题目1解
初中物理一题多解大全

初中物理一题多解大全1. 题目:一个小球从斜面上滚下来,最后落地的位置是哪里?解法一:根据能量守恒定律根据能量守恒定律,物体在滚动过程中,动能和势能的总和保持不变。
当小球从斜面上滚下来时,它具有一定的势能和动能。
在滚动过程中,势能转化为动能,直到小球落地时,势能完全转化为动能。
因此,小球最后落地的位置与其最初的位置相同。
解法二:根据平抛运动的原理当小球从斜面上滚下来时,它的速度具有水平分量和垂直分量。
根据平抛运动的原理,水平分量的速度保持不变,而垂直分量的速度由于重力的作用而逐渐增大。
因此,小球最后落地的位置会比斜面的水平位置稍远。
解法三:考虑滚动的摩擦力当小球滚动下斜面时,斜面对小球的作用力包括重力和摩擦力。
根据牛顿第二定律,斜面对小球的合力等于小球的质量乘以加速度。
考虑摩擦力的存在,小球的加速度会减小,导致小球滚动的距离减少。
因此,小球最后落地的位置会比没有考虑摩擦力时更靠近斜面的水平位置。
2. 题目:为什么天空是蓝色的?解法一:散射理论天空是蓝色的主要原因是大气中的空气分子对太阳光的散射。
根据散射理论,空气分子的大小和太阳光的波长之间的相互作用会导致不同颜色的光被不同程度地散射。
由于蓝色光的波长较短,所以蓝光在空气分子的散射中受到更强烈的影响,因此我们看到的天空是蓝色的。
解法二:吸收和发射理论大气中的空气分子中的原子和分子能够吸收和发射特定波长的光。
根据吸收和发射理论,蓝光的波长与空气分子的吸收和发射光的特性相匹配,因此蓝光在大气中被吸收和发射的程度更高,使得我们看到的天空呈现蓝色。
解法三:人眼对颜色的感知人眼的视锥细胞对不同波长的光有不同的感知能力。
蓝光的波长与人眼的视锥细胞对光的感知能力相匹配,使得我们看到的天空呈现蓝色。
3. 题目:为什么铁制的物体会生锈?解法一:氧化反应铁与空气中的氧气反应会产生氧化铁,也就是我们常说的铁锈。
这是一种氧化反应,铁的表面与氧气发生化学反应,产生了氧化铁的物质。
2024年考研数学一真题及解析

2024年全国硕士研究生入学统一考试数学(一)试题解析一、选择题:1~10小题,每小题5分,共50分。
下列每题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
(1)已知函数cos 0()xtf x edt =⎰,2sin 0()xt g x e dt =⎰,则()(A )()f x 是奇函数,()g x 是偶函数(B )()f x 是偶函数,()g x 是奇函数(C )()f x 与()g x 均为奇函数(D )()f x 与()g x 均为周期函数【答案】C ,【解析】由于cos te 是偶函数,所以()f x 是奇函数;又2(sin )cos ()x xg x e'=是偶函数,所以是()g x 奇函数.(2)设(,,),(,,)P P x y z Q Q x y z ==均为连续函数,∑为曲面0,0)Z x y = 的上侧,则Pdydz Qdzdx ∑+=⎰⎰()(A )()x yP Q dxdy z z ∑+⎰⎰(B )()x yP Q dxdy z z ∑-+⎰⎰(C )()xyP Q dxdy zz∑-⎰⎰(D )()xyP Q dxdy zz∑--⎰⎰【答案】A ,【解析】由,z x z y z x z y z ∂∂==-=-∂∂,1cos cos dS dxdy dS dxdy γγ=→=cos cos cos cos cos cos Pdydz Qdzdx P dS Q dS Pdxdy Q dxdy αβαβγγ∑∑∑+=+=+⎰⎰⎰⎰⎰⎰(()()z z x yP dxdy Q dxdy P Q dxdy x y z z∑∑∂∂=-+-=+∂∂⎰⎰⎰⎰.(3)设幂级数nn nxa ∑∞=0的和函数为)2ln(x +,则∑∞=02n nna()(A )61-(B )31-(C )61(D )31【答案】(A )【解析】法1,∑∞=--+=++=+=+11)21()1(2ln )211ln(2ln )211(2ln )2ln(n nn n x x x x所以⎪⎩⎪⎨⎧>-==-0,21)1(0,2ln 21n n n a n n ,当n n n a n 22221,0⋅-=>,所以61411)21(21)2213112112202-=--=-=⋅-⋅==∑∑∑∑∞=+∞=∞=∞=n n n n n n n n n n na na (,故选(A);法2:n n n xx x x )2()1(21)21(2121])2[ln(0∑∞=-=+=+='+C n x C n x x n n n n n n +-=++-=+∑∑∞=-+∞=1110)21()1(1)21()1()2ln(,2ln )02ln()0(=+==C S ,⎪⎩⎪⎨⎧>-==-0,21)1(0,2ln 21n n n a n n ,所以)221(112202∑∑∑∞=∞=∞=⋅-==n n n n n n n n na na 61411)21(213112-=--=-=∑∞=+n n (4)设函数()f x 在区间上(1,1)-有定义,且0lim ()0x f x →=,则()(A )当0()limx f x m x→=时,(0)f m '=(B )当(0)f m '=时,0()limx f x m x→=(C )当0lim ()x f x m →'=时,(0)f m '=(D )当(0)f m '=时,0lim ()x f x m→'=【答案】B ,【解析】因为(0)f m '=所以()f x 在0x =处连续,从而0lim ()(0)0x f x f →==,所以0()()(0)limlim 0x x f x f x f m x x →→-==-,故选B .(5)在空间直角坐标系O xyz -中,三张平面:(1,2,3)i i i i i a x b y c z d i π++==的位置关系如图所示,记(),,i i i i a b c α=,(),,,i i i i i a b c d β=若112233,r m r n αβαβαβ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则()(A )1,2m n ==(B )2m n ==(C )2,3m n ==(D )3m n ==【答案】B ,【解析】由题意知111222333x d x d x d ααα⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭有无穷多解,故1122333r r αβαβαβ⎛⎫⎛⎫ ⎪ ⎪=< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又由存在两平面的法向量不共线即线性无关,故1232r ααα⎛⎫ ⎪≥ ⎪ ⎪⎝⎭,则1122332r r αβαβαβ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故2m n ==,故选B.(6)设向量1231111,,1111ab a a ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,若123,,ααα线性相关,且其中任意两个向量均线性无关,则()(A )1,1a b =≠(B )1,1a b ==-(C )2,2a b ≠=(D )2,2a b =-=【答案】D ,【解析】由于123,,ααα线性相关,故1111011a a a =得1a =或2-,当1a =时,13,αα相关,故2a =-,又由112111111201111aa b b -=-=----得2b =故选D .(7)设A 是秩为2的3阶矩阵,α是满足0A α=的非零向量,若对满足0Tβα=的3维向量β均有A ββ=,则()(A )3A 的迹为2(B )3A 的迹为5(C )2A 的迹为8(D )2A 的迹为9【答案】A ,【解析】由0A α=且0α≠,故10λ=,由于A 是秩为2的3阶矩阵,对于0Ax =仅有一个解向量,所以,1λ是一重,0Tβα=可得到所有的β有两个无关的向量构成,A ββ=,故21λ=为两重,故3A 的特征值为0,1,1,故3()2tr A =.(8)设随机变量,X Y 相互独立,且()()~0,2,~2,2X N Y N -,若}{}{2P X Y a P X Y +<>=,则a =()(A)2-(B)2-+(C)2-(D)2-+【答案】B ,【解析】()2~ 2,10;~ (2,4)X Y N Y X N +---,所以{2}P X Y a +<=Φ={0}P Y X -<=02()2+Φ,022+=,2a =-+(9)设随机变量X 的概率密度为2(1)01()0,x x f x -<<⎧=⎨⎩,其他,在(01)X x x =<<的条件下,随机变量Y 服从区间(,1)x 上的均匀分布,则Cov(,)X Y =()(A )136-(B )172-(C )172(D )136【答案】D ,【解析】当01x <<时,|1el 1,(|)1se 0,Y X x y f y x x ⎧<<⎪=-⎨⎪⎩,则2,1,01(,)0,x y x f x y else <<<<⎧=⎨⎩10,1(,)24yx y EXY xyf x y dxdy d y xydx -∞<<+∞-∞<<+∞===⎰⎰⎰⎰112(1)3EX x x dx =-=⎰,,2(,)3x y EY y f x y dxdy -∞<<+∞-∞<<+∞==⎰⎰所以1(,)36Cov X Y EXY EXEY =-=,故选D (10)设随机变量,X Y 相互独立,且均服从参数为λ的指数分布,令Z X Y =-,则下列随机变量中与Z 同分布的是()(A )X Y +(B )2X Y+(C )2X (D )X【答案】(D )【解析】令{}{}zY X P z Z P z F Y X Z z ≤-=≤=-=)(,则0)(0=<z F z z 时,当当0≥z 时,dxdy e e dxdy y x f z F y x zy x zy x z λλλλ--≤-≤-⎰⎰⎰⎰==),()(zy x zy ye dy e e dy λλλλλ---+∞+-==⎰⎰120所以⎩⎨⎧≥-<=-0,10,0)(z ez z F zz λ,显然Y X Z -=与X 同步,故选(D )二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上。
2022年考研数学一真题解析

2022年全国硕士研究生入学统一考试数学(一)试题解析一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.(1)已知()f x 满足1()lim1ln x f x x→=,则()(A )(1)0f =.(B )1lim ()0x f x →=.(C )(1)1f '=.(D )1lim ()1x f x →'=.【答案】(B ).【解析】11()lim ()lim ln 0ln x x f x f x x x →→⎡⎤=⋅=⎢⎥⎣⎦,(B )正确,但()f x 连续性未知,故(1)f 未知,其他三项均错.(2)已知()yz xyf x=,且()f u 可导,2(ln ln )z zxy y y x x y∂∂+=-∂∂,则()(A )1(1),(1)02f f '==.(B )1(1)0,(1)2f f '==.(C )1(1),(1)12f f '==.(D )(1)0,(1)1f f '==.【答案】(B ).【解析】21z z y y y y y xy x yf xyf y xf xyf x y x x x x x x ∂∂⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''+=+-++ ⎪ ⎪⎪ ⎪⎢⎥⎢⎥∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦212ln ln ()ln ,22y y y yy xyf y f f u u u x x x x x ⎛⎫⎛⎫==⇒=⇒= ⎪ ⎪⎝⎭⎝⎭1111(1)0,(1)ln 222u f f u =⎛⎫'∴==+=⎪⎝⎭,选(B ).(3)设有数列{}n x ,其中n x 满足ππ22n x -,则()(A )若lim cos(sin )n n x →∞存在,则lim n n x →∞存在.(B )若lim sin(cos )n n x →∞存在,则n n x ∞→lim 存在.(C )若)cos(sin lim n n x ∞→存在,则n n x sin lim ∞→存在,但n n x ∞→lim 不一定存在.(D )若)sin(cos lim n n x ∞→存在,则n n x cos lim ∞→存在,但n n x ∞→lim 不一定存在.【答案】(D ).【解析】取π(1)2nn x =-,则(A )、(B )、(C )均错,且(D )的“lim n n x →∞不一定存在”是正确的;(D )的“lim cos n n x →∞存在”的原因:当ππ22n x - 时,0cos 1n x ,而sin x 在[0,1]上单调,故lim cos n n x →∞存在.(4)已知110d 2(1cos )x I x x =+⎰,120ln(1)d 1cos x I x x +=+⎰,1302d 1sin xI x x=+⎰,则()(A )321I I I <<.(B )312I I I <<.(C )231I I I <<.(D )123I I I <<.【答案】(A ).【解析】令()ln(1)2x f x x =-+,111()212(1)x f x x x -'=-=++,当01x <<时,()0f x '<,所以()f x 在[0,1]上单调递减,当01x <<时()(0)0f x f <=,所以ln(1)2x x <+,ln(1)2(1cos )1cos x x x x +<++,12I I <;又01x 时,ln(1)2111cos 1cos 11sin sin 22x x x x xx x xx +<=++++ ,故23I I <,选(A ).(5)下列4个条件中,3阶矩阵A 可以相似对角化的一个充分但不必要条件为()(A )A 有3个不相等的特征值.(B )A 有3个线性无关的特征向量.(C )A 有3个两两线性无关的特征向量.(D )A 的属于不同特征值的特征向量相互正交.【答案】(A ).【解析】选项(A ):A 有3个互不相同特征值,则A 可对角化,但是A 可相似对角化,A 的特征值可能有重根,正确;选项(B ):A 有3个线性无关的特征向量是A 可对角化的充要条件;选项(C ):3个特征向量两两线性无关,不能保证整体线性无关,故不能推出A 可对角化;选项(D ):实对称矩阵不同特征值的特征向量正交,可对角化的矩阵不一定是实对称矩阵.(6)设A ,B 均为n 阶矩阵,若方程组=0Ax 与x =0B 同解,则()(A )方程组⎛⎫=⎪⎝⎭0A O y E B 只有零解.(B )方程组⎛⎫=⎪⎝⎭0EA y OAB 只有零解.(C )方程组⎛⎫=⎪⎝⎭0A B y O B 与⎛⎫=⎪⎝⎭0BA y OA 同解.(D )方程组⎛⎫=⎪⎝⎭0ABB y OA 与⎛⎫= ⎪⎝⎭0BA A y O B 同解.【答案】(C).【解析】由,A B 为n 阶实矩阵,0=Ax 与0Bx =同解,则⎛⎫==⎪⎝⎭()()A r A r B r B ,即,A B 行向量组等价.由⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 行行A B A O B A B O O B O B OA O A ,则0⎛⎫=⎪⎝⎭A B y O B 与0⎛⎫= ⎪⎝⎭A O y O B 同解,0⎛⎫=⎪⎝⎭BA y O A 与0⎛⎫= ⎪⎝⎭B O y O A 同解,令12⎛⎫= ⎪⎝⎭y y y ,12,y y 均为n 维向量,则12000⎧⎛⎫=⇔⎨⎪⎝=⎭⎩=By Ay A O y O B ,12000⎧⎛⎫=⇔⎨ ⎪⎝=⎭⎩=Ay By B O y O A .由1100==,By Ay 同解,2200==,By Ay 通解,故0⎛⎫=⎪⎝⎭A B y O B 与0⎛⎫=⎪⎝⎭BA y O A 同解.故选(C).(7)设向量组123241111111λλλλλ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,αααα,若向量组123,,ααα与412,,ααα等价,则λ可取()(A )01{,}.(B )2λλλ∈≠-R {|,}.(C )12λλλλ∈≠-≠-{|,,}R .(D )1λλλ∈≠-{|,}R .【答案】(C).【解析】记123ααα=(,,)A ,142ααα=(,,)B ,由222211λλλ==+--||()(),||()A B ,当21λλ≠-≠±,时,00≠≠,||||B A ,即3==()()r A r B ,则123,,ααα与412,,ααα均为3R 的基,故等价;当1λ=-时,33=<(),()r A r B ,故123,,ααα与412,,ααα不等价;当2λ=-时,33<=(),()r A r B ,故123,,ααα与412,,ααα不等价;当1λ=时,1===()()(,)r A r B r A B ,故123ααα,,,124ααα,,等价;故选(C).(8)设随机变量(0,3)X U ,随机变量Y 服从参数为2的泊松分布,且X 与Y 协方差为1-,则(21)D X Y -+=()(A )1.(B )5.(C )9.(D )12.【答案】(C ).【解析】(21)4()()4(,)D X Y D X D Y Cov X Y -+=+-由(0,3)X U ,2(30)3()124D X -==;(2)Y P ,()2D Y =所以(21)4()()4(,)9D X Y D X D Y Cov X Y -+=+-=,选(C ).(9)设随机变量1234,,,X X X X 独立同分布,且1X 的4阶矩存在.设1(),1,2,3,4kk E X k μ==,则由切比雪夫不等式,对于任意的0ε>,有2211n i i P X n με=⎧⎫-⎨⎬⎩⎭∑ ()(A )2422n μμε-.(B2.(C )2212n μμε-.(D2.【答案】(A ).【解析】记211n i i X Y n ==∑,显然可得2()E Y μ=;则22211()n i i D Y P X n μεε=⎧⎫-⎨⎬⎩⎭∑ ;又22422211142211111()()[()()]()n i i D Y D X D X E X E X n nn n μμ=⎛⎫===-=- ⎪⎝⎭∑所以22422211n i i P X n n μμμεε=⎧⎫--⎨⎬⎩⎭∑ ,选(A ).(10)设随机变量(0,1)X N ,在X x =条件下随机变量(,1)Y N x ,则X 与Y 的相关系数为()(A )14.(B )12.(C)3.(D)2.【答案】(D ).【解析】由题意22(),xf x x -=-∞<<+∞且2()2(),,y x Y X f y x y --=-∞<<+∞所以22()21(,)()()e ,,2x y x X Y X f x y f x f y x x y +--==-∞<<+∞π又22()22()(,)d d d d xy x E XY xyf x y x y xx yy---+∞+∞+∞+∞-∞-∞-∞-∞==⎰⎰⎰⎰222d 1xxx -+∞-∞==⎰又因为222222()2211()(,)d ed eed 22y x xyyx xy Y f y f x y x x x+---+∞+∞+∞---∞-∞-∞===ππ⎰⎰⎰222()4241eed ,2yy yx x y ----+∞-∞==-∞<<+∞π⎰故(0,2),()2Y N D Y = ;所以2XY ρ--==,选(D ).二、填空题:11~16小题,每小题5分,共30分.(11)函数22(,)2f x y x y =+在点(0,1)的最大方向导数为_______.【答案】4.【解析】(,)f x y 在某一点处的最大方向导数是其梯度的模,(0,1)(0,1)20f xx∂==∂,(0,1)(0,1)44f yy∂==∂4=.(12)2e 1x =⎰_______.【答案】4.【解析】2e 1x⎰2e1ln 2d t t t t⋅e 14ln d t t =⎰e14(ln )4t t t =-=(13)当0,0x y 时,22e x yx k y ++ 恒成立,则k 的取值范围是_______.【答案】)24e ,-⎡+∞⎣.【解析】原不等式即22()(0,0)e ,,x y k y y x x -++ 令22()(,))(0,0,e ,x y x y f x y y x -+=+ 当0,0x y >>时,直接求驻点,22()22()(2)e 0(2)e 0x y x y x y f x x y f y x y -+-+''=--==--=,,解得1x y ==,且2(1,1)2e f -=.当0x =时,2e (0()),yf y yg y -==,2()2e e 0,0y y g y y y y --'=-==或2,且2(0)0,(2)4e g g -==.当0y =时,同理解得2(0,0)0,(2,0)4e f f -==.比较可得,(,)f x y 的最大值为2(0,2)(2,0)4e f f -==.于是24e k - .(14)已知级数1!e nnxn n n-=∞∑的收敛域为(),a +∞,则a =_______.【答案】1-.【解析】令e xt -=,11!!e nx nn n n n n n t n n ∞-∞===∑∑,1(1)!11(1)!(1)e1lim lim lim 1n n nn n n nn n n n n n n n +→∞→∞→∞++===+⎛⎫+ ⎪⎝⎭,于是1!n nnn t n =∞∑的收敛区间为e e t -<<,那么e e e x--<<,解得1x >-,于是1a =-.(15)已知矩阵A 和-E A 可逆,其中E 为单位矩阵,若矩阵B 满足1---=(())E E A B A ,则-=_____B A .【答案】-E .【解析】由1---=(())E E A B A ⇒1----=()()E A E A E B A⇒2-=-AB A A ⇒-=-B E A ⇒-=-B A E .(16)设,,A B C 随机事件,且A 与B 互不相容,A 与C 互不相容,B 与C 相互独立.若1()()()3P A P B P C ===,则()P B C A B C =【答案】58.【解析】因为B 与C 相互独立,有)()()(C P B P BC P ==111339= .又因A 与B 互不相容,A 与C 互不相容,有()()()0P AB P AC P ABC ===.[()()]()(|)()()P B C A B C P B C P B C A B C P A B C P A B C ==()()()()()()()()()()P B P C P BC P A P B P C P AB P BC P AC P ABC +-=++---+1115339111180003339+-==++---+.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设函数()y x是微分方程2y y '=+的满足()13y =的解,求曲线()y y x =的渐近线.【答案】斜渐近线2y x =.【解析】(e2ed xxy x C -⎡⎤=++⎢⎥⎢⎥⎣⎦⎰2e x C =+.将()13y =代入可得e C =,即()12e0y x x =+>.由函数解析式可知,曲线没有垂直渐近线;又由于()(12e lim lim x x y x x →+∞→+∞+==+∞,曲线没有水平渐近线;又()1limlim 2e 2x x y x k xx x→+∞→+∞=+==,()()1lim lim 20e 2x x b y x kx x x →+∞→+∞=-==⎡⎤⎣⎦+-,故曲线有斜渐近线2y x =.(18)(本题满分12分)已知平面区域{}(,)22D x y y x y =- ,计算222()d d Dx y I x y x y -=+⎰⎰.【答案】2(π1)-.【解析】将积分区域D 分为两部分12D D D =+,其中:1{(,)2,20,02}D x y y x x y =+- ,222{(,)4,0,0}D x y x y x y =+ ,故1222122222()()d d d d =+D D x y x y I x y x y I I x y x y --=+++⎰⎰⎰⎰记.其中:()()()2ππ22sin cos ππ12222=d cos sin d cos sin d πsin cos I r r θθθθθθθθθθ-⋅-=-⋅=-⎰⎰⎰,()()()πππ22222220=d cos sin d 2cos sin d 21sin 2d π2I r r θθθθθθθθ⋅-=-=-=-⎰⎰⎰⎰---故:()π2π2π1I =-+=-.(19)(本题满分12分)L 是曲面∑:22241x y z ++=,0,0,0x y z 的边界,曲面方向朝上,已知曲线L 的方向和曲面的方向符合右手法则,求()()22cos d 2d 2sin d LI yzz x xz y xyz x z z=-+++⎰ 【答案】0.【解析】由斯托克斯公式可得:()222d d d d d d 2d d d d cos 22sin y zz x x yI xz y z z x yx y z yz zxz xyz x z∑∑∂∂∂==-+∂∂∂-+⎰⎰⎰⎰令1∑:2241,0,0x y x y + ,指向z 轴负向,2∑:2241,0,0x z x z + ,指向y 轴负向,3∑:221,0,0y z y z + ,指向x 轴负向,则()()1231222d d d d 2d d d d I xz y z z x y xz y z z x y ∑+∑+∑+∑∑=-+--+⎰⎰⎰⎰ ()()23222d d d d 2d d d d xz y z z x y xz y z z x y ∑∑--+--+⎰⎰⎰⎰(22)d d d 0000z z x y z Ω=----=⎰⎰⎰.(20)(本题满分12分)设()f x 在()-∞+∞,有二阶连续导数,证明:0()f x '' 的充要条件为对不同实数,a b ()1(d 2b a a b f f x x b a+-⎰ .【证明】()21()()()((22222a b a b a b a b f x f f x f x ξ++++'''=+-+-,ξ介于x 与2a b+之间,()21()d (()(()d 22222bbaa a ba b a b a b f x x f f x f x xξ++++⎡⎤'''=+-+-⎢⎥⎣⎦⎰⎰()21()(d 222b a a b a b f b a f x xξ++⎡⎤''=-+-⎢⎥⎣⎦⎰必要性:若()0f x '' ,则()0f ξ'' ,有()d (()2baf x x a b f b a +-⎰ .充分性:若存在0x 使得0()0f x ''<,因为()f x 有二阶连续导数,故存在0δ>使得()f x ''在[]00,x x δδ-+内恒小于零,记00,a x b x δδ=-=+,此时()21()d ()()()d 222bb aa ab a b f x x f b a f x xξ++⎡⎤''=-+-⎢⎥⎣⎦⎰⎰()()2a bf b a +<-,矛盾!故()0f x '' .综上,充分性必要性均得证.(21)(本题满分12分)已知二次型3312311(,,)iji j f x x x ij x x===⋅∑∑.(1)写出123(,,)f x x x 对应的矩阵;(2)求正交变换x =Qy ,将123(,,)f x x x 化为标准形;(3)求123(,,)0f x x x =的解.【答案】(1)123246369⎛⎫ ⎪⎪ ⎪⎝⎭;(2)令正交矩阵0⎛⎝Q =,利用正交变换x =Qy ,化为标准形2314f y =;(3)12231605c c --⎛⎫⎛⎫ ⎪ ⎪=+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭x ,(12,c c 为任意常数)【解析】(1)3312311(,,)iji j f x x x ij x x===⋅∑∑22211213212233132323246369x x x x x x x x x x x x x x x =++++++++222123121323494612x x x x x x x x x =+++++112323123(,,)246369x x x x x x ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭.(2)123246369----=------E A λλλλ2(14)0=-=λλ得1230,14===λλλ;1230000000r⎛⎫ ⎪-−−→ ⎪ ⎪⎝⎭E A ,解得12231,001αα--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;153********r-⎛⎫ ⎪-−−→- ⎪ ⎪⎝⎭E A ,解得3123α⎛⎫ ⎪= ⎪ ⎪⎝⎭;将12,αα进行施密特正交化可得211221123(,)11,6(,)505αβββαβββ--⎛⎫⎛⎫⎪⎪==-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;将123(,,)ββα单位化,可得123,,,0γγγ⎛⎛⎪=== ⎪⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭令正交矩阵0⎛⎝Q =,利用正交变换x =Qy ,将123(,,)f x x x 化为标准形2314f y =;(3)令21233(,,)140f x x x y ==,则112230y k y k y =⎧⎪=⎨⎪=⎩,12kk⎛⎛⎫⎪⎪⎪⎝⎭⎝x=Qy=1212231605k k c c⎛⎛---⎛⎫⎛⎫⎪ ⎪ ⎪=+-=+-⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎪ ⎪⎝⎭⎝⎭,(12,c c为任意常数)(22)(本题满分12分)设12,,,nX X X来自均值为θ的指数分布总体的简单随机样本,设12,,,mY Y Y来自均值为2θ的指数分布总体的简单随机样本,且两样本相互独立,其中()0θθ>为未知数,利用样本1212,,,,,,,n mX X X Y Y Y,求θ的最大似然估计量θ∧,并求()Dθ∧.【答案】(1)1122ˆ2()2()θ==++==++∑∑n mi ji jX YnX mYm n m n;(2)2m nθ+.【解析】(1)由题意知12,,,nX X X的总体X服从1Eθ⎛⎫⎪⎝⎭,12,,,mY Y Y的总体Y服从12θ⎛⎫⎪⎝⎭E,从而X的概率密度为1e,0,()0,其他.θθ-⎧>⎪=⎨⎪⎩xXxf x,Y的概率密度为21e,0,()20,其他.θθ-⎧>⎪=⎨⎪⎩yYyf y构造最大似然函数为()1111211e e(2)θθθθθ==--∑∑=⋅mnjijiyxn mL,()1111ln ln ln(2)2θθθθθ===----∑∑n mi ji jL n x m y()2211d ln 110d 2θθθθθθ===-+-+=∑∑n mi j i j L n m x y 1122ˆ2()2()θ==++==++∑∑nmi ji j X Y nX mYm n m n (2)221ˆ()(2)2()4()nX mY D D D nX mY m n m n θ⎡⎤+==+⎢++⎣⎦;2222222221144()()44()4()n D X m D Y n m m n m n n m m nθθθ⎡⎤⎡⎤=+=⋅+⋅=⎢⎥⎣⎦+++⎣⎦。
初中一年级数学上册解方程专项训练题(925)

初中一年级数学上册解方程专项训练题(925)好的,以下是针对初中一年级数学上册解方程专项训练题的内容:1. 基础训练题- 题目1:解方程 \(x + 3 = 7\)。
- 题目2:解方程 \(2x - 5 = 1\)。
- 题目3:解方程 \(3x = 12\)。
- 题目4:解方程 \(4x + 8 = 20\)。
- 题目5:解方程 \(5x - 10 = 15\)。
2. 进阶训练题- 题目6:解方程 \(x + 2x = 9\)。
- 题目7:解方程 \(3x - 2(2x - 1) = 7\)。
- 题目8:解方程 \(2x + 3 = 5x - 3\)。
- 题目9:解方程 \(\frac{1}{2}x + 4 = 3x - 2\)。
- 题目10:解方程 \(2(x - 3) = 3(x + 1)\)。
3. 应用题- 题目11:小明有10元钱,他买了3支铅笔,每支铅笔的价格是x元,然后他用剩下的钱买了5本练习本,每本练习本的价格是0.5元。
如果小明的钱正好用完,请你求出每支铅笔的价格。
- 题目12:一个长方形的长是宽的两倍,且周长为20米。
设长方形的宽为x米,求出长方形的长和宽各是多少。
- 题目13:一个农场主有100只鸡和鸭,鸡的数量是鸭的三倍。
设鸭的数量为x,求出鸡和鸭各有多少只。
- 题目14:小华和小李一共有50本书,小华的书是小李的两倍。
如果小李有x本书,那么小华和小李各有多少本书?- 题目15:一个工厂生产了x个零件,其中次品率为5%,合格产品的数量是95个。
求出工厂一共生产了多少个零件。
4. 挑战题- 题目16:解方程 \(x^2 - 6x + 9 = 0\)。
- 题目17:解方程 \(2x^2 - 5x + 2 = 0\)。
- 题目18:解方程 \(x^2 - 4x - 5 = 0\)。
- 题目19:解方程 \(3x^2 - 12x + 12 = 0\)。
- 题目20:解方程 \(x^2 + 2x - 8 = 0\)。
2016考研数一真题解析

⎨ ⎨⎨ ⎨ ⎩ ⎩ 2016 全国研究生入学考试考研数学一解析本试卷满分 150,考试时间 180 分钟一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答.题.纸.指定位置上.(1) 若反常积分+∞1 0x a(1+ x )bdx 收敛,则( )( A ) a < 1且b > 1 【答案】: (C )( B ) a > 1且b > 1(C ) a < 1且a + b > 1 (D ) a > 1且a + b > 11【解析】:注意到x a在 x = 0 为瑕积分,在 x =∞ 为无穷限反常积分,1(1+ x )b仅在 x =∞ 为无穷限反常积分,所以a < 1, a + b > 1(2) 已知函数 f (x ) =⎧2( x -1), x < 1 ,则 f (x ) 一个原函数是( ) ⎨ln x , x ≥ 1⎧ 2( A ) F ( x ) = ⎧⎪( x -1)2 , x < 1( B ) F (x )= ⎪(x -1) , x < 1 ⎪⎩x (ln x -1), x ≥ 1⎪ x (ln x +1)-1, x ≥ 1(C ) F ( x ) = ⎧⎪( x -1)2 , x < 1(D ) F ( x ) = ⎧⎪( x -1)2 , x < 1⎪⎩x (ln x +1) +1, x ≥ 1【答案】: ( D )⎪⎩x (ln x -1) +1, x ≥ 1【解析】:由于原函数一定是连续,可知函数 F ( x ) 在 x = 1 连续,而( A ) 、( B ) 、(C ) 中的函数在 x = 1 处均不连续,故选( D ) 。
(3)若 y = (1+ x2 )2-则q ( x) =( ) y = (1+ x 2 )2+ y ' + p (x ) y = q (x ) 两个解,( A )3x (1+ x 2 ) (B ) - 3x (1+ x 2 )(C )x1+ x 2(D ) -x 1+ x 2⎰【答案】: ( A ) 【解析】:分别将 y = (1+ x2 )2-,y = (1+ x 2 )2+带入微分方程 y ' + p (x ) y = q (x ), 两式做差,可得 p ( x ) =- x . 两式做和,并且将 p ( x ) =- x带入,可得 q (x ) = 3x (1+ x 2 )1+ x 2 ⎧ x , x ≤ 01+ x 2 (4)已知函数 f (x ) = ⎪ 1 1 1 ,n = 1, 2, ( ) ⎨ ,⎩ n n +1 < x ≤ n(A ) x = 0 是 f ( x ) 第一类间断点(B ) x = 0 是 f ( x ) 第二类间断点(C ) f ( x ) 在 x = 0 处连续但不可导(D ) f ( x ) 在 x = 0 处可导【答案】: ( D ) 【解析】: f '(x ) = limf ( x ) - f (0)= lim x= 1 -x →0-x - 0x →0-xf ' (x ) = limf ( x ) - f (0)= lim f ( x ) 。
2017考研数学一试题及答案解析.doc

2017 考研数学一答案及解析一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求,请将所选项前的字母填在答题纸指定位置上。
1 cos x(1)若函数f (x) ax , x 0 在 x 0 连续,则()。
b, x 0A.1 ab2B.1 ab2C. ab0D. ab 2 【答案】 A 【解析】由连续的定义可得limx 0- f (x) limx 0+f (x) f (0) ,而1 cos x 1( x )21 1lim+ f (x) lim+ lim+ 2 , lim - f ( x) b ,因此可得 b ,故选x 0 x 0ax x 0 ax 2a x 0 2a择 A。
(2)设函数f ( x)可导,且f ( x) f '( x) 0 ,则()。
A. f (1) f ( 1)B. f (1) f ( 1)C. | f (1) | | f ( 1)D. | f (1) | | f ( 1)【答案】 C【解析】令 F (x) f 2 ( x) ,则有 F '( x) 2 f ( x) f '(x) ,故 F ( x) 单调递增,则 F (1) F( 1),即 [ f (1)]2 [ f ( 1)]2,即 | f (1)| | f ( 1) ,故选择C。
(3)函数 f (x, y, z) x 2 y z 2 在点 (1,2,0) r处沿向量 n (1,2,0) 的方向导数为( )。
A.12B.6C.4D.2【答案】 D【 解 析 】 gradf{2 xy, x 2 , 2z} , 因 此 代 入 (1,2,0) 可 得 gradf |(1,2,0) {4,1,0} , 则 有f grad u{4,1,0}{ 1 , 2 , 2} 2 。
u| u | 3 3 3(4)甲乙两人赛跑,计时开始时,甲在乙前方 10(单位: m )处,图中,实线表示甲的速度曲线 vv 1 (t ) (单位: m/s ),虚线表示乙的速度曲线 v v 2 (t) ,三块阴影部分面积的数值依次为 10,20, 3,计时开始后乙追上甲的时刻记为t 0 (单位: s ),则( )。
搜索入门练习题1素数环题解

搜索⼊门练习题1素数环题解题⽬出处:《信息学奥赛⼀本通》例5.1。
题⽬描述素数环:从 1 到n(2≤n≤20) 这n个数摆成⼀个环,要求相邻的两个数的和是⼀个素数。
输⼊格式输⼊包含⼀个整数n(2≤n≤20) 。
输出格式按字典序从⼩到⼤的顺序输出所有排列⽅案,每个排列⽅案占⼀⾏。
每⾏的n个数之间由⼀个空格分隔。
样例输⼊2样例输出1 22 1问题分析很明显,这是⼀道可以⽤搜索解决的问题,我们可以采⽤“回溯”思想,使⽤深度优先搜索解决这个问题。
我们⽤ans[]数组来存放我们当前遍历到的答案,ans[id]⽤于表⽰当前排列的第 id 个数是什么。
所以我们可以开⼀个函数void f(int id)来表⽰要在第 id 个位置放数,我只需要从 1 到 n 遍历每⼀个数(我这⾥假设是 i),并判断 i 是否能放。
在第 id 个位置能放 i 当且仅当:ans[1] 到ans[id−1] 都不等于i,即i之前没有放过;当id>1 时,满⾜ans[id−1]+ans[id] 是素数;当id=n时,满⾜ans[1]+ans[n] 是素数。
这样,我们递归地调⽤f(id),当id>n时就是我们递归的边界条件;⼀旦id>n就说明我找到了⼀种⽅案。
实现代码如下:#include<bits/stdc++.h>using namespace std;int ans[22], n;bool isp(int a) { // 判断a是否是素数if (a < 2) return false;for (int i = 2; i * i <= a; i ++) if (a%i==0) return false;return true;}void output() { // 输出⼀种排列⽅案for (int i = 1; i <= n; i ++)cout << (i>1 ? " " : "") << ans[i];cout << endl;}void f(int id) { // 搜索函数,在第id个位置尝试放上⼀个数if (id > n) { // 边界条件if (isp(ans[1]+ans[n])) output();return;}for (int i = 1; i <= n; i ++) { // 遍历i = 1 to n ,看看第id个位置能否放ibool flag = true;if (id > 1 && !isp(ans[id-1]+i)) flag = false;if (flag) {for (int j = 1; j < id; j ++)if (ans[j] == i) {flag = false;break;}}if (flag) {ans[id] = i;f(id+1);}}}int main() {cin >> n;f(1);return 0;}Processing math: 100%。
解一元一次方程实际问题专项练习题

解一元一次方程实际问题专项练习题
在解一元一次方程时,我们常常会遇到一些实际问题。
这些问题可以通过建立方程并解方程来求解。
下面是一些解一元一次方程实际问题的专项练题。
1. 题目一
一个长方形的宽度是长度的一半,周长为30米。
求长方形的长度和宽度。
解答
设长方形的长度为x,则宽度为x/2。
根据周长的定义,可以得到方程:
2(x + x/2) = 30
简化该方程可得:
2x + x = 30
合并同类项后得到:
3x = 30
解方程可以得到长方形的长度:
x = 10
将x的值代入宽度的方程,可以得到长方形的宽度:x/2 = 10/2 = 5
因此,该长方形的长度为10米,宽度为5米。
2. 题目二
一个有两个水桶,一个大桶和一个小桶。
大桶比小桶多装10
升水。
如果将小桶里的水倒入到大桶里,大桶就比小桶多装2升水。
求大桶和小桶分别能装多少升水。
解答
设小桶能装的水量为x升,则大桶能装的水量为x +10升。
根
据题目要求,可以得到方程:
(x + 2) - x = 10
简化该方程可得:
2 = 10
该方程没有解。
根据题意可知,出现这种情况是不可能的。
因此,该题无解。
以上是解一元一次方程实际问题的专项练题。
通过建立方程并解方程,我们可以求解实际问题中的未知数,解决实际生活中的各种应用问题。
*注意:本文档仅供参考,请勿引用未经证实的内容。
*。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑴将文中所有"奥林匹克运动会"替换为"奥运会";
在页面底端按照"普通数字2"样式插入"I, II, III, ……"格式的页码,起始页码设置为"IV";
为页面添加"方框"型0.75磅、红色(标准色)、双窄线边框;设置页面颜色的填充效果
样式为"纹理/蓝色面巾纸"。
⑵将标题段文字("伦敦奥运会绚烂落幕")设置为二号、深红色(标准色)、黑体、
加粗、居中、段后间距1行,并设置文字效果的"发光和柔化边缘"样式为"预设/发光变体/
橄榄色,11pt发光,强调文字颜色3"。
⑶将正文各段落("新华社……里约热内卢。
")设置为1.3倍行距;将正文第一段("新华社……在伦敦闭幕。
")
起始处的文字"新华社2012年8月14日电"设置为黑体;设置正文第一段首字下沉2行,距
正文0.3厘米;设置正文第二段("昨晨……掌声不息。
")首行缩进2字符;为正文其余段落
(在闭幕式……里约热内卢。
")添加项目符号"◆"。
⑷将文中表格列宽设置为2.3厘米、行高设置为0.7厘米;设置表格居中,表格所有文字水平居中;在"总数"列分别计算各国奖牌总数(总数 = 金牌数+银牌数+铜牌数)
⑸设置表格外框线、第一行与第二行之间的表格线为0.75磅红色(标准色)双窄线,其余表格框线为0.75磅红色(标准色)单实线;为表格第一行添加橙色(标准色)底纹。