《对数函数的概念》《对数函数的图象和性质》指数函数与对数函数PPT

合集下载

人教A版高中数学必修1课件:2.2.2《对数函数及其性质》课件

人教A版高中数学必修1课件:2.2.2《对数函数及其性质》课件

练习:(1)y log a (9 x 2 ) (2)y log (2 x1) (3 x 2)
3y
log
7
1 1 3x
4y loga 4 x
小结: 1.对数函数的概念. 2.对数函数的定义域. 3.对数函数的图象及其性质,通过对a分类讨 论掌握其性质与图象.
练习:已知函数 f(x)=log2 (2x-1)
即已知y求x的问题。
yx=log2xy
对数函数:
一般地,我们把函数 y log a xa 叫0做且对a数函1
数,其中x是自变量,函数的定义域是(0,+∞).
注意:①对数函数的定义与指数函数类似,都是情势定义,
注意辨别.如:y 2 log 2 x,
能称其为对数型函数.
y l都og不2 是52 对x 数函数,而只
a>1
0<a<1

y
y

o (1, 0)
(1, 0) xo
x
(1) 定义域: (0,+∞)
性 (2) 值域:R
(3) 过点(1,0), 即x=1 时, y=0
(4) 0<x<1时, y<0;
(4) 0<x<1时, y>0;

x>1时, y>0
x>1时, y<0
(5) 在(0,+∞)上是增函数 (5)在(0,+∞)上是减函数
0 1 23 4
连 -1 线 -2
2 4… 1 2…
x
x … 1/4 1/2
列 表
y
y
log 2
log 1
x…
x…
2
-2 2

人教A版高中数学必修一 《指数函数》指数函数与对数函数PPT(第1课时指数函数的概念、图象及性质)

人教A版高中数学必修一 《指数函数》指数函数与对数函数PPT(第1课时指数函数的概念、图象及性质)
解析:选 C.函数 y=ax-a(a>0,且 a≠1)的图象恒过点(1,0), 故可排除选项 A,B,D.
5.求下列函数的定义域和值域: (1)y=2x-1 4;(2)y=23 -|x|.
解:(1)要使函数有意义,则 x-4≠0,解得 x≠4.
1
所以函数 y=2x-4的定义域为{x|x≠4}. 因为x-1 4≠0,所以 2x-1 4≠1,即函数 y=2x-1 4的值域为{y|y>0,且 y≠1}.
(2)要使函数有意义,则-|x|≥0,解得 x=0. 所以函数 y=23 -|x|的定义域为{x|x=0}. 因为 x=0,所以23 -|x|=230=1,即函数 y=23 -|x|的值域为{y|y= 1}.
本部分内容讲解结束
问题导学 预习教材 P111-P118,并思考以下问题: 1.指数函数的概念是什么? 2.结合指数函数的图象,分别指出指数函数 y=ax(a>1)和 y= ax(0<a<1)的定义域、值域和单调性各是什么?
1.指数函数的概念 一般地,函数 y=__a_x__ (a>0,且 a≠1)叫做指数函数,其中 x 是____自_变__量___.
指数函数的图象
根据函数 f(x)=12x的图象,画出函数 g(x)=12|x|的图象, 并借助图象,写出这个函数的一些重要性质.
【解】
g(x)=12|x
|=12x(x≥0),其图象如图. 2x(x<0),
由图象可知,函数 g(x)的定义域为 R,值域是(0,1], 图象关于 y 轴对称,单调递增区间是(-∞,0], 单调递减区间是(0,+∞).
■名师点拨 指数函数解析式的 3 个特征
(1)底数 a 为大于 0 且不等于 1 的常数. (2)自变量 x 的位置在指数上,且 x 的系数是 1. (3)ax 的系数是 1.

《对数函数的概念》《对数函数的图象和性质》指数函数与对数函数PPT

《对数函数的概念》《对数函数的图象和性质》指数函数与对数函数PPT

-1
2
2
1
化简可得 ≤x2≤2.
2
再由 x>0 可得 2≤x≤
2
2
答案:(1)A (2)
, 2
2
2
2
2
1
,
2,故函数 f(x)的定义域为
2
,
2
2 .
课堂篇
探究学习
探究一
探究二
探究三
探究四
探究五
思想方法
随堂演练
反思感悟 定义域问题注意事项
(1)要遵循以前已学习过的求定义域的方法,如分式分母不为零,
偶次根式被开方式大于或等于零等.
a>1
0<a<1
图象


定义域
值域
过定点
单调性
奇偶性
(0,+∞)
R
(1,0),即当 x=1 时,y=0
在(0,+∞)
在(0,+∞)
上是增函数
上是减函数
非奇非偶函数
课前篇
自主预习



3.做一做
(1)若函数y=logax的图象如图所示,则a的值可能是 (
)
A.0.5 B.2
C.e D.π
(2)下列函数中,在区间(0,+∞)内
.
2 -2-8 = 0,
解析:(1)由题意可知 + 1 > 0, 解得 a=4.
+ 1 ≠ 1,
(2)设对数函数为f(x)=logax(a>0,且a≠1).
则由题意可得f(8)=-3,即loga8=-3,
所以
a-3=8,即
1
3
-

4.2.3 对数函数的性质与图像(对数函数的性质与图像)课件高一数学(人教B版2019必修第二册)

4.2.3 对数函数的性质与图像(对数函数的性质与图像)课件高一数学(人教B版2019必修第二册)

值域
值域为 R
过定点
过定点(1,0),即 x=1 时,y=0

当 0<x<1 时,y<0, 函数值的变化
当 0<x<1 时,y>0,

当 x>1 时,y>0
当 x>1 时,y<0
单调性
增函数
减函数
对称性
的图象关于 轴对称
即时训练 知识点二:对数函数图象与性质
【典例】如图所示,四条曲线分别是:y=logax,y=logbx, y=logcx,y=logdx 的图像,则 a、b、c、d 与 0、1 的大小 关系是________.
可以看出,
中, 不能是-1,也不能是 0 .
事实上,根据对数运算的定义和性质,我们可以得到对数
函数
的性质:
(1)定义域是:
1248
(2)值域是: (3)奇偶性是:非奇非偶函数
-3 -2 -1 0 1 2 3
(4)单调性是:在
上单调递增
新知探索 知识点二:对数函数图象与性质
根据以上信息可知,函数
的图像都在 轴右侧,
课堂练习
3x,x≤0,
【 训 练 5 】 已 知 函 数 f(x) = log3x,x>0, 则 f(f( - 1)) =
________;若 f(f(x))=x,则 x 的取值范围是________.
【解析】f(-1)=3-1>0,故 f(f(-1))=f(3-1)=log33-1=- 1.当 x≤0 时,f(x)=3x>0,f(f(x))=f(3x)=log33x=x; 当 0<x<1 时,f(x)=log3 x<0,f(f(x))=f(log3x)=3log3x=x; 当 x=1 时,f(x)=log31=0,f(f(x))=f(0)=30=1; 当 x>1 时,f(x)=log3x>0,f(f(x))=log3(log3x)≠x,故使 f(f(x)) =x 的 x 的取值范围是(-∞,1].

4.4.2对数函数的图像与性质课件(人教版)

4.4.2对数函数的图像与性质课件(人教版)
对数函数图像特征及性质
2.本节课用到哪些数学思想方法
(1)数形结合:由解析式到图象(由数到形,以形读数)
图象到性质(由形到数,以数观形)
(2)分类整合:底数的两个范围对函数性质的影响
(3)类比思想:通过研究指数函数方法类比得出
对数函数的性质
六、作业布置
1.函数y = log2x, y=log5x, y = lgx的图象如图所示,
a
二、新知探究
(二)探究对数函数的性质
4.视察底数a的变化对数函数的影响,总结一般特征
(1)请同学们视察这些函数图像的位置、公共点、
变化趋势,它们有哪些共性?有哪些不同?
共同点:1. 这些函数图像都在由右侧,并且都过(1,0).
2.这些函数定义域均为(0, +∞)、值域均为R.
差异点:1.当a>1时,图像从左至右逐步上升,并且
而1.8 < 2.7,∴0.3 1.8 > 0.3 2.7.
三、例题精讲
例1:比较下列各题中两个值的大小
(1)log23.4,log28.5;
(2)log0.31.8,log0.32.7;
(3)loga5.1,loga5.9(a>0,且a≠1).
(4)log3.55,log4.55.
解:(3)∵ =
∴当 > 1时, = 在定义域上单调递增
而5.1 < 5.9,∴ 5.1 < 5.9 .
当0 < < 1时, = 在定义域上单调递减
而5.1 < 5.9,∴ 5.1 > 5.9 .
三、例题精讲
例1:比较下列各题中两个值的大小
(1)log23.4,log28.5;

对数函数的图象和性质课件完美版PPT

对数函数的图象和性质课件完美版PPT

问题深入
• 式中的x是否对应唯一的实 数y?
• y是不是关于x的函数?
一.对数函数的定义
非奇非偶
由对数定义知: y=log2x。
3、根据指数函数的图像指出它的性质。
1、什么叫指数函数?它的定义域和值域是什么? 它的图像必经过哪一点?
形如 yloxg (a0 且 a1 ) 1、什么叫指数函数?它的定义域和值域是什么? 它的图像必经过哪一点?
三.对数函数的性质
大 致 图 形
定义域
值域 定点 奇偶性
y
yloga x(a>1)
01
x
yloga x
(0<a<1)
0,
R
(1,0)
非奇非偶

y
y

yloga x

01
x

a>1
01
x
yloga x
0<a<1
单调性 y=logax在〔0, y=logax在〔0,+ 〕
+ 〕上单调递增。 上单调递减。
y y y y y y y yy
yloga x(a>1)
0 0 1 0 1 0 1 0 1 x0 1 x0 1 0x 1 0 x1 x1 x x x x
yylogayloxgayloxgyaloxgylaoxgayloxgyaloxyglaoxlgaoxga x
(0<(a<01<()a<01<()a<01(<)a0<<1(a)<01<()a<01(<)a0<(<1a)0<<1那么y<0
式中的x是否对应唯一的实数y?

人教版高中数学必修1《对数函数的图像与性质》PPT课件

 人教版高中数学必修1《对数函数的图像与性质》PPT课件
液的酸性就越强.
新知运用
例 3 溶 液 酸 碱 度 是 通 过 pH 计 量 的 .pH 的 计 算 式
pH=− + ,其中 + 表示溶液中氢离子的浓度,单位是
摩尔/升.
(2)已知纯净水中氢离子的浓度为 + = − 摩尔/升,
计算纯净水的 pH 值;
【解析】 = −− = ,所以纯净水的 pH 值
反思总结
1.思想方法:
(1)数形结合:由解析式到图象(由数到形,以形读数),
由图象到性质(由形到数,以数观形);
(2)分类整合:底数的两个范围对单调性的影响.
2.知识联系:指、对不分家!指数函数与对数函数不仅在概念、
图象与性质上有联系,在解决问题的类型上也有联系,所以
要将两者作为一个整体学习与应用.
所以. < − + < . ,即−. < + < −. ,
所以−. < + < −. ,
所以−. < + < −. ,
所以这种饮用水中氢离子的浓度范围是−. < + <
−. (单位:摩尔/升).
x 0.5 1
log2x −
2

(2)描点画图.
3
1.6
4

5
6
7
2.3 2.6 2.8
8

新知探求
2.画函数 = 的图象.

由换底公式得 = Байду номын сангаас =





= − ,所以
函数 = 的图象与 = 的图象关于

《对数函数》指数函数与对数函数PPT教学课件(第2课时对数函数及其性质的应用)

《对数函数》指数函数与对数函数PPT教学课件(第2课时对数函数及其性质的应用)

解下列不等式:
(1)log1x>log1(4-x);
7
7
(2)logx12>1;
(3)loga(2x-5)>loga(x-1).
栏目 导引
【解】
(1)由题意可得4x->x0>,0, x<4-x,
解得 0<x<2.
所以原不等式的解集为(0,2).
(2)当 x>1 时,logx12>1=logxx,
解得 x<12,此时不等式无解.
栏目 导引
第四章 指数函数与对数函数
2.已知 a=30.5,b=log312,c=log32,则(
)
A.a>c>b
B.a>b>c
C.c>a>b
D.b>a>cog312<0,0<c=log32<1,所以
a>c>b.
栏目 导引
解对数不等式
第四章 指数函数与对数函数
栏目 导引
第四章 指数函数与对数函数
与对数函数有关的值域与最值问题 已知函数 f(x)=loga(1+x)+loga(3-x)(a>0,且 a≠1). (1)求函数 f(x)的定义域; (2)若函数 f(x)的最小值为-2,求实数 a 的值.
栏目 导引
【解】
第四章 指数函数与对数函数
(1)由题意得31-+xx>>00,,解得-1<x<3.
栏目 导引
第四章 指数函数与对数函数
(3)因为 0>log0.23>log0.24, 所以 1 < 1 ,
log0.23 log0.24 即 log30.2<log40.2. (4)因为函数 y=log3x 是增函数,且 π>3,所以 log3π>log33=1, 同理,1=logππ>logπ3,即 log3π>logπ3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档