射流泵理论与技术
射流泵理论与技术

射流泵技术的理论及应用1. 前言射流泵是一种流体机械,它是以一种利用工作流体的射流来输送流体的设备。
根据工作流体介质和被输送流体介质的性质是液体还是气体,而分别称为喷射器、引射器、射流泵等不同名称,但其工作原理和结构式基本相同。
通常把工作液体和被抽送液体是同一种液体的设备称为射流泵。
我国从五十年代初开始对射流泵进行研究,最初通过引进国外的射流泵及样机在生产中应用,后来一些科研机构,高等学校考试进行研究和设计工作。
1958年,淮北煤矿建井公司采用射流泵开排水。
1961—1964年,中国农业机械化研究院结合华北地区深井提水需要设计研制了SLB系列射流泵。
1960年以来,我国著名学者陆宏圻教授运用立体留学和紊流射流泵理论研究了射流泵的基本性能方程、、汽蚀方程、装置性能方程、最有参数方程等,并在1989年比较全面给出了各种射流泵的设计理论和设计方法,出版了《射流泵技术的理论与应用》,为以后的研究工作奠定了坚实的基础。
江苏大学李传君等对废气射流装置工作原理进行了分析,提出了采用单相气体等熵流动理论来设计和计算射流装置的主要工作参数,结果和理论值本吻合,为该类型的射流装置的设计提供了良好好的依据。
沙洲工学院张防一基于平面势流理论,对混凝土射流泵装置的主要参数进行了理论设计,并根据射流泵装置内固液两相混合流动的特殊情况,提出了一套新的设计方法。
1995年,高传昌采用不同VI径的喷嘴、面积比、喉嘴距和脉冲频率等几何参数和工作参数对气液活塞式脉冲射流泵进行了探索试验,初步掌握了装置运行的稳定条件。
1999年,段新胜和孙孝庆进行了大量性试验,通过对比环形多喷嘴射流泵,得出结论:合理设计环形多喷嘴射流泵的各结构参数可显著改善射流泵的工作性能的;喷嘴安装角和喉嘴距决定着高速射流是否会产生附壁流动,它们应同时取较大值或较小值,但喷嘴安装角在任何情况下都不能太小;其喉管进口角不应超过45度;喉管长度与直径的比值L/d3可比中心射流泵小,t>3.5即可;喷嘴个数并不是越多越好,一般≤6;2003年,康宏琳对非恒定射流泵的时均性能进行了数值计算,2006年,尚华对脉冲液体射流泵的性能进行了数值计算,两者的结果均证明了脉冲射流能提高射流泵的效率。
射流泵工作原理

射流泵工作原理
射流泵是一种利用流体动能进行输送的泵,其工作原理基于质量守恒和动量守
恒定律。
射流泵通常由喷嘴、扩散管和抽水管组成。
当液体或气体通过喷嘴的狭窄通道流动时,流体的动能会增加,压力会降低,使得流体在喷嘴口处产生高速射流。
这个高速射流会通过扩散管,将动能转化为压力能,从而产生负压,吸引外部流体进入抽水管,最终实现流体的输送。
射流泵的工作原理可以用流体动力学的理论来解释。
根据质量守恒定律,流体
在喷嘴口处的速度增加,而密度保持不变,因此流体的质量流量也会增加。
根据动量守恒定律,流体在喷嘴口处的动量增加,而压力会降低。
这就是为什么喷嘴口处会产生高速射流的原因。
当高速射流通过扩散管时,流体会受到扩散管壁的限制而扩散,从而使流体的
速度减小,压力增加。
这个过程就是动能转化为压力能的过程。
最终在抽水管口处形成负压,吸引外部流体进入抽水管,完成了流体的输送过程。
射流泵的工作原理简单、结构紧凑、无需机械传动,因此具有体积小、重量轻、维护方便等优点。
它可以用于输送各种液体和气体,广泛应用于化工、石油、冶金、环保等领域。
总的来说,射流泵的工作原理是利用喷嘴产生的高速射流通过扩散管将动能转
化为压力能,产生负压吸引外部流体进入抽水管,实现流体的输送。
这种原理使得射流泵在一些特定的场合具有独特的优势,是一种值得推广和应用的泵类设备。
射流泵的工作原理介绍

射流泵的工作原理介绍射流泵是一种流体机械设备,通过射流原理将高速流体能转换为静压能,从而提供压力和输送流体。
它具有结构简单、体积小、重量轻、维护方便等优点,在工业领域应用广泛。
本文将介绍射流泵的工作原理和基本组成结构。
一、工作原理射流泵的工作原理基于贝努利方程和连续性方程。
当高速流体从射流泵的喷口喷出时,由于喷口处速度增加而压力下降。
同时,喷出的高速流体通过与待泵流体混合,将其动能转移给待泵流体,从而提高其压力。
射流泵的工作原理可简化为以下几个步骤:1. 高速液体通过喷口喷出,形成高速喷流;2. 高速喷流与待泵液体混合,将动能转移给待泵液体;3. 转移后的动能转化为压力能,提高待泵液体的压力;4. 待泵液体在管道中以较高压力流动。
二、基本组成结构射流泵通常由泵体、喷嘴、进口管道和出口管道组成。
1. 泵体:泵体是射流泵的主体部分,通常呈管状结构,由合适的材料制成。
泵体内部有一个转动部件,用于调整喷嘴的位置和角度,以控制喷流的方向和速度。
2. 喷嘴:喷嘴是射流泵实现喷流的关键部件。
它位于泵体的一端,通常是一个圆形或椭圆形的孔。
通过调整喷嘴的大小和角度,可以控制喷流的速度和方向。
3. 进口管道:进口管道是将待泵流体引入射流泵的管道。
进口管道通常位于泵体的侧面或顶部,连接待泵液体的来源。
4. 出口管道:出口管道是将由射流泵产生的高压流体输送到指定位置的管道。
出口管道通常位于泵体的另一端,连接待泵流体的目标位置。
三、应用领域射流泵广泛应用于许多领域,包括工业、农业、化工等。
以下是一些典型的应用领域:1. 工业领域:射流泵常用于工业压力试验和清洗设备。
它可以提供稳定的高压流体,以进行设备的检测和清洗。
2. 农业领域:射流泵可以用于农田灌溉和水利工程中提供压力。
它可以增加水的压力,实现远距离输送。
3. 化学工业:射流泵常用于化学反应过程中提供压力和混合物的搅拌。
它可以使化学反应更加高效,并提高产品质量。
总结:射流泵的工作原理基于贝努利方程和连续性方程,通过喷口将高速喷流与待泵流体混合,并将动能转化为压力能。
射流泵工作原理

射流泵工作原理射流泵是一种通过高速流体射流来吸引和输送液体的装置。
它利用液体的动能来产生负压,从而实现液体的吸入和输送。
射流泵通常由喷嘴、液体供给装置和泵体组成。
1. 喷嘴:喷嘴是射流泵的核心部件,它通过高速喷射流体来产生负压。
喷嘴的形状和尺寸会影响射流泵的性能。
普通情况下,喷嘴的出口直径较小,使流体在喷嘴出口处形成高速射流。
喷嘴的出口形状可以是圆形、方形或者其他形状,不同形状的喷嘴会产生不同的射流效果。
2. 液体供给装置:液体供给装置用于提供待输送的液体。
它可以是一个储液罐或者其他液体储存设备。
液体供给装置需要保持一定的液位,以确保射流泵能够正常工作。
液体供给装置还需要具备一定的压力,以推动液体进入射流泵。
3. 泵体:泵体是射流泵的主要部件,它包含了喷嘴和液体供给装置。
泵体内部有一个射流腔,液体从液体供给装置进入射流腔,经过喷嘴形成高速射流,然后通过射流腔的出口进入泵体的排液管道。
泵体的设计需要考虑射流泵的流量和压力要求,以及泵体的材料选择和密封性能。
射流泵的工作原理如下:1. 液体供给:液体从液体供给装置进入射流腔,液体在进入射流腔之前需要经过滤网等设备进行预处理,以防止固体颗粒进入射流泵。
2. 高速射流:液体经过喷嘴后形成高速射流。
喷嘴的形状和尺寸会影响射流泵的性能,不同的喷嘴会产生不同的射流效果。
3. 负压产生:高速射流在喷嘴出口处产生负压,负压作用下,液体从液体供给装置中被吸入射流腔。
4. 液体排出:液体从射流腔的出口进入泵体的排液管道,通过管道输送到需要的地方。
射流泵的优点:1. 结构简单:射流泵的结构相对简单,由喷嘴和泵体组成,没有机械运动部件,因此维护成本低。
2. 适合范围广:射流泵适合于输送各种液体,包括清水、污水、酸碱液等。
3. 负压吸引:射流泵通过负压吸引液体,不需要额外的能源驱动。
4. 耐用性强:射流泵的喷嘴和泵体普通采用耐腐蚀材料制成,具有较强的耐用性。
射流泵的应用领域:1. 工业领域:射流泵可用于工业生产中的液体输送、液体混合和液体喷雾等工艺。
射流泵工作原理

射流泵工作原理
射流泵是一种利用高速流体动能来抽取液体或气体的装置。
它的工作原理基于
贝努利定律和连续方程,通过高速流体的动能转化为压力能,从而实现液体或气体的抽取。
射流泵通常由喷嘴、吸口、扩散管和抽液口等部件组成。
首先,液体或气体从吸口进入射流泵,并经过喷嘴。
当流体通过喷嘴时,由于
喷嘴的设计使得流体速度急剧增加,从而使得流体的动能增加。
根据贝努利定律,流体的动能增加意味着其压力降低。
因此,流体在喷嘴内部的压力会急剧下降。
随后,流体从喷嘴出口进入扩散管。
扩散管的设计使得流体在通过管道时速度
逐渐减小,从而动能逐渐转化为压力能。
这种设计可以有效地将流体的动能转化为压力能,使得流体的压力增加。
最终,流体从抽液口排出,完成了抽取的过程。
射流泵的工作原理可以简单总结为,利用喷嘴将流体速度增加,动能增加,压
力降低;然后通过扩散管将动能转化为压力能,使得流体的压力增加;最终实现了液体或气体的抽取。
射流泵的工作原理非常简单,但其在实际应用中具有广泛的用途。
由于其结构
简单、维护成本低、无需动力驱动等优点,射流泵被广泛应用于化工、石油、冶金、环保等领域。
同时,射流泵也被用于一些特殊场合,如在航空航天领域用于推进剂的抽取,以及在实验室中用于真空系统的抽取等。
总之,射流泵的工作原理基于贝努利定律和连续方程,通过将流体的动能转化
为压力能来实现液体或气体的抽取。
其简单的结构和广泛的应用使得射流泵在工程领域中具有重要的地位,对于提高工作效率和节约能源具有重要意义。
射流泵 (3.1,3.4)

第一节 射流泵
第四节 螺旋泵
第四节 螺旋泵
第四节 螺旋泵
流量计算
第四节 螺旋泵
三、螺旋泵优缺点 优点: 1.提升流量大,省电。例如提升高度为3.5m,流量为500m3/h,采 用螺旋泵只需7.5kW电动机,如用其它类型泵,却要配10kW的电动机。2.螺 旋泵只要叶片接触到水面就可把水提升上来,并可按进水位的高度,自行调 节出水量,水头损失小,吸水井可以避免不必要的静水压差。3.由于不必 设置集水井以及封闭管道,泵站设施简单,减少土建费用,有的甚至可将螺 旋泵直接安装在下水道内工作。4.离心式污水泵在泵前要设帘格,以去除 碎片和纤维物质,防止堵塞水泵。而螺旋泵因叶片间间隙大,不需要设帘格 ,可以直接提升杂粒、木块、碎布等污物。5.结构简单、制造容易。另外 由于低速运转,因此,机械磨损小,经常维修简单。6.离心泵由于转速高 ,将破坏活性污泥绒絮,而螺旋泵是缓慢地提升活性污泥,对绒絮破坏较少 。 缺点:1.扬程一般不超过6~8m,在使用上受到限制。2.其出水量直接 与进水水位有关,故不适用于水位变化较大的场合。3。螺旋泵必须斜装, 占地较大些。
第一节 射流泵
第一节 射流泵
一、工作原理
ቤተ መጻሕፍቲ ባይዱ 第一节 射流泵
射流泵的工作性能一般可用下列参数表 示:
第一节 射流泵
第一节 射流泵
第一节 射流泵
第一节 射流泵
三、射流泵的应用
射流泵优点有:(1)构造简单、尺寸小、重量轻、价格便宜;(2)便于就 地加工,安装容易,维修简单;(3)无运动部件,启闭方便,当吸水口完 全露出水面后,断流时无危险;(4)可以抽升污泥或其它含颗粒液体; (5)可以与离心泵联合串联工作从大口井或深井中取水。缺点是效率较低 。在给水排水工程中一般用于: (1)用作离心泵的抽气引水装置,在离心泵泵壳顶部接一射流泵,当 水泵启动前可用外接给水管的高压水,通过射流泵来抽吸泵体内空气, 达到离心泵起动前抽气引水目的。 (2)在水厂中利用射流泵来抽吸液氯和矾液,俗称“水老鼠”。 (3)在地下水除铁曝气的充氧工艺中,利用射流泵作为带气、充气装 置,射流泵抽吸的始终是空气,通过混合管进行水气混合,以达到充氧 目的。这种水、气射流泵一般称为加气阀。 (4)在排水工程中,作为污泥消化池中搅拌和混合污泥用泵。近年来 ,用射流泵作为生物处理的曝气设备及浮净化法的加气水设备发展异常 迅速。
射流泵工作原理

射流泵工作原理引言概述:射流泵是一种常见的流体输送设备,它利用高速射流原理将能量转化为压力能,从而实现液体的输送。
本文将详细介绍射流泵的工作原理,包括射流泵的基本构造、工作过程、优点和应用领域。
一、射流泵的基本构造1.1 射流泵的主体结构射流泵主要由喷嘴、扩散器和泵体组成。
喷嘴是射流泵的核心部件,它通过高速喷射流体产生负压,形成射流。
扩散器用于扩大射流截面积,减小流速,增加压力。
泵体则起到封闭和支撑的作用。
1.2 射流泵的进口和出口射流泵的进口通常位于泵体的一侧,用于引入待输送的液体。
出口则位于泵体的另一侧,用于排出压力增加后的液体。
进口和出口之间的压差是射流泵工作的关键。
1.3 射流泵的驱动装置射流泵的驱动装置通常是一个高速流体,如水或气体。
这种流体经过喷嘴后形成射流,通过扩散器增加压力,从而实现液体的输送。
驱动装置的流速和压力决定了射流泵的输送能力。
二、射流泵的工作过程2.1 射流泵的启动过程当驱动装置开始工作时,高速流体通过喷嘴形成射流。
射流在扩散器内扩大截面积,流速减小,压力增加。
液体通过进口进入射流泵,受到射流的负压作用被吸入,并随着射流一起流动。
2.2 射流泵的压力增加过程随着液体进入射流泵,射流的流速减小,压力增加。
液体在扩散器内受到压力的作用,被推向出口。
出口处的压力比进口处高,从而实现了液体的输送。
2.3 射流泵的循环过程射流泵的工作是一个循环过程。
液体从进口进入射流泵,受到射流的负压作用被吸入,然后在扩散器内增加压力,最终从出口排出。
这个循环过程不断重复,实现了液体的持续输送。
三、射流泵的优点3.1 高效节能射流泵利用射流原理实现液体的输送,无需机械转动部件,因此能够减少能量损耗,提高能效。
3.2 无泄漏射流泵的结构简单,没有密封件,因此不存在泄漏问题,能够确保输送液体的完整性。
3.3 适应性强射流泵适用于各种液体输送,包括高粘度液体、腐蚀性液体和固体颗粒悬浮液等,具有广泛的应用领域。
射流泵工作原理

射流泵工作原理射流泵是一种利用高速射流产生的负压效应来实现液体输送的装置。
其工作原理基于贝努利原理和连续介质动力学理论。
1. 贝努利原理贝努利原理是流体力学中的基本原理,它描述了流体在不同速度下的压力变化。
根据贝努利原理,当流体在一个管道中流动时,速度增加时,压力就会降低。
射流泵利用了这个原理来实现液体的吸引和输送。
2. 射流泵的构造射流泵主要由两部分组成:喷嘴和吸液管。
喷嘴是射流泵的关键部件,它通过一个细小的出口将液体喷射出来,形成高速的射流。
吸液管连接在喷嘴的一侧,用于吸取被喷射出的液体。
3. 射流泵的工作过程当射流泵开始工作时,液体被喷射出来形成高速的射流。
由于射流的速度较高,根据贝努利原理,射流周围的压力会降低。
这个负压区域将吸引周围的液体进入射流中,形成连续的液体流动。
4. 射流泵的优点射流泵具有以下几个优点:- 简单且结构紧凑,易于安装和维护。
- 不需要额外的动力源,只需利用液体的动能即可工作。
- 可以输送各种类型的液体,包括固体颗粒和高粘度液体。
- 没有旋转部件,因此不易受到磨损和堵塞。
5. 射流泵的应用领域射流泵广泛应用于各个领域,包括:- 污水处理和污泥输送:射流泵可以有效地将污水和污泥从一处输送到另一处。
- 化工工艺中的液体混合和搅拌:射流泵可以将不同的液体混合在一起,实现化学反应或物质的溶解。
- 矿山和石油行业中的液体输送:射流泵可以输送含有固体颗粒或高粘度液体的混合物。
- 消防系统中的水供应:射流泵可以通过吸取周围的液体来提供高速的水流,用于灭火或清洗作业。
总结:射流泵是一种利用高速射流产生的负压效应来实现液体输送的装置。
它通过喷射出高速射流形成负压区域,吸引周围的液体进入射流中,实现连续的液体流动。
射流泵具有结构简单、易于安装和维护的优点,广泛应用于污水处理、化工工艺、矿山和石油行业以及消防系统等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
射流泵技术的理论及应用
1. 前言
射流泵是一种流体机械,它是以一种利用工作流体的射流来输送流体的设备。
根据工作流体介质和被输送流体介质的性质是液体还是气体,而分别称为喷射器、引射器、射流泵等不同名称,但其工作原理和结构式基本相同。
通常把工作液体和被抽送液体是同一种液体的设备称为射流泵。
我国从五十年代初开始对射流泵进行研究,最初通过引进国外的射流泵及样机在生产中应用,后来一些科研机构,高等学校考试进行研究和设计工作。
1958年,淮北煤矿建井公司采用射流泵开排水。
1961—1964年,中国农业机械化研究院结合华北地区深井提水需要设计研制了SLB系列射流泵。
1960年以来,我国著名学者陆宏圻教授运用立体留学和紊流射流泵理论研究了射流泵的基本性能方程、、汽蚀方程、装置性能方程、最有参数方程等,并在1989年比较全面给出了各种射流泵的设计理论和设计方法,出版了《射流泵技术的理论与应用》,为以后的研究工作奠定了坚实的基础。
江苏大学李传君等对废气射流装置工作原理进行了分析,提出了采用单相气体等熵流动理论来设计和计算射流装置的主要工作参数,结果和理论值本吻合,为该类型的射流装置的设计提供了良好好的依据。
沙洲工学院张防一基于平面势流理论,对混凝土射流泵装置的主要参数进行了理论设计,并根据射流泵装置内固液两相混合流动的特殊情况,提出了一套新的设计方法。
1995年,高传昌采用不同VI径的喷嘴、面积比、喉嘴距和脉冲频率等几何参数和工作参数对气液活塞式脉冲射流泵进行了探索试验,初步掌握了装置运行的稳定条件。
1999年,段新胜和孙孝庆进行了大量性试验,通过对比环形多喷嘴射流泵,得出结论:合理设计环形多喷嘴射流泵的各结构参数可显著改善射流泵的工作性能的;喷嘴安装角和喉嘴距决定着高速射流是否会产生附壁流动,它们应同时取较大值或较小值,但喷嘴安装角在任何情况下都不能太小;其喉管进口角不应超过45度;喉管长度与直径的比值L/d3可比中心射流泵小,t>3.5即可;喷嘴个数并不是越多越好,一般≤6;2003年,康宏琳对非恒定射流泵的时均性能进行了数值计算,2006年,尚华对脉冲液体射流泵的性能进行了数值计算,两者的结果均证明了脉冲射流能提高射流泵的效率。
2004年, 武汉大学何培杰等人采用PIV 流场测试技术对液体射流泵的流场进行了试验研究,测得了不同流量比下工作流体和被吸流体的流速分布, 分析了射流泵内部流动的沿程发展情况以及射流泵内有限空间流动与无限空间的伴随射流的异同。
2. 射流泵的基本结构
2.1 基本结构
射流泵主要有 1.压力管路、2.喷嘴、3.吸入管路、4.喉管、5.扩散管、6.排出管等组成。
该泵整体结构简单,没有运动件,其结构如图1所示。
2.2工作原理
图1 射流泵基本结构示意图工作液体从动力源沿压力管路1引入喷嘴2,在喷嘴出口处由于射流和空气之间的粘滞作用。
把喷嘴附近空气带走,使喷嘴附近形成真空,外界大气压力作用下,被抽送液体从吸入管路3被吸上来,并随同高速工作液体一同进入喉管4内,在喉管内两股液体发生动量交换,工作液体将
一部分能量传递给被抽送液体。
这样,工作液体速度减慢,被抽送液体速度渐加快,到达喉管末端两股液体的速度渐趋一致,
混合过程基本完成。
然后进入扩散管5,在扩
散管内流速渐降低压力上升,最后从排出管6
排出。
3. 射流泵的基本性能
射流泵基本方程h=f(mq)以无量纲参数
扬程比h,流量比q和面积比m来表征射流泵
内的能量变化,以及各基本零件(喷嘴、喉管、
扩散管和喉管进口)对性能的影响。
运用水力学基本原理,即对射流泵沿着液
体流动方向分段应用动量方程、能量方程和连
续性方程分五步导出射流泵基本方程。
1)先对喉管进口a-a断面与它的出口b-b断面列出动量方程
2)对n-n断面和a-a断面用动量方程,再对e-e 断面与n-n断面用能量方程,
求出a-a断面被抽送液体平均流速
3)对n-n 断面与m-m断面用能量方程求出n-n断面的工作液体平均流速n1v的
表达式
4)对b-b断面与c-c断面用能量方程,求出b-b断面平均流速bv的表达式
5)将已知的v
1a ,v
2a
和v
b
的表达式代入式(6-3),整理后得射流泵基本方程
上列诸式中的流速系数1ϕ、2ϕ、
3ϕ、4ϕ可以根据相应部分的各阻力系数 用水力学方法进行计
算,或通过试验测出。
在一般计
算中可以采用1ϕ=975.01~0.95,
2ϕ=0.975,3ϕ=0.9,
4ϕ=0.8~0.85。
6)射流泵的效率
7)面积比m = 喉管断面面积/喷
嘴出口断面面积=0b f f 4. 主要影响因素分析
射流泵的特性曲线就是反映泵的几何尺寸、压力与流量等参数之间的关系曲线,它是射流泵设计时参考的重要依据。
只要知道各系列射流泵各处的阻力系数,应用给出的方程和公式便可通过计算作出射流泵的特性曲线。
当给定一个面积比m 以后,便可由一系列相对应的流量比q 与扬程比h 、流量比q 与效率比η, 各给出一条h-q 和η-q 曲线。
根据前面导出的液体射流泵的基本性能方程,可以绘制出泵的特性曲线。
在h已给定的情况下,包络线上各点对应的面积比是最优面积比。
利用包络线h=f(q,m)与各特性曲线h=f(q)的交点可得到m与q的关系,并可做出q-m曲线,如图4所示。
包络线h=f(q,m)把坐标平面h-q分成两部分,如果设计数据h 和q构成的设计工况点落在包络线的下面,则说明参数给的合理,可以设计出m 等于某个数值的射流泵;如果(h,q)设计点落在包络线的上方,说明用这组数据不可以设计出想得到的射流泵。
射流泵综合特性曲线是通过对实际应用的射流泵m值范围以内的情况,和当m值不变,而尺寸改变的各种射流泵的情况下进行计算和实验研究得出的。
所以射流泵综合特性曲线可以用来判别和指导设计。