信号与系统讲解
(完整版)信号与系统知识要点

信号与系统知识要点第一章 信号与系统单位阶跃信号 1,0()()0,0t t u t t ε≥⎧==⎨<⎩ 单位冲激信号 ,0()0,0()1t t t t δδ∞-∞⎧∞=⎧=⎨⎪⎪≠⎩⎨⎪=⎪⎩⎰ ()()d t t dtεδ=()()t d t δττε-∞=⎰()t δ的性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-()()(0)f t t dt f δ∞-∞=⎰00()()()f t t t dt f t δ∞-∞-=⎰()()t t δδ=-00()[()]t t t t δδ-=-- 1()()at t aδδ=001()()t at t t a aδδ-=- 单位冲激偶信号 ()t δ'()()d t t dtδδ'=()()t t δδ''=--00()[()]t t t t δδ''-=---()0t dt δ∞-∞'=⎰ ()()td t δττδ-∞'=⎰()()(0)()(0)()f t t f t f t δδδ'''=-00000()()()()()()f t t t f t t t f t t t δδδ'''-=---()()(0)f t t dt f δ∞-∞''=-⎰00()()()f t t t dt f t δ∞-∞''-=-⎰符号函数 sgn()t1,0sgn()0,01,0t t t t >⎧⎪==⎨⎪-<⎩或 sgn()()()2()1t u t u t u t =--=-单位斜坡信号 ()r t0,0()(),0t r t tu t t t <⎧==⎨≥⎩ ()()t r t u d ττ-∞=⎰ ()()dr t u t dt =门函数 ()g t τ1,()20,t g t ττ⎧<⎪=⎨⎪⎩其他取样函数sin ()tSa t t=0sin lim ()(0)lim1t t tSa t Sa t→→=== 当 (1,2,)()0t k k Sa t π==±±=时,sin ()t Sa t dt dt tπ∞∞-∞-∞==⎰⎰sin lim 0t tt →±∞=第二章 连续时间信号与系统的时域分析1、基本信号的时域描述(1)普通信号普通信号可以用一个复指数信号统一概括,即st Ke t f =)(,+∞<<∞-t 式中ωσj s +=,K 一般为实数,也可以为复数。
信号与系统知识点归纳

周期信号的频谱是离散的,由一系列频率分量组成,每个 分量对应一个傅里叶系数。
幅度谱和相位谱
幅度谱表示各频率分量的幅度大小,相位谱表示各频率分 量的相位信息。
非周期信号频谱分析
傅里叶变换
将非周期信号表示为一系列复指数函数的积分,即 $F(omega) = int_{-infty}^{infty} f(t) e^{jomega t} dt$,其中 $F(omega)$ 是信号的频谱。
单位样值信号
在某一时刻取值为1,其余时 刻为0的信号。
正弦型信号
形如sin(ωn)或cos(ωn)的周期 性信号,其中ω为角频率。
复杂指数型信号
形如ean的形式,其中a和ω为 常数,n为离散时刻。
离散时间信号频谱分析
离散时间信号的频谱
通过傅里叶变换将离散时间信号从时域转换 到频域,得到信号的频谱。
信号分类
根据信号的性质和特征,信号可以分 为多种类型,如连续时间信号和离散 时间信号、周期信号和非周期信号、 能量信号和功率信号等。
系统定义及性质
系统定义
系统是一个由输入信号激励、内部含有某种变换关系、并能产生输出信号的物理装置或算法。在信号处理中,系 统通常表示为对输入信号进行某种变换或处理的过程。
周期信号的频谱
周期信号可以表示为无穷级数,其频谱由傅 里叶系数确定。
非周期信号的频谱
非周期信号的频谱是连续的,可以通过傅里 叶变换求得。
信号的能量和功率谱
能量信号和功率信号的频谱特性不同,分别 对应能量谱和功率谱。
离散时间系统响应
线性时不变系统的响应
线性时不变系统对输入信号的响应具有叠加性和时不变性。
卷积和运算
线性时不变系统的响应可以通过输入信号与系统单位样值响应的卷积 和求得。
信号与系统分析

信号与系统分析在现代科学技术领域中,信号与系统分析是一门重要的学科。
它主要研究信号以及信号在系统中的传输和处理过程。
本文将从信号与系统的基本概念、数学模型、频域分析以及实际应用等方面对信号与系统进行分析。
一、信号与系统的基本概念1.1 信号的定义与分类信号是指随时间、空间或其他自变量的变化而变化的物理量。
根据信号的特征和性质,可以将信号分为连续时间信号和离散时间信号。
连续时间信号是在连续时间内取值的信号,例如模拟音频信号;离散时间信号是在离散时间点上取值的信号,例如数字音频信号。
1.2 系统的定义与分类系统是指对信号进行处理或者传输的设备或物理构造。
根据系统的输入和输出形式,可以将系统分为线性系统和非线性系统。
线性系统满足加法性和齐次性的特性,而非线性系统则不满足。
二、信号与系统的数学模型2.1 连续时间信号模型连续时间信号可以用连续函数来描述。
常见的连续时间信号模型有周期函数、指数函数和三角函数等。
在实际应用中,还可以利用微分方程来描述连续时间信号与系统之间的关系。
2.2 离散时间信号模型离散时间信号可以用序列来表示。
序列是由离散的采样点构成的数列。
常见的离散时间信号模型有单位样值序列、周期序列和随机序列等。
在实际应用中,离散时间信号与系统之间可以通过差分方程进行建模。
三、频域分析频域分析是对信号在频域上的特性进行分析的方法。
通过将信号从时域转换到频域,可以更加清晰地观察信号的频率成分及其变化规律。
常见的频域分析方法有傅里叶变换、拉普拉斯变换和Z变换等。
3.1 傅里叶变换傅里叶变换是将一个信号在频域上进行表示的方法。
它可以将信号分解成一系列的正弦函数或者复指数函数的组合。
傅里叶变换广泛应用于信号的频谱分析、滤波器设计以及通信系统等领域。
3.2 拉普拉斯变换拉普拉斯变换是对信号在复域上的频域表示。
它具有傅里叶变换的扩展性质,可以处理更加一般的信号和系统。
拉普拉斯变换在控制系统分析和设计、电路分析以及信号处理等方面有重要应用。
电子信息工程专业公开课信号与系统分析

电子信息工程专业公开课信号与系统分析电子信息工程专业公开课信号与系统分析是该专业的一门重要课程,主要讲解信号与系统的基本概念、理论和应用。
本文将从信号与系统的基本概念、信号与系统的数学表示以及信号与系统的应用等方面进行探讨。
一、信号与系统的基本概念在电子信息工程中,信号是指携带有用信息和数据的电波或电流,它可以是数字信号或模拟信号。
系统是指处理信号的一种装置或方法。
信号与系统的基本概念涉及信号的分类、信号的特性、系统的分类以及系统的特性等。
在信号的分类中,常见的包括连续时间信号和离散时间信号。
连续时间信号是指信号在时间上是连续的,而离散时间信号是指信号在时间上是离散的。
在信号的特性中,常见的包括能量信号和功率信号。
能量信号是指信号在有限时间内的总能量有界,而功率信号是指信号的功率在无限时间内是有限的。
系统的分类主要包括线性系统和非线性系统。
线性系统是指系统的输出与输入之间存在线性关系,而非线性系统则没有线性关系。
在系统的特性中,常见的包括时不变系统和时变系统。
时不变系统是指系统的输出与输入之间不随时间变化,而时变系统则随时间变化。
二、信号与系统的数学表示为了方便分析和处理信号与系统,我们需要利用数学方法对其进行表示。
连续时间信号可以用函数表示,离散时间信号可以用数列表示。
连续时间信号的数学表示主要包括信号的幅度、相位和频率等。
离散时间信号的数学表示主要包括信号的取样、量化和编码等。
在系统的数学表示中,常见的包括系统的冲激响应、传递函数和频率响应等。
系统的冲激响应是指系统在输入为冲激函数时的输出响应,传递函数是指系统的输出与输入之间的关系,频率响应是指系统对输入信号频率的响应情况。
三、信号与系统的应用信号与系统在电子信息工程中有着广泛的应用。
在通信系统中,信号与系统分析可以用于信号的调制和解调、信号的传输和接收等方面。
在控制系统中,信号与系统分析可以用于系统的建模与仿真、系统的控制和稳定性分析等方面。
信号与系统知识点详细总结

信号与系统知识点详细总结1. 信号与系统概念信号是指一种可以传递信息的载体,它可以是电气信号、光信号、声音等形式,常见的信号有连续信号和离散信号两种。
连续信号是定义在连续的时间域上的信号,例如声音信号;离散信号是定义在离散的时间域上的信号,例如数字信号。
系统是对输入信号进行加工处理的装置,它可以是线性系统或非线性系统、时变系统或时不变系统。
线性系统具有叠加性质,即输入信号的线性组合对应于输出信号的线性组合;非线性系统不满足叠加性质。
时变系统的特性随着时间的变化而改变,时不变系统的特性与时间无关。
2. 信号的分类信号可以按多种属性进行分类,例如按时间属性分类可分为连续信号和离散信号;按能量和功率分类可分为能量信号和功率信号,能量信号在有限时间内的总能量是有限值,功率信号在无穷时间内的平均功率是有限值;按周期性分类可分为周期信号和非周期信号,周期信号在一定时间间隔内具有重复的规律性。
3. 时域分析时域分析是指对信号在时间域上的特性进行分析,主要包括信号的幅度、相位、频率等方面。
信号的幅度是指信号的大小,可以用振幅来表示;相位是指信号在时间轴上的偏移量;频率是指信号的周期性特征。
时域分析的工具主要包括冲激响应、单位阶跃响应、单位斜坡响应等。
冲激响应是指系统对单位冲激信号的响应,它可以用来描述系统的线性性、时不变性等性质;单位阶跃响应是指系统对单位阶跃信号的响应,可以用来求系统的单位脉冲响应;单位斜坡响应是指系统对单位斜坡信号的响应,可以用来在频域中求系统的频率响应。
4. 频域分析频域分析是指对信号在频域上的特性进行分析,主要包括信号的频谱分布、频率成分等方面。
频域分析的工具主要包括傅里叶变换、傅里叶级数、拉普拉斯变换等。
傅里叶变换是将信号在时间域和频域之间进行转换的一种数学工具,可以将时域信号转换成频域信号,也可以将频域信号转换成时域信号。
傅里叶级数是对周期信号进行频域分析的工具,可以将周期信号展开成一组正弦和余弦函数的线性组合;拉普拉斯变换是对信号在复频域上的分析工具,用于分析线性时不变系统的频域特性。
信号与系统知识点总结

信号与系统知识点总结一、信号的分类:1.连续时间信号与离散时间信号:连续时间信号是在连续时间范围内存在的信号,如声音、电流;离散时间信号是在离散时间点上存在的信号,如数字音频信号、数字图像信号。
2.狄拉克脉冲信号与单位脉冲序列:狄拉克脉冲信号是一种无限大振幅、无限短时间持续的信号,用以表示一个突变或冲击,常用于信号的表示与合成;单位脉冲序列是一种以离散单位间隔的脉冲序列。
二、系统的分类:1.连续时间系统与离散时间系统:与信号的分类类似,系统也可以分为连续时间系统和离散时间系统。
2.线性系统与非线性系统:线性系统遵循线性叠加原理,输出响应与输入信号成正比,如线性滤波器;非线性系统在输入信号改变时,输出响应不满足比例关系。
3.时变系统与时不变系统:时变系统的特性随时间变化,而时不变系统的特性与时间无关。
三、信号的基本运算:1.基本信号的表示与合成:可以将任意信号表示为一系列基本信号的线性组合;2.信号的时移、尺度变换与反褶:时移操作将信号在时间轴上整体左移或右移;尺度变换通过拉伸或压缩信号的时间轴来改变信号长度和时间刻度;反褶操作是将信号沿时间轴进行翻转。
四、系统的基本性质:1.因果系统与非因果系统:因果系统的输出只依赖于过去或当前的输入,而不依赖未来的输入;非因果系统的输出可能依赖于未来或当前输入。
2.稳定系统与非稳定系统:稳定系统的输出有界,输入有界就会导致输出有界;非稳定系统的输出可能会趋向无穷。
3.线性时不变系统的冲击响应与频率响应:冲击响应是输入为单位脉冲时的输出响应;频率响应是输入为正弦波时的输出响应,常用于分析系统的频率特性。
五、信号与系统的分析方法:1.时域分析与频域分析:时域分析是通过对信号在时间上的变化进行分析,如冲击响应、脉冲响应、单位阶跃响应等;频域分析是通过对信号在频率上的特性进行分析,如频谱、频率响应等。
2.傅里叶变换与傅里叶级数:傅里叶变换是将时间域信号转换为频域信号,常用于连续时间信号的分析;傅里叶级数是将周期性信号分解为多个正弦和余弦信号的叠加。
信号与系统名词解释

1. 信号:是信息的载体。
通过信号传递信息。
2. 系统:是指若干相互关联的事物组合而成具有特定功能的整体3. 数字信号:仅在一些离散的瞬间才有定义的信号。
4. 模拟信号:在连续的时间范围内(-∞<t<∞)有定义的信号。
5. 连续系统:若系统的输入信号是连续信号,系统的输出信号也是连续信号。
6. 离散系统:若系统的输入信号和输出信号均是离散信号。
7. 动态系统:若系统在任一时刻的响应不仅与该时刻的激励有关,而且与它过去的历史状况有关。
8. 即时系统:不含有记忆元件(电容、电感等)的系统。
9. 线性系统:满足线性性质的系统。
10. 因果系统:零状态响应不会出现在激励之前的系统。
11. 连续因果系统的充分必要条件是:冲激响应 h(t)=0,t<0 或者,系统函数H(s)的收敛域为:Re[s]>σ012. 离散因果系统的充分必要条件是:单位响应 h(k)=0, k<0 或者,系统函数H(z)的收敛域为:|z|>ρ013. 稳定系统:一个系统,若对有界的激励f(.)所产生的零状态响应y f (.)也是有界时,则称该系统为有界输入有界输出稳定。
14. 时不变系统:满足时不变性质的系统称。
15. 时不变性质:若系统满足输入延迟多少时间,其零状态响应也延迟多少时间。
16. 零状态响应:当系统的初始状态为零时,仅有输入信号f(t)/f(k)的响应。
17. 零输入响应:是激励为零时仅有系统的初始状态{x(0)}所引起的响应。
18. 自由响应:齐次解的函数形式仅与系统本身的特性有关,而与激励f(t)的函数形式无关19. 强迫响应:特解的函数形式由激励确定,称为强迫响应。
20. 冲激响应:当初是状态为零是,输入为单位冲激函数δ(t)所引起的零状态响应。
21. 阶跃响应:当初是状态为零是,输入为单位阶跃函数所引起的零状态响应。
22. 正交:定义在(t 1,t 2)区间的两个函数ϕ 1(t)和ϕ 2(t),若满足 23. 完备正交函数集:如果在正交函数集{ϕ1(t), ϕ 2(t),…, ϕ n (t)}之外,不存在函数φ(t)(≠0)满足⎰=210d )()(t t i t t t ϕϕ ( i =1,2,…,n)。
信号与系统知识点

信号与系统知识点信号与系统是电子工程及相关学科中的重要基础知识,其主要研究对象是信号的产生、传输、处理和分析,以及系统的特性和响应。
本文将探讨一些与信号与系统相关的重要知识点。
一、信号的分类信号是信息的表达方式,可以分为连续信号和离散信号。
连续信号是在时间和幅度上都是连续变化的,如模拟音频信号。
离散信号则是在时间或幅度上存在着间隔,如数字音频信号。
二、信号的表示和性质信号可以用数学函数进行表示,常见的信号类型有周期信号和非周期信号。
周期信号以某种周期性重复出现,如正弦信号;非周期信号则无规则的重复性。
信号还具有幅度、频率和相位等性质,这些性质对信号的分析和处理非常重要。
三、系统的响应系统是对输入信号做出某种处理的过程,系统的响应可以分为时域响应和频域响应。
时域响应是指系统对输入信号随时间的响应过程,可以通过巴特沃斯滤波器等工具进行分析。
频域响应则是指系统对不同频率的输入信号的响应情况,可以通过傅里叶变换等方法进行分析。
四、系统的特性系统的特性是描述系统行为的重要指标,主要包括线性与非线性、时不变与时变、稳定与不稳定等。
线性系统具有叠加性和比例性,输入和输出之间存在着线性关系;非线性系统则没有这种特性。
时不变系统的性质不随时间变化,稳定系统的输出有界且收敛于有限值,而不稳定系统则可能产生无界的输出。
五、卷积与相关卷积和相关是信号与系统分析中常用的运算符号。
卷积表示两个信号的叠加与重叠,它可以用于系统的输入与输出之间的关系描述。
相关则是通过计算信号之间的相似性,用于信号的匹配与识别。
六、傅里叶变换傅里叶变换是信号与系统分析中最重要的数学工具之一。
它可以将信号从时域转换到频域,使得信号的频率特性更加清晰。
傅里叶变换有连续傅里叶变换和离散傅里叶变换两种形式,分别适用于连续信号和离散信号的频域分析。
七、采样与重构采样和重构是数字信号处理中常用的技术。
采样是将连续信号转换为一系列离散的采样点,重构则是通过这些离散采样点还原出原始信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对实信号有:
x(t) xe (t) xo (t)
1 xe (t) 2 [x(t) x(t)]
其中
xo
(t)
1 2
[x(t)
x(t)]
其中
26
例1:
-2
x(t)
2 1
-2 -1 0
t
12
xe (t)
1
t
0
2
xo (t)
1
-1
t
1 -1
27
例2. 信号的奇偶分解:
28
1.3 复指数信号与正弦信号
与连续时间的情况相同。 3. 尺度变换: Scaling
x(t) x(at)
a 1 时, x(at) 是将 x(t) 在时间上压缩a倍
0 a 1
时, x(at)是将 x(t) 在时间上扩展1/a倍19。
由于离散时间信号的自变量只能取整 数值,因而尺度变换只对连续时间信号 而言。
例如:
3
2
22
11
n
0 1 2 34 56
22 2
n
0 12 3
20
显然上例中, 是从 中依次抽出 自变量取偶数时的各点而构成的。这一 过程称为对信号 的抽取(decimation)
21
综合示例: 由 x(t) x(3t 1)
2
做法一:x(t) x(t 1) x源自3t 1)22x(t )
1
t t1 2
(Exponential and Sinusoidal Signals ) 一. 连续时间复指数信号
x(t) Ceat 其中 C, a 为复数
1. 实指数信号: C,a 为实数
a 0 呈单调指数上升。
29
a 0 呈单调指数下降。 a 0 x(t) C 是常数。
2. 周期性复指数信号:
a j0,不失一般性取
连续时间信号在 [t1,t区2 ]间的能量定义为
:
E t2 x(t) 2 dt t1
连续时间信号在 [t1, t2 ]区间的平均功率定
义为:
P 1 t2 x(t) 2 dt
t2 t1 t1
13
离散时间信号在 [n1, n2 ] 区间的能量
定义为
n2
E
x(n) 2
nn1
离散时间信号在 [n1, n2 ] 区间的平均 功率为
信号与系统
1
概论
• 信号就是函数。离散时间与 连续时间函数。(但不是所有的的
函数都适合做信号,常见信号及其运算。)
• 系统就是对信号的变换。(变
换海洋中的一滴水,特别的一类:线性移 不变系统—LTI 系统)
2
• 给定信号和系统求变换后的 信号。
• 给定变换前后的信号,确定 系统。
• 给定信号和系统直接求系统 的响应—时域分析。(在LTI前
x(t 1 ) 2
1
t
t
0
1
0 1/2 3/2
x(3t 1 )
t 3t
2
1
t
0 1/6 1/2
22
二. 周期信号与非周期信号:
周期信号: x(t T ) x(t)
满足此关系的正实数(正整数)中最小
的一个,称为信号的基波周期 T0(N0)。 x(t) c 可视为周期信号,但它的基波周期
没有确定的定义。 可以视为周期信号,其基波周期 N023 1
C 1 x(t) e j0t cos0t j sin 0t 实部与虚部都是正弦信号。
x(t)
显然是周期的,其基波周期为:T0
2 0
30
3、正弦信号
x(t) Acos(0t ) A e je j0t A e je j0t
x(t) x(t t0 )
当 t0 0时,信号向右平移 t0 t0 0 时,信号向左平移 t0
当 n0 0 时,信号向右平移 n0
n0 0 时,信号向左平移 | n0 |
18
2. 反转变换:Reflection of Signals x(t ) x(t) 信号以 t 0 为轴呈镜像对称。
提下信号与系统的统一。)
3
• 信号的变换分析:傅立叶级 数、傅立叶变换、拉氏变换、 z 变换。(送你一双看穿表象的慧眼。)
• 抽样定理 (风马牛不相及的两种信号
之间的联系,数字化时代的基石。)
4
信号与系统问题无处不在
• 什么是信号? • 信号是消息的表现形式,消息则是信
号的具体内容。 • 什么是系统? • 系统是物理器件的集合,对给定的信
2
P
lim T
2T
T
dt
P
lim
N
1
N
x(n) 2
2N 1 nN
16
1.2 自变量变换
Transformations of the Independent Variable)
一.由于信号可视为自变量的函数,当自 变量改变时,必然会使信号的特性相 应地改变。
17
1. 时移变换:Shift of Signals
P 1
n2 x(n) 2
n2 n1 1 nn1
14
在无限区间上也可以定义信号的总 能量:
• 连续时间情况下:
E
T
lim T T
2
x(t) dt
2
x(t) dt
•离散时间情况下:
N
E
lim x(n) 2
N n N
x(n) 2
n
15
在无限区间内的平均功率可定义为:
x(t) 1 T
号做出反应而产生出另外的信号。 • 系统其实就是一个信号转换器。
5
信号的描述: 数学上:信号表示为一个或多个 变量的函数 形态上:信号表现为一种波形
自变量: 时间、位移 周期、频率、相位、幅度
6
信号的分类: 函数自变量数目:一维信号和 多维信号
函数自变量取值的连续性和离 散性:连续时间信号和离散 时间信号
信号可以分为确知信号与随机信号,也可以
分为连续时间信号与离散时间信号。
确知信号可以表示成一个或几个自变量的
函数。作为信号分析的基础,本课程只研究
确知信号。
9
连续时间信号的例子:
10
离散时间信号的例子:
11
连续时间信号在离散时 刻点上的样本可以构成一个离 散时间信号。
12
二. 信号的能量与功率:
非周 期信 号
连续时间 周期信号
离散时间周 期信号
周期信号
24
三.奇信号与偶信号:odd Signals and even Signals
如果有 x(t) x(t) 或 信号为奇信号(镜像奇对称)
则称该
如果有 x(t) 或x(t) 则称该信号是
偶信号(镜像偶对称)
25
任何信号都能分解成一个偶信号与 一个奇信号之和。
函数周期性与否:周期信号和
非周期信号
7
本章的基本内容:
• 信号的描述 • 信号的自变量变换 • 基本信号 • 系统及其数学模型 • 系统的性质
8
1.1 连续时间与离散时间信号
(Continuous-Time and Discrete-Time Signals)
一.信号:
信号可以描述范围极其广泛的物理现象。