通信系统仿真
通信系统仿真(精)

一、物理层仿真实验1、实验目的:初步掌握数字通信系统的仿真方法。
完成一个通信系统的搭建,并仿真得到相应的BER-Eb/No性能曲线,完成系统性能的分析。
2、实验原理通信系统仿真就是要通过计算机产生各种随机信号,并对这些信号做相应的处理以获得期望的结果,但是要求计算机产生完全随机的数据时不可能的,只能算是伪随机数。
从预测的角度看,周期数据是完全可以预测的,但当周期趋于无穷大时,可以认为该数据具有伪随机特性。
产生伪随机数的算法通常有:Wishmann-Hill算法产生均匀分布随机变量该算法是通过将3个周期相近的随机数发生器产生的数据序列进行相加,进而得到更大周期的数据序列。
定义三个随机数发生器:Xi+1=(171xi)mod(30269)Yi+1=(170yi)mod(30307)Zi+1=(172zi)mod(30323)以上三式中均需要设定一初始值(x0,y0,z0),这三个初始值一般称为种子。
产生的三个序列的周期分别是:30269、30307、30323。
将这三个序列组合相加即可得到一个周期更大的均匀分布随机序列:Ui=(Xi/30269+Yi/30307+Zi/30323)mod(1)逆变换法产生Rayleigh分布随机变量逆变换法的基本思想是:将一个不相关均匀分布的随机序列U映射到一个具有概率分布函数Fx(x)的不相关序列随机序列X,条件是要产生的随机变量的分布函数具有闭合表达式。
R=sqrt(-2σ2 ln(u))根据上式即可将均匀分布的随机变量映射为Rayleigh分布的随机变量。
根据Rayleigh分布随机变量产生Gussian分布随机变量通信系统中的噪声通常建模为白高斯噪声,其含义是功率谱是白的,信号分布是满足高斯的。
基于Rayleigh随机变量,可以方便的产生Gussian分布的随机变量。
关系如下:X=R*COS(2πu1)Y=R*SIN(2πu2)其中U1和U2分别是两个均匀分布的随机变量,产生的X和Y均为高斯随机变量。
通信系统仿真实验报告

通信系统仿真实验报告摘要:本篇文章主要介绍了针对通信系统的仿真实验,通过建立系统模型和仿真场景,对系统性能进行分析和评估,得出了一些有意义的结果并进行了详细讨论。
一、引言通信系统是指用于信息传输的各种系统,例如电话、电报、电视、互联网等。
通信系统的性能和可靠性是非常重要的,为了测试和评估系统的性能,需进行一系列的试验和仿真。
本实验主要针对某通信系统的部分功能进行了仿真和性能评估。
二、实验设计本实验中,我们以MATLAB软件为基础,使用Simulink工具箱建立了一个通信系统模型。
该模型包含了一个信源(source)、调制器(modulator)、信道、解调器(demodulator)和接收器(receiver)。
在模型中,信号流经无线信道,受到了衰落等影响。
在实验过程中,我们不断调整系统模型的参数,例如信道的衰落因子以及接收机的灵敏度等。
同时,我们还模拟了不同的噪声干扰场景和信道状况,以测试系统的鲁棒性和容错性。
三、实验结果通过实验以及仿真,我们得出了一些有意义的成果。
首先,我们发现在噪声干扰场景中,系统性能并没有明显下降,这说明了系统具有很好的鲁棒性。
其次,我们还测试了系统在不同的信道条件下的性能,例如信道的衰落和干扰情况。
测试结果表明,系统的性能明显下降,而信道干扰和衰落程度越大,系统则表现得越不稳定。
最后,我们还评估了系统的传输速率和误码率等性能指标。
通过对多组测试数据的分析和对比,我们得出了一些有价值的结论,并进行了讨论。
四、总结通过本次实验,我们充分理解了通信系统的相关知识,并掌握了MATLAB软件和Simulink工具箱的使用方法,可以进行多种仿真。
同时,我们还得出了一些有意义的结论和数据,并对其进行了分析和讨论。
这对于提高通信系统性能以及设计更加鲁棒的系统具有一定的参考价值。
通信系统仿真的作用及应用前景

4 通信系统仿真问题的研究价值
通信系 统仿真实质上就是把硬件实验搬
进了计算机 ,可以把它看成是一种软件实 验. 与硬件实验相比, 软件实验具有如下一 些优点 : ( 1 ) 软件实验具有广泛的适应性和极好 的灵活性. 在硬件实验中改变系统参数也许 意味着要重做硬件,而在软件实验中则是改
电 子科技大学出 版社, 0 . 象,分层建模,模型定义,仿真自 动生成等特征。
3 通信系统仿真的作用
通信系统仿真应用到了通信系统工程设 计的各个阶段,无论是从早期的概念设计, 还是实现、测试、使用等各个阶段。在概 念定义阶段,通信系统仿真获得顶层指标。 在接下来的设计和研发中,通信系统仿真确 定硬件研发的指标 ,检验己完成子系统对整 个系统性能的影响。在运行阶段,通信系统 仿真可以用来确定解决问题的方法。通信系 统仿真还可以预测系统的使用寿命。现代计 算机软硬件技术的快速发展, 新一代的可视 化的仿真软件的使用使得通信系统仿真的设 计和分析过程变得相对直观和便捷,推动了 通信系统仿真的快速发展。 随着通信和信号处理系统的复杂程度的 提高,同时出现了一系列新的技术,如用干 数字信号处理的价格不高但速度很快的硬 件、光纤光学器件、集成光学设备和单片微 波集成电路, 这些对通信系统的实现均有重 要影响。通信系统复杂度的提高使得用来分 析和设计系统的时间和精力也相应提高了, 然而在商用产品中引 人新技术要求设计能做 到短时、高效、省力,而这些要求只有通 过使用强大的计算机辅助分析和设计工具才
4 结束语
作为一种前沿科技, F I D 正引起国内 参考文献 R IB 智能建筑与城市信息,2004 ,11) : ( 外许多企业、零售商、院校、科研单位的 川 Rao ,K . V. 5 . An over view of 7 2 一7 6 关注和兴趣,纷纷开展实际性的研发工作。 back以 t re r d o fr阂uency ldentl一 泊 d a i e 4 随着RF ID 标准的不断成熟,技术的发展演 ficat ion system(RFID) . Microwave t 』中国RFID 产业如何稳中求快. 中国电 子报,2004一 12一 30. 进,以及成本的降低,R F ID 将更加融入我 Con fe r en ce , 1999 As ia P ac ific , ] 5 ID 们的日 常生活,渗透到社会的方方面面。展 Volume : 3 , 1999 ,Page(5) : 746一 749 【 钱恒. 关于我国RF一 发展的几点思 考. w、 . 讨 r 迁 o m.c , X抖,1 . 刀 ldi 0.c w n 2( 2 yol .3。 望未来,不仅RF D 本身将形成一个规模巨 I 大的产业,由R FID 所形成的物联网对社会 [ Mawh 加 ey D, c r wave t g identl一 ] 2 叮 Mi o a i f ca tion s外tems . R CA R ev ,1983, 月 的影响更是不可估量。
《通信系统仿真》实验改革的探索与体会

《通信系统仿真》实验改革的探索与体会通信系统仿真实验为计算机科学与技术专业的学生提供了一个可以全面掌握通信系统仿真原理和技能的机会。
近年来,随着社会科学研究的不断发展,我们通信系统仿真实验也经历了一次重大的改革。
本文通过对改革实施和实施效果的分析,探讨了通信系统仿真实验改革的探索和体会。
首先,对通信系统仿真实验进行改革的目的是提高学生的实践能力和实践素养。
为了达到这一目标,我们在实验内容和实验形式上做了一些改革。
首先,我们将实验的内容由传统的理论知识转向实践性的实验内容,通过实验的做法来实现理论知识的运用,从而更好地培养学生的实践素养和实践能力。
其次,我们在实验形式上也作出了一些改变。
将传统的小组讨论方式改为学生更加自主的实验形式,让学生亲自动手实践,进一步增强实践素养和实践能力。
改革后的通信系统仿真实验给学生带来了显著的实践能力和实践素养的提高,但也存在一些问题,如学生的态度不够认真或缺乏实践的技能。
为了解决这些问题,我们针对学生的不同问题,在教学过程中更加细致入微,采用更加灵活多变的方式,指导学生进行实践。
例如,在实践前,教师要讲解实验原理及实验流程,让学生明白实验的目的及对实验结果的重要性;在实验过程中,教师还要详细的讲解相关技术,以及步骤的演示,帮助学生完成实验,得出正确的结论;在实验结束后,还要结合实验结果,进行实验结论的总结,以此让学生更好的掌握实验所涉及的知识,增强自己实践能力和实践素养。
通过实施上述改革,我们在提高学生实践能力和实践素养方面取得了明显的效果。
学生在实验中更加灵活地运用自己所学的知识和技能,明白实验的目的及实验结果的重要性,并根据实验结果作出正确的结论,这说明实践能力和实践素养已经初步提高。
总之,通过对通信系统仿真实验的改革,我们发现了一些新的发现,提出了一些新的观点,并在提高学生实践能力和实践素养方面取得了显著的成效。
今后,根据实际情况进行相应的调整和完善,努力实现学生实践能力和实践素养的最佳提升。
通信系统的仿真实验资料

第一章信号通过系统的仿真1.若x(t)=(1/(2л)1/2)e-t2/2,t∈[a,b],将x(t)进行周期拓展,信号周期为T(可任意设置),计算和描绘出期信号x(t)的幅度和相位频谱。
实验结果:(以下所示为a=-6,b=6,n=24,tol=的图形)(1)已知信号幅度谱(2)已知信号相位谱2.信号定义为x(t)= cos(2л*47t)+cos(2л*219t), 0≤t≤100, 其它假设信号以1000抽样/秒进行抽样。
用MATLAB设计一个低通Butterworth滤波器。
确定并绘出输出的功率谱和输入功率谱比较(滤波器的阶数及截频可自行确定)。
实验结果:(以下为阶数=4,截频=100Hz的图形)(1)输入信号功率谱密度(2)输出信号功率谱密度第二章随机过程仿真1.从下式的递归关系中产生一个高斯马尔可夫过程的1000个(等间距)样本的序列Xn=+ωn n=1,2,…1000,式中X0=0,ωn是一个零均值,方差为1,独立的随机变量序列。
绘出序列{ Xn,1≤n≤1000}与时序n的关系及相关函数N-mRx(m)=1/(N-m)ΣXn Xn+m m=0,1,…50 式中N=1000.n-1实验结果:(1)高斯——马尔可夫过程(2)高斯马尔可夫过程的自相关函数2.假设一个具有抽样序列{X(n)}的白噪声过程通过一个脉冲响应如下所示的线性滤波器nh(n)= ,n≥00, n<0求输出过程{Y(n)}的功率谱和自相关函数Ry(τ)。
实验结果:(1)输出的功率谱(2)输出的自相关第三章模拟调制仿真1.用MATLAB软件仿真AM调制。
被调信号为1, (t0/3)>t>0;m(t)=-2, (t0/3)≤t≤(2*t0/3);0, 其它;利用AM 调制方式调制载波。
假设t0=,fc=250hz;调制系数a=。
实验结果:1)调制信号、载波、已调信号的时域波形2)已调信号的频域波形2.被调信号为1, t0/3>t>0;m(t)=-2, t0/3<= t<2*t0/3;0, 其它;采用频率调制方案。
通信系统建模与仿真重点

(1)模型的分类模型分为两大类:一类是物理模型,就是采用一定比例尺按照真实系统的“样子”制作;另一类是数学模型,就是用数学表达式来描述系统的内在规律。
(2)通信系统仿真的方法三种1.公式计算法;2.硬件样机测试研究法;3.波形仿真法(3)仿真在通信系统中所起的作用?仿真在通信系统的设计过程中起着重要作用:在概念定义阶段,仿真给出了顶层的技术要求;在设计进程和开发过程中,仿真与硬件开发一起确定最后的技术条件,并检查子系统对整个系统性能的影响;在运行情况下,仿真可以做检修故障的工具,并且预计系统的EOL性能。
(4)通信仿真系统的建模结构分为哪几种?通信仿真系统的建模结构分成系统建模、设备建模和过程建模三种。
(5)过程建模主要有几种,各自作用?过程建模分为三种:信源、噪声和干扰随机过程建模,随机信道建模,等价随机过程建模。
作用:在系统的设计和检测中,信源经常被用作测试信号,信道建模实际上也是随机过程建模,等价随机过程模型可以减少运动量。
(6)泊松过程的特性?1.X(0)=0,即零初值性;2.对任意的s≥t≥0,∆t≥0,增量X(s+∆t)−X(t+∆t)与X(s)−X(t)具有相同的分布函数,即增量平稳性或齐次性;3.对任意的正整数n,以及任意的非负实数0≤t0≤t1≤⋯≤t n,增量X(t1)−X(t0), X(t2)−X(t1),⋯ , X(t n)−X(t n−1),相互独立,即增量独立性;4.对于足够小的时间∆t,有P[X(∆t)=1]=λ∆t+O(∆t)P[X(∆t)=0]=1−λ∆t+O(∆t)P[X(∆t)≥2]=O(∆t)即称{X(t),t≥0}是强度为λ的泊松方程。
(7)平稳随机过程?所谓平稳随机过程,是指它的任何n维分布函数或概率密度函数与时间起点无关。
(8)试求功率谱密度为P n =n 0/2的白噪声通过理想低通滤波器后的功率谱密度、自相关函数及噪声功率N 。
解:理想低通滤波器特性可由下式表示H (ω)={k 0e −jωtd ,|ω|≤ωH 0 , 其它ω可见|H (ω)|2=K 02,|ω|≤ωH计算输出功率谱密度为P Y (ω)=|H (ω)|2P n (ω)=K 02n 02,|ω|≤ωH 而自相关函数R Y (τ)为R Y (τ)=12π∫P Y (ω)e jωπdω∞−∞ =K 02n 04π∫e jωπωH −ωH dω =K 02n 0f H sin ωH τωH τ, f H =ωH 2π于是,输出噪声功率N 为R Y (0),即 N=R Y (0)= K 02n 0f H可见,输出的噪声功率与K 02、n 0及f H 成正比。
通信系统的模拟仿真技术应用

通信系统的模拟仿真技术应用随着现代科技的不断发展,通信系统作为人类社会中最为重要的信息传递方式之一,已经成为现代社会不可或缺的基础设施。
而通信系统的复杂性和高效性又使其变得十分难以理解和掌握。
为了更好地理解和应用通信系统,模拟仿真技术应运而生,并得到了广泛的应用。
一、通信系统的模拟仿真技术通信系统的模拟仿真技术是指运用计算机等数学模型,对通信系统进行各种形式的仿真,以提供对通信系统的性能和行为的评估和分析。
通信系统的模拟仿真技术可以在设计和实现通信系统的过程中提供可靠的支持,以确保通信系统的可靠性和效率。
通信系统的模拟仿真技术可以分为三类基本方法:数学模型仿真、电路仿真和物理仿真。
其中数学模型仿真是最常见的方法,通常使用MATLAB等数学仿真软件实现。
数学模型仿真基于通信系统的数学模型来模拟通信系统的性能和行为。
数学模型是指将通信系统的各种物理特性转化成数学方程或算法,以便用计算机进行模拟仿真。
通信系统的数学模型通常包括信道特性模型、信号生成模型、信号传播模型、信号检测模型等。
电路仿真是指通过计算机对通信系统电路进行仿真。
通信系统的电路仿真通常使用SPICE、ADS等电路仿真软件实现。
通过电路仿真,可以对通信系统电路的性能和行为进行模拟分析,从而优化通信系统的设计和实现。
物理仿真是指在实验室环境下对通信系统进行仿真实验。
通信系统的物理仿真通常使用各种测量仪器,如示波器、信号分析器、频谱分析仪等。
物理仿真可以对通信系统的行为进行更加准确的分析,但是实验成本较高。
二、通信系统的模拟仿真应用通信系统的模拟仿真技术在通信领域的应用非常广泛,主要包括以下几个方面。
1. 通信系统设计通信系统设计是通信领域中最重要的应用之一。
通信系统的设计主要包括系统结构设计、信号处理算法设计、信号传输方案设计等。
通信系统的模拟仿真技术可以对设计方案进行各种形式的仿真实验,帮助系统设计人员理解系统的性能和行为。
2. 通信系统性能分析通信系统的性能分析是了解通信系统性能表现的重要手段。
通信系统仿真报告

实验三 通信系统仿真清华大学电子工程系 陈侃● 背景知识:(1) 频分多址(FDMA):频分多址时将通信的频段划分成若干信道频率范围,每对通信设备工作在某个特定的频率范围内,即不同的通信用户是靠不同的频率划分来实现通信的,早期的无线通信系统,包括现在的无线电广播、短波通信、大多数专用通信网都是采用频分多址技术来实现的。
(2) 时分多址(TDMA):时分多址是将通信信道在时间坐标上划分成若干等间隔的时隙,每对通信设备将工作在某个指定的时隙上,不同的通信用户是靠不同的时隙划分来实现通信的,现在的数字蜂窝无线通信系统GSM ,就采用了时分多址技术。
(3) 码分多址(CDMA):码分多址是利用码字的正交性,将承载的不同用户的通信信息区分开来。
每对通信设备工作在某个分配的码组实现通信。
现在的数字蜂窝无线通信CDMA ,第三代移动通信系统WCDMA ,CDMA2000,SC-CDMA 都采用了码分多址技术。
码分多址要求通信的码组之间有很好的正交性。
有一种获得正交码组的方法是利用M 序列发生器,M 序列是最大长度线性反馈移位寄存器序列的简称。
M 序列发生器的结构图如图1所示,其中a i 表示各个寄存器的状态,c i 可取0或1.M 序列发生器的原理框图F(x) = c i x ir i=0上式是关于x 的多项式,系数c i 表示了序列生成器的反馈连线的特征,称为一位生成器函数的特征多项式。
由于r 位移位寄存器最多可以取2r 个不同的状态,因此每个移位寄存器序列最终都是周期序列,并且其周期n ≤2r 。
M 序列具有很强的自相关性和很弱的互相关性,周期为2r -1的M 序列可以提供2r -1个正交码组。
● 练习题:1.2.1 FDMA 的Simulink 仿真:(1) 利用Simulink 中的相应模块,搭建提示所给的系统仿真图,并设置相应的参数。
答:按照提示所给的模型图以及相应模块的参数,我设计出的FDMA 系统仿真图如下所示:(2) 上图中的六个Analog Filter Design 滤波器的作用分别是什么?根据已知的参数设置它们的参数,然后进行系统仿真,记录下三个Scope 上显示的波形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学本科实验报告课程名称:通信系统仿真实践学院(系):电子信息与电气工程学部专业:电子信息工程班级:学号:学生姓名:2011年11 月29日实验项目列表大学实验报告学院(系):专业:电子信息工程班级:姓名:学号:组:___实验时间:2011.10.17 实验室:C223 实验台:指导教师签字:成绩:实验一简单基带传输系统一、实验目的和要求掌握观察系统时域波形,特别是眼图的操作方法。
二、实验原理和内容【实验原理】简单的基带传输系统原理框图如图1所示,该系统并不是无码间干扰设计的,为使基带信号能量更为集中,形成滤波器采用高斯滤波器。
图1. 简单基带传输系统组成框图【实验内容】构造一个简单示意性基带传输系统。
以双极性 PN 码发生器模拟一个数据信源,码速率为100bit/s,低通型信道噪声为加性高斯噪声(标准差=0.3v)。
要求:观测接收输入和滤波输出的时域波形;观测接收滤波器输出的眼图。
三、主要仪器设备PC机四、实验步骤与操作方法第1 步:进入SystemView 系统视窗,设置“时间窗”参数如下:①运行时间:Start Time: 0 秒; Stop Time: 0.5 秒;②采样频率:Sample Rate:10000Hz。
第2 步:调用图符块创建如图1 所示的仿真分析系统:图1. 创建的简单基带传输仿真分析系统其中,Token1 为高斯脉冲形成滤波器;Token4 为高斯噪声产生器,设标准偏差StdDeviation=0.3v,均值Mean=0v;Token5 为模拟低通滤波器,来自选操作库中的“LinearSys”图符按钮,在设置参数时,将出现一个设置对话框,在“Design”栏中单击Analog…按钮,进一步单击“Filter PassBand”栏中Lowpass 按钮,选择Butterworth 型滤波器,设置滤波器极点数目:No.of Poles=5(5 阶),设置滤波器截止频率:LoCuttoff=200 Hz。
第3 步:单击运行按钮,运算结束后按“分析窗”按钮,进入分析窗后,单击“绘制新图”按钮,则Sink10~Sink13 显示活动窗口分别显示出“PN 码输出”、“信道输入”、“信道输出”和“判决比较输出”时域波形,如图1 所示:第 4 步:观察信源PN 码和波形形成输出的功率谱。
通过两个信号的功率谱可以看出,波形形成后的信号功率谱主要集中在低频端,能量相对集中,而PN 码的功率谱主瓣外的分量较大。
在分析窗下,单击信宿计算器按钮,在出现的“System Sink Calculator”对话框中单击Spectrum 按钮,分别得到Sink10 和Sink11 的功率谱窗口后,可将这两个功率谱合成在同一个窗口中进行对比,具体操作为:在“System Sink Calculator”对话框中单击Operators 按钮和Overlay Plots 按钮,在右侧窗口内压住左键选中“w4:PowerSpectrum of Sink10”和“w5:Power Spectrum of Sink11”信息条,使之变成反白显示,最后单击OK 按钮即可显示出对比功率谱,如图2 所示。
图2. PN 码和波形形成器输出功率谱对比第5 步:观察信道输入和输出信号眼图。
眼图是衡量基带传输系统性能的重要实验手段。
当屏幕上出现波形显示活动窗口(w1:Sink11 和w2:Sink12)后,单击“System SinkCalculator”对话框中的Style 和Time Slice 按钮,设置好“Start Time[sec]”和“Length[sec]”栏内参数后单击该对话框内的OK 按钮即可,两个眼图如图3 所示。
图3. 信道输入和输出信号眼图从上述眼图可以看出,经高斯滤波器形成处理后的基带信号远比PN 码信号平滑,信号能量主要集中于10 倍码率以内,经低通型信道后信号能量损失相对小一些。
由于信道的不理想和叠加噪声的影响,信道输出眼图将比输入的差些,改变信道特性和噪声强度,眼图会发生明显变化,甚至产生明显的接收误码。
五、实验数据记录和处理六、实验结果与分析高斯噪声:0.3V时,分析结果为:高斯噪声:0.5V时,分析结果为:七、讨论、建议、质疑本次实验中主要掌握systemview软件的使用方法,虽然简单,但是分析很准确,但是如果对系统不了解,也会无从下手。
在掌握了所要仿真系统的结构和工作原理再进行系统仿真才会事半功倍。
实验二差分编码、译码器一、实验目的和要求通过分析理解差分编码/译码的基本工作原理。
二、实验原理和内容【实验原理】二进制差分编码器和译码器组成如图1 所示,其中:{an}为二进制绝对码序列,{dn}为差分编码序列,D 触发器用于将序列延迟一个码元间隔,在SystemView 中此延迟环节一般可不使用D 触发器,而是使用操作库中的“延迟图符块”。
图1. 差分编码、译码器框图【实验内容】创建一对二进制差分编码/译码器,以 PN 码作为二进制绝对码,码速率Rb=100bit/s。
分别观测绝对码序列、差分编码序列、差分译码序列,并观察差分编码是如何克服绝对码全部反相的,以便为分析2DPSK 原理做铺垫。
三、主要仪器设备PC机四、实验步骤与操作方法第1 步:进入SystemView 系统视窗,设置“时间窗”参数如下:①运行时间:Sta1rt Time: 0 秒;Stop Time: 0.3 秒;②采样频率:Sample Rate=10000Hz。
第2 步:首先创建如图1 所示的仿真分析系统,主要图符块参数如便笺所示。
其中,Token1 和Token2都是来自操作库的“数字采样延迟块”,由于系统的采样频率为10000Hz,绝对码时钟频率为100Hz,故延迟一个码元间隔需100 个系统采样时钟。
图1. 差分编码/译码器仿真分析系统第3 步:观察编、译码结果。
在分析窗下,差分编码器输入(绝对码)、差分编码输出及差分译码输出序列分别由Sink3、4、9 给出。
第4 步:得到仿真结果后,将差分编码器与差分译码器之间插入一个非门(NOT),再看仿真结果。
仿真分析系统如图2所示。
可以观察到,差分编码和译码方式可以克服编码输出序列的全反相,差分译码序列与不反相的相同。
充分理解了这一原理,就能很快理解2DPSK 是如何解决载波180°相位模糊问题,同时将有助于读者自行创建包含差分编码与译码的2DPSK 系统。
图2. 差分编码/译码器插入非门的仿真分析系统五、实验数据记录和处理图1的仿真结果如下图所示。
三个窗口分别是差分编码器输入(绝对码)、差分编码输出及差分译码输出序列。
六、实验结果与分析由分析结果可知:Sink3—输入为二进制的绝对码,码速率为100bit/s。
101101000110100010010100100011Sink4—差分编码输出110110000100111100011000111101Sink9—差分译码输出,可见译码结果与输入绝对码相同将差分编码器与差分译码器之间插入一个非门(NOT),再仿真得到下图所示仿真结果。
差分编码和差分译码之间插入一个非门,由结果可见,差分编码和差分译码方式可以克服编码输出序列的全反相,搽粉译码序列与不反相的相同。
可以解决2dpsk的载波180度相位模糊问题。
Sink9—差分译码输出,可见译码结果与输入绝对码相同。
七、讨论、建议、质疑本次实验比实验一简单一些,由于只是仿真出时域的波形,所以做起来要快一些,但是这次实验中要将各个token的功能弄明白也是需要好好预习的,这样做实验时才会比较顺利。
由于本实验可以根据结果快速判断实验是否正确,所以对电路进行修改和仿真都很方便。
实验三二进制相移键控系统一、实验目的和要求分析二进制移相键控系统的工作原理,特别注意2DPSK 系统是如何解决同步载波180°相位模糊问题的。
一、实验原理和内容【实验原理】相干接收 2PSK 系统组成如图1 所示:图1. 2PSK 系统组成对2PSK 信号相干接收的前提是首先进行载波提取,可采用平方环或科斯塔斯环来实现。
为分析方便起见,在本实验中可直接在收端设置一个与发送端同步的本地载波源。
另外,本实验中暂不考虑位同步提取问题。
2DPSK 系统组成原理如图2 所示,系统中差分编、译码器是用来克服2PSK 系统中接收提取载波的180°相位模糊度。
图2. 2DPSK 系统组成【实验内容】创建2PSK 和2DPSK 系统。
三、主要仪器设备PC机四、实验步骤与操作方法相干接收2PSK 系统1、创建仿真系统如图1所示。
图1. 2PSK 仿真系统设置系统运行时间:0-0.3 秒;采样频率10000Hz。
PN 码速率为100Hz,载波频率为1000Hz;收、发正弦载波源的相位均为0。
其中,Token13 为双极性PN 码源; Token2 和Token4是彼此同步的载波源;Token10 为过零比较器a>b 模式);Token11 是幅度和频率均为0 的正弦源,作为过零门限电平(比较器b 输入);Token9 为3 阶100Hz 截止频率的低通滤波器(比较器a 输入)。
2、分析内容要求①观察Token1、6、12、14 处的时域波形,看解调是否正确?观察Token11 处的功率谱;②在2PSK 系统中,接收提取的载波存在180°相位模糊度,这是载波提取电路存在的固有问题,一旦接收端提取的载波与发送端调制载波倒相,解调出的码序列将全部倒相。
重新设置接收载波源的参数,将其中的相位设为180°,运行后再观察解调的结果。
差分相干接收2PSK 系统1、创建仿真系统如图2所示。
图2. 2DPSK 系统的仿真系统方案其中,Token15、16、18 组成差分编码器,Token23、24、25 为差分译码器,设置系统运行时间:0-0.3 秒、采样速率为10000Hz。
其中,Token13为单极性PN 码源;Token15、23 为采样器(采样速率为100Hz);Token19、26为保持器;Token16为放大器(Gain=1)、Token19 为数字延迟器(延迟1 个Sample);Token21、10、27 为比较器(a>b 模式), Token22、28 设为0V 直流电平(Token4 的输入b),Token25设为0V 直流电平(Token24 的输入b)。
Token4、17 输出为双极性码、Token21 输出为单极性码;Token3、8 为彼此同步的载波源(Amp=1V、Freq=1000Hz、Phase = 0°);Token5、7 组成加性高斯噪声信道;Token1、20、6、12、14、29 为信宿接收分析器。