人教版2021年八年级数学上册课时作业本 三角形-与三角形有关的线段(含答案)

合集下载

人教版2021年八年级数学上册课时作业本 轴对称与等腰三角形-线段的垂直平分线(含答案)

人教版2021年八年级数学上册课时作业本 轴对称与等腰三角形-线段的垂直平分线(含答案)

人教版2021年八年级数学上册课时作业本轴对称与等腰三角形-线段的垂直平分线一、选择题1.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为( )A.8 B.11 C.16 D.172.如图,已知AB=AC,∠A=36°,AC的垂直平分线MN交AB于D,AC于M.以下结论:①△BCD是等腰三角形;②射线CD是△ACB的角平分线;③△BCD的周长C△BCD=AB+BC;④△ADM≌△BCD.正确的有()A.①②B.①③C.②③D.③④3.如图,已知线段AB,分别以点A、点B为圆心,以大于AB的长为半径画弧,两弧交于点C和点D,作直线CD,在CD上取两点P、M,连接PA、PB、MA、MB,则下列结论一定正确的是( )A.PA=MAB.MA=PEC.PE=BED.PA=PB4.如图,在△ABC中,直线MN为BC的垂直平分线,交BC于点E,点D在直线MN上,且在△ABC的外面,连接BD,CD,若CA平分∠BCD,∠A=65°,∠ABC=85°,则△BCD是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形5.在Rt△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB,AC交于点D,E,则∠BCD的度数为()A.10°B.15°C.40°D.50°6.如图所示,在△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和点E,则△BCD 的周长是()A.6B.8C.10D.无法确定7.如图,在已知的△ABC中,按以下步骤作图:②分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100°D.105°8.到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点9.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC 的周长是()A.10cmB.12cmC.15cmD.17cm10.△ABC中,AB=AC≠BC,在△ABC所在平面内有点P,且使得△ABP、△ACP、△BCP均为等腰三角形,则符合条件的点P共有( )A.1个B.4个C.6个D.8个二、填空题11.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC点D,AD平分∠BAC,则∠B度数为.12.如图,△ABC中,AB+AC=8cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为.13.如图,DE是△ABC边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为.14.如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,以大于BC的长为半径作弧,两弧交于M,N两点;②作直线MN交AB于点D,连接CD.如果已知CD=AC,∠B=25°,则∠ACB的度数为.15.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=8,AC=3,则△ACD的周长为.16.如图,△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C 沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.三、作图题17.在一次军事演习中,红方侦查员发现蓝方的指挥部P设在S区.到公路a与公路b的距离相(不等,并且到水井M与小树N的距离也相等,请你帮助侦查员在图上标出蓝方指挥部P的位置.写作法,保留作图痕迹)四、解答题18.在ΔABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D点,交AC于点E.(1)若∠ABE=38°,求∠EBC的度数;(2)若ΔABC的周长为36cm,一边为13cm,求ΔBCE的周长.19.如图,已知△ABC,AB=AC,AD是△ABC角平分线,EF垂直平分AC,分别交AC,AD,AB于点E,O,F.若∠CAD=20°,求∠OCD的度数.20.如图,在△ABC中,°,AD是∠BAC的角平分线,EF垂直平分AD,交BC的延长线于点F.求∠FAC的大小.21.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=70°,则∠MNA的度数是.(2)连接NB,若AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是否存在P,使由P、B、C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.22.如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE⊥b,点M、N是EC、DB的中点.求证: MN⊥BD.参考答案1.答案为:B.2.答案为:B3.答案为:D.4.A5.A6.C7.D8.D.9.C10.答案为:C;解析:①作三边的垂直平分线必在三角形内交于一点,这点就是符合要求的P点,②作BC的垂直平分线,以B点为圆心、AB长为半径画弧,与BC的垂直平分线有两个交点,其中一点是点A,另一点为符合要求的P点;③作BC的垂直平分线,以A点为圆心、AB长为半径画弧,与BC的垂直平分线有两个交点,这两点为符合要求的P点;④在△ABC的左边作一个△APB,使△APB≌△ABC,这点也是符合要求的P点;⑤同理在△ABC的右边作一个△APC,使△APC≌△ACB,这点也是符合要求的P点.所以共有6个符合条件的点P.11.答案为:30°12.答案为:8cm.13.答案为:28cm.14.答案为:105°;15.答案为:11.16.答案为:100°17.解:如图所示,①作公路a与公路b的交角AOB的平分线OC,②连接MN,作线段MN的中垂直平分线EF,EF和OC的交点P就是所求的点.18.∵DE是AB的垂直平分线,∴AE=BE,∴∠A=∠ABE=38°∵AB=AC,∴∠ABC=∠C=71°∴∠EBC=∠ABC-∠ABE=71°-38°=33°由ΔABC的周长为36cm AB>BC AB=AC可知AB=AC=13cm BC=10cmΔBCE的周长=BE+CE+BC=AC+BC=13+10=23(cm)19.50°20.解:∵EF垂直平分AD ∴FA=FD ∴∠ADF=∠DAF又∵∠ADF=∠B+∠BAD,∠DAF=∠FAC+∠DAC,∠BAD=∠DAC ∴∠FAC=∠B=45°21.解:(1) 50(2) ①∵MN垂直平分AB.∴NB=NA,又∵△NBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm.②当点P与点N重合时,由点P、B、C构成的△PBC的周长值最小,最小值是14cm.22.证明:∵BC⊥a,DE⊥b,点M是EC的中点,∴2DM=EC,2BM=EC,∴DM=BM,∵点N是BD的中点,∴MN⊥BD.。

人教版2021年八年级数学上册课时作业本全等三角形-证明题专练(含答案)

人教版2021年八年级数学上册课时作业本全等三角形-证明题专练(含答案)

⼈教版2021年⼋年级数学上册课时作业本全等三⾓形-证明题专练(含答案)⼈教版2021年⼋年级数学上册课时作业本全等三⾓形-证明题专练1.如图,已知∠B+∠CDE=180°,AC=CE.求证:AB=DE.2.如图,在△ABC中,AB=AC,AM平分∠BAC,交BC于点M,D为AC上⼀点,延长AB到点E,使CD=BE,连接DE,交BC于点F,过点D作DH∥AB,交BC于点H,G是CH的中点.(1)求证:DF=EF.(2)试判断GH,HF,BC之间的数量关系,并说明理由.3.如图,已知AB=AD,AC=AE,∠BAD=∠CAE=90°,试判断CD与BE的⼤⼩关系和位置关系,并进⾏证明.4.如图,△ABC中,∠BAC=90°,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.5.如图,△ABC和△ADE都是等腰三⾓形,且∠BAC=90°,∠DAE=90°,B,C,D在同⼀条直线上.求证:BD=CE.6.已知:在△ABC中,∠BAC=90°,AB=AC,AE是过点A的⼀条直线,且BD⊥AE于D,CE⊥AE于E.(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;(3)归纳(1)、(2),请⽤简洁的语⾔表达BD、DE、CE之间的关系.7.如图:AD是△ABC的⾼,E为AC上⼀点,BE交AD于F,且有BF=AC,FD=CD。

求证:BE⊥AC。

8.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.9.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.10.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.11.如图,在△ABC中,AD平分∠BAC.(1)求证:S△ABD:S△ACD=AB:AC;(2)若AB=4,AC=5,BC=6,求BD的长.12.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD 上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.⼩王同学探究此问题的⽅法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成⽴,并说明理由;实际应⽤:如图3,在某次军事演习中,舰艇甲在指挥中⼼(O处)北偏西30°的A处,舰艇⼄在指挥中⼼南偏东70°的B处,并且两舰艇到指挥中⼼的距离相等,接到⾏动指令后,舰艇甲向正东⽅向以60海⾥/⼩时的速度前进,舰艇⼄沿北偏东50°的⽅向以80海⾥/⼩时的速度前进.1.5⼩时后,指挥中⼼观测到甲、⼄两舰艇分别到达E,F处,且两舰艇之间的夹⾓为70°,试求此时两舰艇之间的距离.13.如图,已知A(﹣2,0),B(0,﹣4),C(1,1),点P为线段OB上⼀动点(不包括点O),CD⊥CP交x轴于点D,当P点运动时:(1)求证:∠CPO=∠CDO;(2)求证:CP=CD;(3)下列两个结论:①AD﹣BP的值不变;②AD+BP的值不变,选择正确的结论求其值.参考答案1.证明:如图,过E点作EH∥AB交BD的延长线于H,故∠A=∠CEH,在△ABC与△EHC中,∴△ABC≌△EHC(ASA),∴AB=HE,∵∠B+∠CDE=180°,∠HDE+∠CDE=180° ∴∠HDE=∠B=∠H,∴DE=HE.∵AB=HE,∴AB=DE.2.3.证明:CD=BE,CD⊥BE,理由如下:因为∠BAD=∠CAE=90°,所以∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC.因为,所以△BAE≌△DAC(SAS).所以BE=DC,∠BEA=∠DCA.如图,设AE与CD相交于点F,因为∠ACF+∠AFC=90°,∠AFC=∠DFE,所以∠BEA+∠DFE=90°.即CD⊥BE.4.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元⼜因为:∠ABE=∠CBE所以:AE=CE所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG⽽:∠ECA=∠GBA所以:∠ECA=∠EAC=∠GBA=∠GAB⽽:AC=AB所以:△AEC≌△AGB所以:EC=BG=DG所以:BD=2CE5.证明:∵△ABC和△ADE都是等腰直⾓三⾓形∴AD=AE,AB=AC,⼜∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.6.解:(1)在△ABC中,∠BAC=90°,∴∠BAD=90°-∠EAC。

2021年人教版数学八年级上册11.1.1《三角形的边》课时练习(含答案)

2021年人教版数学八年级上册11.1.1《三角形的边》课时练习(含答案)

人教版数学八年级上册11.1.1《三角形的边》课时练习一、选择题1.若三角形的两边长分别为6 ㎝,9 cm,则其第三边的长可能为( )A.2㎝ B.3 cm C.7㎝ D.16 cm2.如图,下图中共有三角形()A.4个B.5个C.6个D.8个3.为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB 间的距离不可能是()A.15m B.17m C.20m D.28m4.三条线段a,b,c长度均为整数且a=3,b=5.则以a,b,c为边的三角形共有( )A.4个B.5个C.6个D.7个5.一根长竹签切成四段,分别为3cm、5cm、7cm、9cm.从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有()A.1个 B.2个 C.3个 D.4个6.如图,A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n;则下列说法正确的是( )A.AB∥PCB.△ABC的面积等于△BCP的面积C.AC=BPD.△ABC的周长等于△BCP的周长7.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12B.16C.20D.16或208.已知三角形两边长分别是4和10,则此三角形第三边的边长可能是()A.5 B.6 C.12 D.169.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cmB.5cm<AB<10cmC.4cm<AB<8cmD.4cm<AB<10cm10.一个三角形的三边长分别是xcm,(x+1)cm,(x+2)cm,它的周长不超过10cm,则x取值范围是()A.xB.1C.xD.1二、填空题11.△ABC周长为36,AB=AC,AD⊥BC于D,△ABD周长为30cm,则AD= .12.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有________对.13.等腰三角形周长为21cm,一中线将周长分成的两部分差为3cm,则这个三角形三边长为________.14.如图,AD是△ABC中线,已知△ABD周长为25 cm,AB比AC长6 cm,则△ACD周长为_____cm.三、解答题15.已知a,b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.(1)直接写出c及x的取值范围;(2)若x是小于18的偶数,①求c的长;②判断△ABC的形状.16.一个三角形三边长之比为2:3:4,周长为36cm,求此三角形的三边长.17.已知a、b、c为△ABC的三边长,b、c满足(b-2)2+|c-3|=0,且a为方程|a-4|=2的解,求△ABC的周长,并判断△ABC的形状.18.小王准备用一段长30m的篱笆围成一个三角形形状的场地,用于饲养家兔,已知第一条边长为am,由于受地势限制,第二条边长只能是第一条边长的2倍多2m.(1)请用a表示第三条边长.(2)问第一条边长可以为7m吗?请说明理由.参考答案1.C2.D3.D4.C5.D6.B7.C8.C9.B10.D11.答案为:1212.答案为:313.答案为:(8,8,5)或(6,6, 9)14.答案为:1915.解:(1)因为a=4,b=6,所以2<c<10.故周长x的范围为12<x<20.(2)①因为周长为小于18的偶数,所以x=16或x=14.当x为16时,c=6;当x为14时,c=4.②当c=6时,b=c,△ABC为等腰三角形;当c=4时,a=c,△ABC为等腰三角形.综上,△ABC是等腰三角形.16.解:设三边长分别为2x,3x,4x,由题意得,2x+3x+4x=36,解得:x=4.故三边长为:8cm,12cm,16cm.17.解:∵(b-2)2+|c-3|=0,∴b-2=0,c-3=0,解得b=2,c=3,∵a为方程|a-4|=2的解, ∴a-4=±2,解得a=6或2,∵a、b、c为△ABC的三边长,b+c<6,∴a=6不合题意,舍去,∴a=2,∴△ABC的周长为2+2+3=7,△ABC是等腰三角形.18.解:(1)第三边为:30﹣a﹣(2a+2)=(28﹣3a)m. (2)第一条边长不可以为7m.理由:a=7时,三边分别为7,16,7,∵7+7<16,∴不能构成三角形,即第一条边长不可以为7m.18.解:(1)如图1所示:∠ADC=∠BDC=90°;(2)如图2所示:∠ACD=120°,∠BDC=150°.。

人教版2021年八年级数学上册课时作业本 全等三角形-证明题专练(含答案)

人教版2021年八年级数学上册课时作业本 全等三角形-证明题专练(含答案)

人教版2021年八年级数学上册课时作业本全等三角形-证明题专练1.如图,已知∠B+∠CDE=180°,AC=CE.求证:AB=DE.2.如图,在△ABC中,AB=AC,AM平分∠BAC,交BC于点M,D为AC上一点,延长AB到点E,使CD=BE,连接DE,交BC于点F,过点D作DH∥AB,交BC于点H,G是CH的中点.(1)求证:DF=EF.(2)试判断GH,HF,BC之间的数量关系,并说明理由.3.如图,已知AB=AD,AC=AE,∠BAD=∠CAE=90°,试判断CD与BE的大小关系和位置关系,并进行证明.4.如图,△ABC中,∠BAC=90°,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.5.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.6.已知:在△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且BD⊥AE于D,CE⊥AE于E.(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;(3)归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.7.如图:AD是△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD。

求证:BE⊥AC。

8.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.9.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.10.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.11.如图,在△ABC中,AD平分∠BAC.(1)求证:S△ABD:S△ACD=AB:AC;(2)若AB=4,AC=5,BC=6,求BD的长.12.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD 上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.13.如图,已知A(﹣2,0),B(0,﹣4),C(1,1),点P为线段OB上一动点(不包括点O),CD⊥CP交x轴于点D,当P点运动时:(1)求证:∠CPO=∠CDO;(2)求证:CP=CD;(3)下列两个结论:①AD﹣BP的值不变;②AD+BP的值不变,选择正确的结论求其值.参考答案1.证明:如图,过E点作EH∥AB交BD的延长线于H,故∠A=∠CEH,在△ABC与△EHC中,∴△ABC≌△EHC(ASA),∴AB=HE,∵∠B+∠CDE=180°,∠HDE+∠CDE=180° ∴∠HDE=∠B=∠H,∴DE=HE.∵AB=HE,∴AB=DE.2.3.证明:CD=BE,CD⊥BE,理由如下:因为∠BAD=∠CAE=90°,所以∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC.因为,所以△BAE≌△DAC(SAS).所以BE=DC,∠BEA=∠DCA.如图,设AE与CD相交于点F,因为∠ACF+∠AFC=90°,∠AFC=∠DFE,所以∠BEA+∠DFE=90°.即CD⊥BE.4.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元又因为:∠ABE=∠CBE所以:AE=CE所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG而:∠ECA=∠GBA所以:∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB所以:△AEC≌△AGB所以:EC=BG=DG所以:BD=2CE5.证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.6.解:(1)在△ABC中,∠BAC=90°,∴∠BAD=90°-∠EAC。

人教版2021年八年级数学上册课时作业本 全等三角形-全等三角形的性质 学生版

人教版2021年八年级数学上册课时作业本 全等三角形-全等三角形的性质 学生版

DF 的取值为( )
(A)3
(B)4
(C)5
(D)3 或 4 或 5
5.△ABC 与△DFE 是全等三角形,A 与 D 对应,B 与 F 对应,则按标有字母的线段计算,图中相
等的线段有( )
A.1 组
B.2 组
C.3 组
D.4 组
6.在△ABC 中,∠B=∠C,与△ABC 全等的三角形有一个角是 100°,那么在△ABC 中与这 100°
D.65°
9.如图所示的 4×4 正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )
A.330°B.315°C.310°D.320°
10.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠ 3=7:2:1,则∠α的度数为( )
A.90°
B.108°
15.已知△ABC≌△DEF,AB=DE,BC=EF,则 AC 的对应边是__________,∠ACB 的对应角是
__________.
16.如图是用七巧板拼成的一艘帆船,其中全等的三角形共有
对.
三、解答题 17.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB 和∠DGB 的 度数.
18.如图,已知△EFG≌△NMH,∠F 与∠M 是对应角. (1)写出相等的线段与角. (2)若 EF=2.1cm,FH=1.1cm,HM=3.3cm,求 MN 和 HG 的长度.
19.如图,已知△EAB≌△DCE,AB、EC 分别是两个三角形的最长边,∠A=∠C=35°, ∠CDE=100°,∠DEB=10°,求∠AEC 的度数.

人教版八年级上数学章节同步课时作业课时01 与三角形有关的线段(解析版)

人教版八年级上数学章节同步课时作业课时01 与三角形有关的线段(解析版)

课时01 与三角形有关的线段一、本节课的知识点知识点一:三角形的定义和分类1.三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类:(1)按照角分类有锐角三角形、直角三角形、钝角三角形。

(2)按照边分类有不等边三角形和等腰三角形(等边三角形)知识点二:三角形三边的关系定理:三角形任意两边的和大于第三边.推论:三角形任意两边的差小于第三边.(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.知识点三:三角形的高、中线与角平分线1.三角形的高。

从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.三角形的高的数学语言:如下图,AD是ΔABC的高,或AD是ΔABC的BC边上的高,或AD⊥BC于D,或∠ADB=∠ADC=∠90°.注意:AD是ΔABC的高 ∠ADB=∠ADC=90°(或AD⊥BC于D);(1)三角形的高是线段;(2)三角形有三条高,且相交于一点,这一点叫做三角形的垂心;(3)三角形的三条高:(ⅰ)锐角三角形的三条高在三角形内部,三条高的交点也在三角形内部;(ⅱ)钝角三角形有两条高在三角形的外部,且三条高的交点在三角形的外部;(ⅲ)直角三角形三条高的交点是直角的顶点.2.三角形的中线。

三角形的一个顶点与它的对边中点的连线叫三角形的中线.三角形的中线的数学语言:如下图,AD 是ΔABC 的中线或AD 是ΔABC 的BC 边上的中线或BD =CD =21BC.(1)三角形的中线是线段;(2)三角形三条中线全在三角形内部;(3)三角形三条中线交于三角形内部一点,这一点叫三角形的重心;(4)中线把三角形分成面积相等的两个三角形.3.三角形的角平分线。

八年级数学上册第十一章三角形与三角形有关的线段三角形的边课时作业新版新人教版

八年级数学上册第十一章三角形与三角形有关的线段三角形的边课时作业新版新人教版

第十一章三角形11.1与三角形有关的线段11.1.1三角形的边知识要点基础练知识点1三角形的概念1.三角形是(B)A.连接任意三个角组成的图形B.由不在同一条直线上的三条线段首尾顺次相接所组成的图形C.由三条线段组成的图形D.以上说法均不对2.如图,图中三角形的个数有6个.在△ABE中,AE所对的角是∠B ,∠BAE所对的边是BE 在△ADE中,AD是∠AED 的对边在△ADC中,AC是∠ADC 的对边.知识点2三角形的分类3.三角形按角分类可以分为(A)A.锐角三角形、直角三角形、钝角三角形B.等腰三角形、等边三角形、不等边三角形C.直角三角形、等腰直角三角形D.以上答案都不正确知识点3三角形的三边关系4.若三角形的两边长分别是2和7,则第三边长c的取值范围是5<c<9当周长为奇数时,第三边长为6或8.5.用一条长为35 cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么各边的长是多少?(2)能围成有一边的长为1 cm的等腰三角形吗?为什么?解:(1)设底边长为x cm,则腰长为3x cm.x3x3x=35,解得x=5.故底边长为5 cm,腰长为15 cm.(2)能.当该边为腰长时,底边为351×2=33,33>2,所以不存在.当该边为底边时,腰长为(351)÷2=17,符合条件,所以能.故能围成有一边的长为1 cm的等腰三角形,腰长为17 cm.综合能力提升练6.已知a,b,c是△ABC的三边长,且(abc)(ab)=0,则△ABC一定是(A)A.等腰三角形B.等边三角形C.直角三角形D.不能确定7.如果三角形的两边长分别为3和5,则周长L的取值范围是(D)A.6<L<15B.6<L<16C.11<L<13D.10<L<168.满足下列条件的三条线段a,b,c中,不能组成三角形的是(B)A.a=m2,b=m3,c=m5(m>1)B.a=2m,b=3m,c=5m1(m>1)C.a=2m,b=3m,c=5m1(m>1)D.a∶b∶c=2∶3∶49.有四根细木棒,长度分别为3 cm,4 cm,6 cm,9 cm,以其中任意三条为边可以构成2个三角形.10.若等腰三角形的周长为10 cm,其中一边长为2 cm,则该等腰三角形的底边长为 2 cm.11.已知a,b,c是△ABC的三条边长,化简|abc||cab|的结果为0.12.已知等腰三角形的两边长a,b满足|2a3b5|(2a3b13)2=0,求三角形的周长.解:∵|2a3b5|(2a3b13)2=0,∴当2为底边长时,三角形的周长为8当3为底边长时,三角形的周长为7,∴三角形的周长为7或8.13.小红用长度为10 cm,45 cm和50 cm的三根木条钉一个三角形,若将50 cm的木条截去一部分后,就怎么也钉不成一个三角形.(1)最长的木条至少截去了多少厘米?(2)如果最长的木条截去了25 cm,你通过怎样的截一根木条的方法钉成一个小三角形?解:(1)∵已知两根木条的长为10 cm,45 cm,设第三根木条长为x cm,∴4510<x<4510,即35<x<55.∵5035=15,∴最长的木条至少截去了15 cm.(2)∵5025=25,2510<45,∴将长45 cm的木条截去大于10 cm而小于30 cm的一部分,这根木条与其他两根木条可钉成一个小三角形.14.观察下列一组三角形,将第1个图中三角形各边中点连接起来得到第2个图形,再分别连接第2个图形中间的小三角形各边中点得到第3个图形,按此方法继续下去,根据图形的变化规律完成下列问题:(1)将下表填写完整.图形的编号第1个第2个第3个第4个第5个三角形的个数1 5 9 1317(2)在第n个图形中三角形的个数是4n3.(用含n的式子表示,n为正整数)拓展探究突破练15.已知△ABC.(1)如图1,边BC上有1个点D,连接AD,则图中共有多少个三角形?(2)如图2,边BC上有2个点D,E,连接AD,AE,则图中共有多少个三角形?(3)如图3,边BC上有3个点D,E,F,连接AD,AE,AF,则图中共有多少个三角形?(4)如图4,边BC上有2018个点D,E,F,…,连接AD,AE,AF,…,则图中共有多少个三角形?解:(1)图中共21=3个三角形.(2)图中共有321=6个三角形.(3)图中共有4321=10个三角形.(4)图中共有20192018…1==2039190个三角形.。

人教版2021年八年级数学上册课时作业本 三角形-与三角形有关的角 学生版

人教版2021年八年级数学上册课时作业本 三角形-与三角形有关的角 学生版

C.∠1>∠B+∠D D.∠A> ∠1
7.如图,在△ABC 中,D 是 BC 延长线上一点,∠B=40°,∠ACD=120°,则∠A 等于( )
A.60° B.70°
C. 80°
D. 90°
8.已知三角形 ABC 的三个内角满足关系∠B+∠C=3∠A,则此三角形(
).
A.一定有一个内角为 45°
B.一定有一个内角为 60°
22.如图,在△ABC 中,AD 平分∠BAC,P 为 线段 AD 上的一个动点,PE⊥AD 交直线 BC 于点 E. (1)若∠B=35°,∠ACB=85°,求∠E 的度数; (2)当 P 点在线段 AD 上运动时,猜想∠E 与∠B、∠ACB 的数量关系,并证明你的结论.
A.50° B.60° C.70° D.80° 3.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC,CP 平分∠ACB,则∠BPC 的大小 是( )
A.1000
B.1100
C.1150
D.1200
4.在△ABC 中,∠ABC 和∠ACB 平分线交于点 O,且∠BOC=110°,则∠A 度数是(
18.已知在△ABC 中,∠A:∠B:∠C=2:3:4,CD 是∠ACB 平分线,求∠A 和∠CDB 的度数.
19.如图,已知△ABC中,∠A=70°,∠ABC=48°,BD⊥AC于D,CE是∠ACB的平分线,BD与CE交于点 F,求∠CBD、∠EFD的度数.
20.如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE度数. 21.如图,已知∠A=60°,∠B=30°,∠C=20°,求∠BDC 的度数.
二、填空题
11.如图,C 岛在 A 岛的北偏东 45°方向,在 B 岛的北偏西 25°方向,则从 C 岛看 A 、B 两岛
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版2021年八年级数学上册课时作业本
三角形-与三角形有关的线段
一、选择题
1.若三角形的两边长分别为6 ㎝,9 cm,则其第三边的长可能为( )
A.2㎝ B. 3 cm C.7㎝ D.16 cm
2.以长为13cm、10cm、5c m、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()
A.1个
B.2个
C.3个
D.4个
3.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=2,则S△ABC等于( )
A.16
B.14
C.12
D.10
4.如图,图中共有三角形()
A.4个
B.5个
C.6个
D.8个
5.下列四个图形中,线段BE是△ABC的高的是( )
6.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()
A.2
B.3
C.6
D.不能确定
7.一个三角形的两边分别是5和11,若第三边是整数,则这个三角形的最小周长是( )
A.21
B.22
C.23
D.24
8.如图,正方形网格中,每个小方格都是边长为1的正方形,A、B两点在小方格的顶点上,位置如图形所示,C也在小方格的顶点上,且以A、B、C为顶点的三角形面积为1个平方单位,则点C的个数为()
A.3个
B.4个
C.5个
D.6个
9.如图,A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n;则下列说法正确的是( )
A.AB∥PC B.△ABC的面积等于△BCP的面积
C.AC=BP D.△ABC的周长等于△BCP的周长
10.已知△ABC的边长分别为a,b,c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是()
A.2a
B. 2b-2c
C.2a+3b
D. -2b
二、填空题
11.若三角形三边长为3、2a-1、8,则a的取值范围是 .
12.一个等腰三角形的底边长为5 cm,一腰上的中线把这个三角形的周长分成的两部分之差是3 cm,则它的腰长是
13.如图,D为△ABC的BC边上的任意一点,E为AD的中点,△BEC的面积为5,则△ABC的面积为.
14.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为
15.如图,AD⊥BC于D,那么图中以AD为高的三角形有个.
16.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝间距离的最大值为 .
三、解答题
17.已知△ABC的周长是24cm,三边a、b、c满足c+a=2b,c-a=4cm,求a、b、c的长.
18.在△ABC中,AB=2BC,AD、CE分别是 BC、AB 边上的高,试判断 AD和 CE的大小关系,并说明理由.
19.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.
20.一个三角形三边长之比为2:3:4,周长为36cm,求此三角形的三边长.
21.如图,在△ABC中,AB=AC,AC上的中线把三角形的周长分为18cm和24cm两个部分,求三角形各边长.
22.如图,P是等腰三角形ABC底边 BC上的任一点,PE⊥AB 于 E,PF⊥AC于F,BH是等腰三角形AC 边上的高。

猜想:PE、PF和BH间具有怎样的数量关系?
参考答案
1.C
2.C
3.A
4.D
5.D
6.A
7.C
8.D;
9.B
10.B
11.答案为:3<a<6
12.答案为:8cm_.
13.答案为:10.
14.答案为:7或9或11.
15.答案为:6
16.答案为:7
17.a=6cm,b=8cm,c=10cm;
18.略
19.7
20.解:设三边长分别为2x,3x,4x,由题意得,2x+3x+4x=36,
解得:x=4.
故三边长为:8cm,12cm,16cm.
21.略
22.解:BH=PE+PF.。

相关文档
最新文档