方。
9. 绝对值的导数:d/dx |x| = x/|x|。
这个公式告诉我们,一个数的绝对值的导数等于它本身除以它的绝对值。
10. 绝对值的积分:∫|x|dx = x|x|/2 + C。
这个公式告诉我们,一个数的绝对值的积分等于它本身乘以它的绝对值除以2再加上一个常数C。
以上是十种常见的绝对值化简方法,它们在数学中的应用非常广泛。
第2讲 绝对值的化简(教师版)

;
∴原式
.
考点 数 > 有理数 > 绝对值 > 绝对值的性质 作业4
化简:
.
答案 原式
.
解析 ①当 原式
②当 原式
③当 原式
时
; 时
; 时
;
∴原式
.
考点 数 > 有理数 > 绝对值 > 题型:零点分段法 作业5
化简:
.
答案 .
解析 ①当 原式 ②当 原式 ③当 原式 ④当 原式
时, 时, 时,
时,
.
综上所得
.
考点 数 > 有理数 > 绝对值 > 绝对值的性质
已知 、 、 为有理数,且
A.
B.
,
,则
C. 或
的值为( ). D.
答案 B
解析
,
∵
,
,
∴ , , 为三个负数,或有其中两个为正数,一个为负数,
则原式
可能出现的结果为 .
考点 数 > 有理数 > 绝对值 > 题型:|a|/a的化简
二、课后创新培养
例题1
、 、 在数轴上的位置如图所示,化简
.
答案 . 解析 略 考点 数 > 有理数 > 绝对值 > 绝对值的性质
设 , , 为非零实数,且
,
,
.化简
.
答案 解析
,
,;
,
;
,
,
所以可以得到 , , ;
考点 数 > 有理数 > 绝对值 > 绝对值的性质
模块二 绝对值的无条件化简
考点 零点分段法
知识导航
,
绝对值化简ppt课件

例3 化简 (1) (2)
1
2
随手练习:化简下列绝对值式子 (1) (2)
当 时,
1/2
0
解(2):由 ,得 ,得
当 时, ,
当 时, ,
当 时, ,
回味战果
这节课你有哪些收获?
思维之战
解:(1)
(2)
a
b
0
1
解:由数轴分析: 且
, ,
例2 已知有理数a,b,c在数轴上的位置如图所示, 试化简
类型一 已知未知数取值范围,利用定义直接化简
思维之战
类型二 不知道未知数取值范围,根据代数式的零点分段讨论, 按不同情况去绝对值化简
例3 化简 (1) (2)
解(1):由 ,解得
当 时,
x
1
0
-3
0
4
x
-3
0
4
x
-3
0
4
x
1
0
x
说明:当绝对值内的代数式为一元一次代数式,且未知数系数为1时,可根据绝对值几何定义,借用数轴数形结合分析去绝对值符号。
解答:(1) (2)
随手练习:化简下列绝对值式子 (1) (2)
性质 如果 ,那么 ; 如果 ,那么 。
0
a
b
a
类型一 已知未知数取值范围,利用定义直接化简
例1 化简 (1) (2)
1、已知 ,化简 ;
2 、已知 a<b ,化简 。
3 、化简 (1) (2)
4、如果x<0,化简 = 。
a
b
0
c
绝对值的性质绝对值的化简方法口诀绝对值符号的去掉法则

绝对值化简步骤:(1)先根据数轴“从左到右数增大”的原则比较绝对值里面字母的大小关系;(2)再根据绝对值里面字母的大小关系计算“和”或“差”为正还是为负;(3)然后根据“一个整数的绝对值等于它本身”把绝对值里面的代数式直接去掉绝对值符号移出来,根据“一个负数的绝对值等于它的相反数”把绝对值里面的代数式去掉绝对值符号再变成它的相反数移出来;(4)最后,绝对值符号全都去掉了之后,再进行加减运算(有的可能需要先去括号再运算),得到最简结果。
绝对值的有关性质:①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;②绝对值等于0的数只有一个,就是0;③绝对值等于同一个正数的数有两个,这两个数互为相反数;④互为相反数的两个数的绝对值相等。
绝对值的化简:绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:│a│=a (a为正值,即a≥0 时);│a│=a (a为负值,即a≤0 时)②整数就找到这两个数的相同因数;③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。
绝对值定义:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。
绝对值用“||”来表示。
在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做ab 的绝对值,记作|ab|。
◎绝对值的知识扩展1、定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
2、绝对值的代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
3、绝对值的有关性质:(1)任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;(2)绝对值等于0的数只有一个,就是0;(3)绝对值等于同一个正数的数有两个,这两个数互为相反数;(4)互为相反数的两个数的绝对值相等。
第2讲 绝对值的化简(教师版)

,
①当 , , 都是正数时,
②当 , , 都是负数时,
③当 , , 有一个负数时,
④当 , , 有两个负数时,
考点 数 > 有理数 > 绝对值 > 绝对值的性质
例题5
若
,求
的值.
答案 -3或1
解析 当
中有三个负数或一个负数 中有三个负数时,
当 中有一个负数时,
; ;
; .
或. 考点 数 > 有理数 > 绝对值 > 绝对值的性质
例题1
、 、 在数轴上的位置如图所示,化简
.
答案 . 解析 略 考点 数 > 有理数 > 绝对值 > 绝对值的性质
设 , , 为非零实数,且
,
,
.化简
.
答案 解析
,
,;
,
;
,
,
所以可以得到 , , ;
考点 数 > 有理数 > 绝对值 > 绝对值的性质
模块二 绝对值的无条件化简
考点 零点分段法
知识导航
时,
.
答案
解析 由题:
,
,
∴ 、 、 两正一负,
∴
,
原式
.
考点 数 > 有理数 > 绝对值 > 绝对值的性质
作业8
已知 是非 有理数,求
.
答案
解析 若 是非 有理数,则 或 ; 当 时,
当 时,
∴
.
; ;
考点 数 > 有理数 > 绝对值 > 绝对值的性质
教师备选
若 、 、 为整数,且
,试计算
答案
解析 , , 均为整数,则 , 也应为整数,且
绝对值的化简与求值

绝对值的化简与求值一、绝对值的几何意义一个有理数a 的绝对值是数轴上表示a 的点到原点的距离,记作a 。
二、绝对值的几何意义1、内容:正数的绝对值为它本身,0的绝对值为0,负数的绝对值为它的相反数。
2、字母表示:⎪⎩⎪⎨⎧<-=>=)0()0(0)0()1(a a a a a a 或⎩⎨⎧<-≥=)0()0()2(a a a a a 或⎩⎨⎧≤->=)0()0()3(a a a a a三、绝对值的性质ba b a b a b a b a b a bab a b a b a a +≤+≤-+≤-≤-=∙=∙≥、;、;、;绝对值的非负性、432)(01四、相关题型(一)化简问题(有取值范围) 思路:绝对值的代数定义.2202-1-++≤≤a a a ,试化简:、若答案:4.2102--+≤<x x aax a ,试化简:,且、设答案:-3.3a a b a b b a b a --+-++所示,试化简:在数轴上对应的点如图,、数答案:bxx xx x ---<3204,试化简:、若答案:-x(二)化简问题(无取值范围) 思路类型一:先分类讨论,再利用绝对值的代数定义。
类型二:零点分段法。
∙零点:使绝对值内的式子为零的未知数的值。
∙零点分段法:找出零点确定讨论范围的方法。
步骤:(1)找零点; (2)确定讨论范围; (3)分段化简。
xx xx 52321--、化简:(分类讨论)答案:75031-0=<=>时,原式当时,原式当x x32-+x x 、化简:3253-++x x 、化简:1553324+--+-x x x 、化简:(三)求值题型 ∙一般题型的值。
,求,、已知b a b a +==321答案:1或5()2240322y x y y x +=-++,求、已知答案:3()的值互为相反数,试求与、若2018213y x y x ++-答案:1..004的值求,、已知acac bc bc ab ab cc bb aa cb a abc +++++>++<答案:0的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
容 基本要求略高要求较高要求绝对值 借助数轴理解绝对值的意义,会数的绝对值会利用绝对值的知识解决简单的化简问题绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0a b c ++=,则0a =,0b =,0c =绝对值的其它重要性质: (1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a ab b=(0)b ≠; (4)222||||a a a ==;(5)a b a b a b -≤+≤+,对于a b a b +≤+,等号当且仅当a 、b 同号或a 、b 中至少有一个0时,等号成立;对于a b a b -≤+,等号当且仅当a 、b 异号或a 、b 中至少有一个0时,等号成立.绝对值几何意义当x a =时,0x a -=,此时a 是x a -的零点值.零点分段讨论的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分化简求值.a 的几何意义:在数轴上,表示这个数的点离开原点的距离.例题精讲中考要求绝对值的性质及化简a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.一、绝对值的概念【例1】 m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.x 的几何意义是数轴上表示 的点与 之间的距离;x0x -(>,=,<);【例2】 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ;【例3】 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则x = .【例4】 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则x = .二、绝对值的性质【例5】 填空:若a b a b +=+,则a ,b 满足的关系 .【例6】 填空:若a b a b -=-,则a ,b 满足的关系 .【例7】 填空:已知a 、b 是有理数,1a ≤,2b ≤,且3a b -=,则a b += .【例8】 若ab ab <,则下列结论正确的是 ( )A. 00a b <<,B. 00a b ><,C. 00a b <>,D.0ab <【例9】 下列各组判断中,正确的是 ( )A .若a b =,则一定有a b =B .若a b >,则一定有a b >C. 若a b >,则一定有a b > D .若a b =,则一定有()22a b =-【例10】 如果2a >2b ,则 ( )A .a b >B .a >bC .a b <D a <b【例11】 (4级)若a b >且a b <,则下列说确的是( )A .a 一定是正数B .a 一定是负数C .b 一定是正数D .b 一定是负数【例12】 下列式子中正确的是 ( )A .a a >-B .a a <-C .a a ≤-D .a a ≥-【例13】对于1m-,下列结论正确的是 ( )A.1||m m-≥B.1||m m-≤C.1||1m m--≥D.1||1m m--≤【例14】若220x x-+-=,求x的取值围.【例15】已知2332x x-=-,求x的取值围【例16】下列说法中正确的个数是( )①当一个数由小变大时,它的绝对值也由小变大;②没有最大的非负数,也没有最小的非负数;③不相等的两个数,它们的绝对值一定也不相等;④只有负数的绝对值等于它的相反数.A.0 B.1 C.2 D.3【例17】绝对值等于5的整数有个,绝对值小于5的整数有个【例18】绝对值小于3.1的整数有哪些?它们的和为多少?【例19】有理数a与b满足a b>,则下面哪个答案正确( )A.a b> B.a b= C.a b< D.无法确定【例20】已知:52a b==,,且a b<;则____________a b==,.【例21】非零整数m n,满足50m n+-=,所有这样的整数组()m n,共有【例22】已知123a b c===,,,且a b c>>,那么a b c+-=【例23】如右图所示,若a的绝对值是b的绝对值的3倍,则数轴的原点在点.(填“A”“B”“C”或“D”)【例24】如果1a b-=,1b c+=,2a c+=,求2a b c++的值.【例25】已知a、b、c、d都是整数,且2a b b c c d d a+++++++=,则a d+=.【例26】已知a、b、c、d是有理数,9a b-≤,16c d-≤,且25a b c d--+=,则b a d c---=.【例27】 有理数a 、b 、c 、d 各自对应着数轴上X 、Y 、Z 、R 四个点,且(1)b d -比a b -,a c -、a d -、b c -、c d -都大; (2)d a a c d c -+-=-;(3)c 是a 、b 、c 、d 中第二大的数.则点X 、Y 、Z 、R 从左到右依次是【例28】 若a b c d ,,,为互不相等的有理数,且c 最小,a 最大,且a cbc bd a d ---+-=-.请按a b c d ,,,从小到大的顺序排列.【例29】 I f 3x ≤,1y ≤,4z ≤,and 29x y z -+=,then 246x y z = .【例30】 如果1,11,a a a x a =+-=-那么____x a x a +--=。
【例31】 若m 是方程|2000|2000||x x -=+的解,则|2001|m -等于( ).A . 2001m -B . 2001m --C . 2001m +D . 2001m -+【例32】 已知0ab <,求22()a b b a ab a b -+-的值.【例33】 已知a 、b 是有理数,有以下三个不等式:① ||||a b a b +<-;② 22||||10a b a b ++++<;③222||2||10a b a b +--+<.其中一定不成立的是______(填写序号).【例34】 如果有理数a ,b ,c 满足26a b -≤,7b d -≤,13a b d --=,求2a b b d -+-的值.三、绝对值的化简1. 条件型绝对值化简【例35】 当1x =-时,则22x x -++= .【例36】 已知15x <≤,化简15x x -+-【例37】 若0a <,化简a a --.【例38】 已知3x <-,化简321x +-+.【例39】 如果010m <<并且10m x ≤≤,化简1010x m x x m -+-+--.【例40】 如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c++--+的值.【例41】 如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.【例42】 已知00x z xy y z x <<>>>,,,那么x z y z x y +++--=【例43】abcde 是一个五位自然数,其中a 、b 、c 、d 、e 为阿拉伯数码,且a b c d <<<,则a b b c c d d e -+-+-+-的最大值是 .【例44】a 、b 、c 分别是一个三位数的百、十、个位上的数字,且a b c ≤≤,则a b b c c a -+-+-可能取得的最大值是多少?【例45】 已知2020y x b x x b =-+-+--,其中02020b b x <<,≤≤,那么y 的最小值为【例46】 已知1999x =,则2245942237x x x x x -+-++++= .【例47】 若1998m =-,则22119992299920m m m m +--+++= .【例48】 满足2()()a b b a a b ab -+--=(0ab ≠)有理数a 、b ,一定不满足的关系是( )A . 0ab <B . 0ab >C . 0a b +>D . 0a b +<【例49】 若a b c d ,,,为互不相等的有理数,且1a c b c d b -=-=-=,求a d -.【例50】 已知有理数a 、b 的和a b +及差a b -在数轴上如图所示,化简227a b a b +---. a-ba+b【例51】 数a b ,在数轴上对应的点如右图所示,试化简a b b a b a a ++-+--【例52】 实数a b c ,,在数轴上的对应点如图,化简a c b a b a c +--++-【例53】 若a b <-且0ab>,化简a b a b ab -+++.【例54】 若a b <,求15b a a b -+---的值.【例55】 若0a <,0ab <,那么15b a a b -+---等于 .【例56】 设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a bc b a c -+--+-.【例57】 若0.239x =-,求131********x x x x x x -+-++-------的值.【例58】 若200122002x =,则|||1||2||3||4||5|x x x x x x +-+-+-+-+-= .【例59】 设2020A x b x x b =-+----,其中020b x <≤≤,试证明A 必有最小值【例60】 若0a <,试化简233a a a a--.【例61】 若0x <,化简23x x x x---.【例62】 已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++--.3.绝对值零点分段化简【例63】 化简:3x -【例64】 12x x +++【例65】 化简523x x ++-.【例66】 化简:212x x ---【例67】 阅读下列材料并解决相关问题:我们知道()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数围,零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下3中情况:·⑴当1x <-时,原式()()1221x x x =-+--=-+ ⑵当12x -<≤时,原式()123x x =+--= ⑶当2x ≥时,原式1221x x x =++-=- 综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥通过阅读上面的文字,请你解决下列的问题: ⑴分别求出2x +和4x -的零点值 ⑵化简代数式24x x ++-【例68】 求12m m m +-+-的值.【例69】 化简:121x x --++.4. 分式型绝对值化简按符号化简【例70】 若a b c ,,均为非零的有理数,求a b ca b c++的值【例71】 若0abc <,求a b ca b c+-的值.【例72】 已知a 是非零有理数,求2323a a a a a a++的值.【例73】 已知a b c abc x abcabc=+++,且a b c ,,都不等于0,求x 的所有可能值【例74】 已知a b c ,,是非零整数,且0a b c ++=,求a b c abca b c abc+++的值【例75】 若0a >,则_____aa =;若0a <,则_____a a=.【巩固】 当3m ≠-时,化简33m m ++【例76】 若01a <<,21b -<<-,则1212a b a ba b a b-++-+-++的值是( ) A .0 B .1- C .3- D .4-【例77】 下列可能正确的是( )A .1a b a b +=B .2a b ca b c++=C .3c d a b a b c d +++= D .4a b c d a b c d a b c d abcd+++++++=【例78】 如果20a b +=,则12a ab b-+-等于( ) A .2 B .3 C .4 D .5【例79】 如果000a b c a b c a b c +->-+>-++>,,,则200220022002a b c a b c ⎛⎫⎛⎫⎛⎫-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值等于( ) A .1 B .1- C .0 D .3【例80】 如果0a b c +->,0a b c -+>,0a b c -++>,求200220032004()()()a b ca b c-+的值.【例81】 已知0abc ≠,求ab ac bcab ac bc ++的值.【例82】 若a ,b ,c 均不为零,求a b ca b c++.【例83】 若a ,b ,c 均不为零,且0a b c ++=,求a b cabc++.【例84】a ,b ,c 为非零有理数,且0a b c ++=,则a b b c c a a bb cc a++的值等于多少?【例85】 三个数a ,b ,c 的积为负数,和为正数,且ab ac bc a b c x a b c ab ac bc=+++++,求321ax bx cx +++的值.【例86】 设实数a ,b ,c 满足0a b c ++=,及0abc >,若||||||a b cx a b c =++,111111()()()y a b c b c a c a b =+++++,那么代数式23x y xy ++的值为______.【例87】 有理数a b c ,,均不为零,且0a b c ++=,设a b c x b ca ca b=+++++,则代数式20042007x x -+的值为多少?【例88】 有理数a b c ,,均不为零,且0a b c ++=,设a b c x b ca ca b=+++++,则代数式19992000x x -+的值为多少?【例89】 若0a b c ++=,0abc >,则b c c a a ba b c+++++= .【例90】 已知a 、b 、c 互不相等,求()()()()()()()()()()()()a b b c b c c a c a a b a b b c b c c a c a a b ------++------的值.【例91】 a 、b 、c 的大小关系如图所示,求a b b c c a ab aca b b c c a ab ac-----++----的值.【例92】 若有理数m 、n 、p 满足1mnpm n p ++=,求23mnpmnp的值.【例93】 已知有理数a b c ,,满足1abca b c++=,则abcabc =( ) A .1 B .1- C .0 D .不能确定【例94】 有理数a ,b ,c ,d 满足1abcd abcd=-,求a b c d abcd+++的值.【例95】 已知0ab ≠,求a ba b+的值【例96】 已知0ab ≠,求a b a b --的值.【例97】 如果12x <<,求代数式2121x x x x xx---+--的值.。