“走美杯”小学数学竞赛试卷(六年级初赛b卷)
第七届“走美杯”数学解题技能展示大赛初赛(六年级)

3/3
角三角形斜边上的高是________厘米.
7. 10 个砝码,每个砝码重量都是整数克,无论怎样放都不能使天平平衡,这堆砝码总重
量最少为_________克.
8. 有一串数 1,1,2,3,5,8,„,从第三个数起,每个数都是前两个数之和,在这串
数的前 2009 个数中,有_________个是 5 的倍数.
9. “走美商场”开业了!门口有规律地堆放了一些同样的礼品盒供顾客免费领取,每一
礼品盒宽 9 厘米,长 18 厘米(取“永久发达”的吉祥寓意) 。摆好后其上面四层的正 面图如右图所示。共摆上十层,则一共有 ________ 个礼品 盒,整个图形的周长为 _________厘米.
1/3
【杯赛真题】 · 【走美杯】 · 【六年级】 · 【初赛】
【杯赛真题】 · 【走美杯】 · 【六年级】 · 【初赛】
第七届“走进美妙的数学花园”中国青少年数学论坛趣味数 学解题技能展示大赛初赛
一、填空题Ⅰ(每题 8 分,共 40 分) 1. 计算: 1 2 4 8 16 32 64 128 256 512 1024 __________. 2. 已知 a 3
参考答案
题号 答案 题号 答案 题号 答案 题号 答案 (1) 2047 (5) 4 (9) 540 (13) 14 (2)
abc
(3) 10652 (7) 1023 (11) 5、 7、 11 、13、 17、 19
(4) 90 (8) 401 (12) 7
(6) (10) 2009 (14) 9
上,使每个 相对的 面的和都 相等,则 所选的 6 个数是 __________________________________.
【走美杯2024】走美杯六年级试题

【走美杯2024】走美杯六年级试题下载温馨提示:文档由本店精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,部分格式可能存在问题,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!【走美杯2023】走美杯六年级试题一、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、计算:6.250.16+2640.0625+5.26.25+0.62520=_____.3、计算:9.8+99.8+999.8+9999.8+99999.8=_____.4、我的朋友的一位朋友,他出生的年份数正好有15个约数,他出生的月份数和日期数的最大公约数是3,最小公倍数是60.他是年月日出生的.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、最小的质数与最接近100的质数的乘积是_____.7、这样的自然数是有的:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是________.8、有一个自然数含有10个不同的约数,但质约数只有2和3.那么,这个自然数最大是.9、有一个数除以3余2,除以4余3,这个数除以12余.10、a24=121…b,要使余数最大,被除数应该等于_____.11、已知a、b、c都是质数,且a+b=c,那么abc的最小值是_____.12、一次数学考试共有20道题,规定答对一题得2分,答错一题扣1分,未答的题不计分.考试结束后,小明共得23分.他想知道自己做错了几道题,但只记得未答的题的数目是个偶数.请你帮助小明计算一下,他答错了_____道题.13、14个数排成一列,相邻三个数之和等于20.已知第2个数是1,第13个数是9,第9个数是____.14、现在时间是下午5点正,那么分针旋转2004周后,时针表示的时间为________.15、把自然数1,2,3,4,5……如表依次排列成5列,那么数“1992”在_____列.二、解答题1、求被5除余2,被6除余5,在100至200之间所有这样的数.2、已知:,问:a除以13,余数是几?。
小学数学竞赛:第15届全国走美杯六年级初赛B卷竞赛数学试卷

第15届全国走美杯六年级初赛B卷竞赛数学试卷1.计算: (用最简分数表示).0.1=5˙2.两个立方体骰子上面的点数设置是非标准的,其中一个是,,,,,,另一个是,,,,,.用这样两个骰子一起投掷一次,点数之和恰好等于可能性(概率)为 (用最简分数表示).12255511245563.用减去它的,再减去余下的,再减去余下的,……,以此类推,一直到减去余下的,那么最后的得数为 .4068289121314120174.大于的自然数,如果满足所有因数之和等于它自身的倍,则这样的数称为完美数或完全数.比如,的所有因数为,,,,,就是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.可以从计算自然数的所有因数之和开始研究完美数.的所有因数之和为 .02612361+2+3+6=1264565.“点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从张扑克牌(不包括大小王)中抽取张,用这张扑克牌上的数字(,,,)通过加减乘除四则运算得出,最先找到算法者获胜.游戏规定张牌扑克都要用到,而且每张牌只能用次,比如,,,,则可以由算法得到. 如果在一次游戏中恰好抽到了,,,,则你的算法是 .245244A =1J =11Q =12K =132441234Q (2×Q )×(4−3)24557116.如图所示的图案由半圆构成,已知最大的圆的半径,则阴影部分面积与最大的圆面积之比为 .R =37.如下图所示, .∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠K =8.中国大陆的车牌号一般包括一个汉字与个由字母或数字组成的编码构成,比如“京”,汉字后面紧跟一个字母(从到),之后的位置上可以是数字(从到),也可以是字母(从到,但不包括与),但最多只允许有个字母.那么,按照这个规则,以“京”开头的不同车牌号一共可以有 个.6QFR 067A Z 09A Z O I 2Q 9.如下图所示,我们可以在,,,,中选择四个不同的数字填入圆圈中,使得有连线的两个圆圈中的数字之差(大数减小数)正好组成,,,.按照同样的方法,请将,,,,,,,分别填入左下图的个圆圈中,使得有连线的两个圆圈中的数字之差(大数减小数)正好组成,,,,,,.012341234012345678123456710.只能被和自身整除的大于的自然数叫做质数或素数,比如,,,,等.如果将分拆成个质数之和.要求其中最大的质数尽可能大,那么,这个最大的质数为 .112357*********.我们把分子是,分母是自然数的分数称为单位分数.利用可以证明:每一个真分数都可以表示为不同单位分数的和.例如可以先表示为,再继续表示为三个不同单位分数的和.但还可以表示为两个不同单位分数的和.类似地,将表示为两个不同单位分数的和,则这两个单位分数分别为 .1=+1n 1n +11n (n +1)23+1313++131411223+12162712.一副扑克包括大小王在内共张,其中,红桃、黑桃、梅花、方块种花色的牌各张,点数分别从到(,,,)。
最新2017人教版小升初2008年第六届走美杯初赛六年级试题及详解

第六届“走进美妙的数学花园”中国青少年数学论坛
趣味数学解题技能展示大赛初赛答案
小学六年级试卷(B卷)
一、填空题I(每题8分,共40分)
1. 11111111 612203042567290 +++++++=
解:原式=111111112 23349102105 -+-++-=-=
2.一个表面积为56emz的长方体如图切成27个小长方体,这27个小长方体表面积的和是______cm2.
解:每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,
所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为168cm2.
3.将2、4、6、8、12、18、24、36、72填人右边的九宫格,使每行每列及两条对角线上三数的积都相等.每行的三个数的积是______.
解:每行三个数的积相等,所以这个积的3次方等于9个数的积,这就个数是:
2130、2230、2131、2330、2231、2132、2331、2232、2332,它们的积21839,所以每行上的3个数的积为2633=1728.
4.0.
2.008
0.
A BC
C A B
∙∙
∙∙
=,三位数ABC的最大值是多少?
解析:2.008化为分数是251
125
,可以约分为
251
125
的分数有
502
250
、
753
375
,所以ABC的最大值为753.
5.如图所示,长方形ABCD内的阴影部分的面积之和为70,AB=8,AD=15四边形EFGO的面积为______.
分析:根据容斥关系:
四边形EFGO的面积=三角形AFC+三角形DBF-白色部分的面积。
2011走美杯5、6年级初赛

五年级初赛一、填空题Ⅰ(每题 8 分,共 40 分)1. 算式 1÷(2÷3)÷(3÷4)÷(4÷5)的计算结果是.【答案】2.5【解析】原式=1÷2×3÷3×4÷4×5=1÷2×5=2.5.2. 用大小两辆货车运煤,大货车运了 9 次,小货车运了 12 次,一共运了 180 吨.大货车的载 重量等于小货车载重量的 2 倍,大货车的载重量是 吨,小货车的载重量是 吨. 【答案】12;6【解析】大货车的载重量等于小货车载重量的 2 倍,大货车运了 9 次,相当于小货车运了 2×9=18(次),一共相当于小货车运了 18+12=30(次). 所以,小货车的载重量是 180÷30=6(吨),大货车的载重量是 6×2=12(吨) .3. 三个正方形如图放置,中心都重合,它们的边长依次是 1cm 、3cm 、5 cm , 图中阴影部分的面积是 cm 2.【答案】17【解析】阴影部分的面积是 52-32+12=17(cm 2). 4. 有两根同样长的绳子,第一根平均剪成 5 段,第二根平均剪成 9 段. 二根剪成的每段长 10 米.原来每根绳子长 米. 【答案】112.5【解析】10 ÷ 1 - 1 ⎪ = 112.5 (米) .⎛ ⎫ ⎝ 59 ⎭ 5. 观察一组式子: 32 + 4 2 = 52 , 52 + 12 2 = 132 , 7 2 + 24 2 = 252 , 9 2 + 40 2 = 412 ,…….根 据以上规律,请你写出第 7 组的式子: . 【答案】152+1122=1132【解析】每一个式子都是“a 2+b 2=c 2”的形式.其中 a 是第 a +1 个奇数,b 比 c 小 1,而 b 与 c 的和是 a 2. 第 7 组式子中的 a 为 15,根据和差问题可得 b =112,c =113. 6. 右图的两个算式中,相同的字母代表相同的数字,不同 的字母代表不同的数字.四位数 ABCD = .【答案】1026 A B C D + E F G2 0 1 1 C H B D - I E G2 0 1 1【解析】由减法竖式知 C =2,B =0,E =9,H -I =1,D -G =1 由加法竖式知 A =1,B +E =9,C +F =10,D +G =11, 从而两个算式分别为:1026+985=2011,2406-395=2011.7. A 、B 、C 、D 、E 五个盒子中依次放有 2、4、6、8、10 个小球.第一个小朋友找到放球最 多的盒子,从中拿出 4 个放在其他盒子中各一个球.第二个小朋友也找到放球最多的盒子, 从中拿出 4 个放在其他盒子中各一个球;依此类推,…….当 2011 个小朋友放完后,A 盒 中放有 个球. 【答案】8【解析】A,B,C,D,E 五个盒子中的球按如下规律变化: (A,B,C,D,E ):(2,4,6,8,10)→(3,5,7,9,6)→(4,6,8,5,7)→(5,7,4,6,8)→(6,8,5,7,4)→(7,4,6,8,5) →(8,5,7,4,6)→(4,6,8,5,7)→(5,7,4,6,8)→…….发现从第二次操作后,5 次操作一循环. 2011-1=2010,2010 是 5 的倍数,从而第 2011 次操作后的结果相当于循环周期内的第 5 次操 作结果,为(8,5,7,4,6).所以,当 2011 个小朋友放完后,A 盒中放有 8 个球.8. 右图是一个 6×6 的方格表,现在沿格线将它分割成 N 个面积各不相等的长方形(含正方形).那么,N 最大是 .4-519+240×6+4×2-2÷212+1120×4-519+240×346+54×1245122-32÷212+11120×4-519+234240×346+54×1245122-32÷212+34511120×2345【答案】7【解析】每个长方形的面积为各不相同的正整数,而1+2+3+…+8=36,所以N≤8.若N=8,则这8 个长方形的面积只能是1、2、3、…、7、8.其中7 是质数,面积为7 的长方形只能是7×1,在6×6 方格表无法放下.所以N≤7.而当N=7 时,可构造如图(图中7 个长方形的面积为1、2、3、4、5、9、12).9. 五个连续自然数,每个数都是合数,这五个连续自然数的和最小是.【答案】130【解析】只需要考虑相邻的两个质数的差不小于6 即可.24+25+26+27+28=130.10. 在右图的每个格子中填入1~5 中的一个,使得每行、每列所填数字各不相同.每个粗框左上角的数和“+”、“-”、“×”、“÷”分别表示粗框内所填数字的和、差、积、商(例如“240×”表示它所在粗框内的四个数字的乘积是240).【答案】如图4解析】注意到1×2×3×4×5=120,看第5 行“120×”知第5 行第1 数为120÷120=1,看左下角“2÷”得第4 行第1 数为2.看左上角“4-”只能为5-1=4,而第一列已有1,所以第一行前2 数依次为5、1.见图1.注意到1+2+3+4+5=15,看第4 行“12+”知第4 行最后一个数为15-2-12=1,看“2-”知第3 行第5 数为3.看“4×”知4=1×2×2 或4=4×1×1,但第5 列已有1,从而“4×”粗框内所填数字只能如图为1、2、2.见图2.看“6+”知6=1+5 或6=2+4,但第2、3 行有已有2,所以只图1能是6=1+5.而第2 行已有1,从而1 在第3 行,5 在第2 行.再看“240×”粗框内所填数字,第一列该填3、4,但第3 行已有3,所以第2 行第1 列为3,第行第1 列为4,那么第2 行第2 列为4,第3 行第2 列为5.见图3.剩下空格只需注意同行、同列数字各不相同即可得到.见图4.4-519+240×6+4×1222-32÷212+11120×图2 图3 图4三、填空题Ⅲ(每题12 分,共60 分)11. n 名棋手进行单循环比赛,即任两名棋手间都比赛一场.胜者得2 分,平局各得1 分,负者得0 分.比赛完毕后,前4 名依次得8、7、4、4 分.n=.【答案】6【解析】若n≤5,则至多赛4×5÷2=10 场,总分至多2×10=20 分,但现在前4 名总分就有8+7+4+4=23 分,矛盾!所以,n≥6.总分为(n-1)×n 分,每名棋手的平均分为n-1,若n≥7,则平均分至少为6 分,但现在前4名的平均分也未到6,矛盾!所以,n≤6.综上所述,n=6.12. 如图,大长方形被分成了四个小长方形.已知四个小长方形的周长分别是1、2、3、4,且四个小长方形中恰有一个正方形.大长方形的面积是.【答案】1.5d 【解析】据对称性,不妨设A、B、C、D 四个小长方形的周长依次是1、2、3、4.B 的周长比A 的周长多1,则b=a+0.5;D 的周长比B 的周长多2,则d=c+1.若A 是正方形,则a=c=1÷4=0.25,则b=0.75,d=1.25,大长方形的面积是(0.25+0.75)×(0.25+1.25)=1.5若B 是正方形,则b=c=2÷4=0.5,则a=0,矛盾!若C 是正方形,则a=d=3÷4=0.75,则A 的周长大于0.75×2=1.5,矛盾!若D 是正方形,则b=d=4÷4=1,则c=0,矛盾!综上所述,大长方形的面积是1.5.13. 某校五年级二班35 个同学,学号分别为1~35.一天他们去春游.除了班长之外,其余34个同学分成5 组,结果发现每个小组的同学学号之和都相等;后来这34 个同学又重新分成8 组,结果发现每个小组的同学学号之和还是相等.班长的学号是.【答案】30【解析】另外34 个同学的学号总和既是5 的倍数,又是8 的倍数,则是[5,8]=40 的倍数;而1+2+3+…+35=(1+35)×35÷2=630,630 除以40 的余数是30,因此班长的学号是30.14. 9 个小等边三角形拼成了如图的大等边三角形.每个小等边三角形中都填写了一个六位数,且有公共边的两个小等边三角形所填的六位数恰有一位不同.现已有小等边三角形中填好数.另外6 个小三角形,共有种填法.【答案】64【解析】111122、A、F、E、112211 依次相邻,而111122 与112211 有四位不同,所以由111122 开始,每次只能变化 1 位,4 次后变为112211.这样,A、F、E 的前2 位都是1.同理,C、D、E 的末两位都是1,A、B、C 的中间两位也都是1.于是,A 有111112 或111121 两种选择,C 有121111 或211111 两种选择,E 有111211 或112111 两种选择.当A 和C 确定后,不妨设A 为111112,C 为121111,于是B 有121112 或111111 两种选择.同理,D、F 各有两种选择.综上所述,A、B、C、D、E、F 各有2 种选择,所以一共有26=64 种填法.15. 相距180 千米的A、B 两地之间有一条单车道的公路(即不许超车).有一天,一辆小轿车从A 出发,同时,一辆大货车在A、B 之间的某地C 出发,都沿该公路驶向B 地.两辆车到达B 地所用时间之和为5 小时.如果交换两车的出发位置,并让两车仍然同时出发,那么它们到达B 地所用时间之和仍为 5 小时.已知在没有货车挡道时小轿车的速度是大货车速度的3倍,那么BC 间的路程为千米.A CB 【答案】108【解析】两次所花总时间相同,但第二次两车不会相互阻挡,因此第一次小轿车一定在半路被大货车拦住了,因此第一次小轿车所花时间与大货车相同,都是5 ÷ 2 = 2.5 小时.大货车从C 到B花了2.5 小时,二小轿车速度是其3 倍,因此第二次小轿车花的时间为2.5 ÷ 3 =5 小时,则大货6车花5 -5 =25 小时.则BC 长为180 ÷25 ⨯ 2.5 =108 千米.6 6 6FE112211111122ADBC221111六年级初赛一、填空题Ⅰ(每题8 分,共40 分)1. 算式(2011-9)÷0.7÷1.1 的计算结果是.【答案】2600【解析】原式=2002÷7÷11×100=2600.2. 全世界胡杨90%在中国,中国胡杨90%在新疆,新疆胡杨90%在塔里木.塔里木的胡杨占全世界的%.【答案】72.9【解析】90%×90%×90%=72.9%.3. 半径为10、20、30 的三个扇形如图放置,S2 是S1 的倍.S2【答案】5【解析】S1=π×102÷4=25π,S2=(π×302-π×202)÷4=125π.所以,S2÷S1=125π÷25π=5 倍S14. 50 个各不相同的正整数,它们的总和是2011,那么这些数里奇数至多有个.(43)【答案】43【解析】最小的45 个奇正整数的和为1+3+5+…+89=452=2025>2011,所以奇数个数不到45 个.另一方面,2011 为奇数,所以奇数的个数得为奇数,所以所以奇数个数至多43 个.另一方面,当这50 个数为1、3、5、…、85、2、4、6、8、10、12、120 是满足要求的一组数,它就有43 个奇数.5. A、B、C 三队比赛篮球,A 队以83:73 战胜B 队,B 队以88:79 战胜C 队,C 队以84:76 战胜A 队.三队中得失分率最高的出线.一队得失分率为得的总分,如A 队得失分率为失的总分83 + 76 .三队中,队出线.73 +84【答案】A【解析】A 队的得失分率为83 + 76 =159 >1,B 队的得失分率为73 + 88 =161 <1,C 队的得失73 +8415783 +79162分率为79 + 84 =163 <1.所以,A 队得失分率最高,于是A 队出线.88 +76164二、填空题Ⅱ(每题10 分,共50 分)AB6. 如图,一个边长为120cm 的等边三角形被分成了面积相等的五块;那么,AB=cm. C GF 【答案】45D E 【解析】因为S ∆ACF=3 ,所以AC =AD⨯3 =120⨯3 = 90 (cm).S4 4 4∆ADF同理,因为S∆ABG=1 ,所以AB =AC ⨯1 =90⨯1 =45(cm).2 2 2S∆ACG7. 某校六年级学生中男生人数占52%,男生中爱踢足球的的占80%,女生中不爱踢足球的的占70%.那么,在该校全体六年级学生中,爱踢足球的学生占%.【答案】56【解析】(1-52%)×(1-70%)+52%×80%=56%.8. 在每个方框中填入一个数字,使得乘法竖式成立.已知乘积有两种不同的得数,那么这两个得数的差是.【答案】2030【解析】由ABC×2=□0□得C≤4,B=0 或5.同时对比ABC×D=□1□知D≥3,若A≥3,则ABC×D>900,万位就要进位了.所以A≤2.若B=5,则D 也为偶数,由D≥3 得D≥4,由ABC×D=□1□知A=1.考A B CD E 21118+ 43 65 1-1 2 30× 325 11+ 4 61 600× 65 2÷2 3÷13 72×4 54113+ 6233+ 2 5-1 12+ 4 356 1 6 3 2 20× 45 虑到 ABC ×E =□□1□知 E =8,由 C ×E =1□,知 C ≤2.由 ABC ×D =□1□知 D =4,由 C×D =1□有 C ≥3.矛盾!所以 B =0.当 B =0 时,A0C ×E =□□1□,知 A ≥2,所以 A =2. 再由 20C ×E =□□1□知 E ≥5,且 C ≤3若 C =2,202×D =□1□无解,所以 C =3.由 C ×D =3×D =1□知 D ≥4,由 203×D =□1□知 D ≤4.所以 D =3. 由 C ×E =3×E =1□,知 E ≤6,所以 E =5、6. 验算知,203×452 与 203×462 均满足要求. 所以,203×462-203×452=203×(462-452)=203×10=2030.9. 大小相同的金、银、铜、铁、锡正方体各一个,拼成如图的“十”字.一共 有 种不同的拼法(旋转以后可以重合的拼法看成是相同的拼法). 【答案】15【解析】先选择中心处的正方体,有 5 种选择,不妨设中心处是金正方体. 再看哪个正方体与银正方体相对,有铜、铁、锡这 3 种选择. 所以,共 5×3=15 种不同的拼法.10. 在右图的每个格子中填入 1~6 中的一个,使得每行、每列所填数字各不相同.每个粗框左上角的数和“+”、“-”、“×”、“÷”分别表示粗框内所填数字的和、差、积、商 (例如“600×”表示它所在粗框内的四个数字的乘积是600).【答案】如图 三、填空题Ⅲ(每题 12 分,共 60 分)11. 用 1,3,5,7,9 这五个数字组成若干个合数,每个数字恰好用一次;那么,这些合数的总 和最小是 .【答案】214【解析】若组成的合数中最大的为两位数,而 1、3、5、7、9 中合数只有 9,则为 2 个两位合数 和 1 个一位合数.注意到 13、31、37、73、17、71 都是质数,所以此时无解. 若组成的合数中最大的为两位数,而 1、3、5、7、9 中合数只有 9,则为 1 个三位合数和 1 个两 位合数.又注意到 137、159 都是质数,所以百位至少是 1,十位数字至少是 3+7,于是这些合 数的总和至少是 1×100+(3+7)×10+5+9=214.而 175+39=214. 综上所述,这些合数的总和最小是 214.12. 右图的盒子,高为 20cm ,底面数据如右下图.这个盒子的容积是 cm 3.(π 取 3.14) 【答案】862.8【解析】V =[(9+2)×4-12×4+π ×12]×20=800+20π ≈862.8(cm 3)13. 一件工程,按甲、乙、丙各一天的顺序循环工作,恰需要整数天工作完毕.如果按丙、甲、乙各一天 4 的顺序循环工作,比原计划晚 0.5 天工作完毕.如 果按乙、丙、甲各一天的顺序循环工作,比原计划 晚 1 天工作完毕.乙单独完成这件工程需要 30 天.甲乙丙三人同时做,需要 天完成. 【答案】7.5【解析】按甲、乙、丙各一天的顺序循环工作,所需天数一定不是 3 的倍数,否则按其它顺序循 环工作,所需天数应该和原计划一样.同理,按乙、丙、甲各一天的顺序循环工作,所需天数也 是整数天,也不是 3 的倍数.所以原计划所需天数为 3K +1 天(K 为整数). 设甲、乙、丙的工效分别为 x 、y 、z , 对比按丙、甲、乙各一天的顺序循环工作与原计划的工作,有 x =z +0.5x . 对比按乙、丙、甲各一天的顺序循环工作与原计划的工作,有 x =y +z .解得,x :y :z =2:1:1.y = 1 ,则 x = 1 ,z = 1.30 15 所以,甲乙丙三人同时做,需要1 1 30 1 1 2 ⎪ = 1 ÷ = 7.5(天).÷ ⎛ + ⎝ 15 30 +⎫ 30 ⎭1514. 甲、乙二人相向而行,速度相同.火车从甲身后开来,速度是人的 17 倍.车经过甲用 18秒钟,然后又过了 2 分 16 秒完全经过了乙的身边.甲、乙还需用 【答案】1088【解析】设人的速度为每秒走 1 份,则火车速度为 17 份/秒.2 分 16 秒即 136 秒钟火车车尾与甲间的路程为(17-1)×136 米,这就是此时甲、乙间的路程. 所以,甲、乙还需用(17-1)×136÷(1+1)=1088(秒)钟相遇.15. 100 名学生站成一列.从前到后数,凡是站在 3的倍数位置的学生都面向前方,其余学生都 面向后方.当相邻两个学生面对面时,他们就会握一次手,然后同时转身.当不再有人面对 面时,一共握过了 次手. 【答案】1122【解析】每握一次手,两人转身可以看成这两人交换位置,朝向不变. 这样的话,最后 3 号要走到 1 号位置,要交换 2 次位置,即握 2 次手;6 号要走到 2 号位置,要交换 4 次位置,即握 4 次手;9 号要走到 3 号位置,要交换 6 次位置,即握 6 次手;……; 99 号要走到 33 位置,要交换 66 次位置,即握 66 次手. 所以,一共握手 2 + 4 + 6 ++ 66 = 1122次.。
第十二届“走美杯”数学解题技能初赛试题及答案(六年级)

第十二届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛注意事项:1.请在密封线内填好有关信息. 总分2.不允许使用手机、计算器等电子设备.小学六年级试卷(A 卷)填空题I(每题8 分,共40 分)1.计算:20140309= .7 ⨯101⨯ 4672.现有含食盐6%的盐水92 千克,如果将盐水的浓度提高到8%,需要再加入盐千克。
3.像2,3,5,7 这样的只能被1 和自身整除的大于1 的自然数叫做质数或者素数。
每一个自然数都能写成若干个(可以相同)质数的乘积,比如,4=2×2,6=2×3,8=2×2×2,9=3×3,10=2×5 等,那么 1938 写成这种形式为 .4.某班有 3 名学生参加数学解题技能展示选拔赛,那么,可能出现的入选情形一共有种.5.“24 点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从52 张扑克牌(不包括大小王)中抽取4 张,用这4 张扑克牌上的数字(A=1,J=11,Q=12,K=13)通过加减乘除四则运算得出24,最先找到算法者获胜,游戏规定4 张拍扑克都要用到,而且每张牌只能用 1 次,比如 2,3,4,Q,则可以由算法(2⨯Q)⨯(4 - 3)得到 24. 王亮在一次游戏中抽到了K,9,1,1,他发现K + 9 +1+1 = 24 ,如果将这种能够直接相加得到24 的4 张牌称为“友好牌组”,那么,含有Q 的不同“友好牌组”共有组。
填空题II(每题10 分,共50 分)6.在中国古代数学中,两个形状相同的圆柱以垂直方向互相穿插,如图所示,中间重合部分所构成的几何体称为牟合方盖,从正上方俯视牟合方盖,看到的图形为。
7. 如图所示的图形由1 个大的半圆弧和6 个小的半圆弧围成,已知最大的半圆弧的直径为1,则这个图形的周长为(用圆周率π表示)。
8. 如图所示,已知大圆的半径为2,则阴影部分II 的面积为。
2007第五届走美杯初赛六年级

第五届“走进美妙的数学花园”中国青少年数学论坛趣味数学解题技能展示大赛——初赛六年级填空题(共15题,满分150。
第1~4题每题8分,第5~8题每题10分,第9~12题每题12分,第13~15题每题10分)1.2007×2007×…×2007(2008个2007)的个位数字是____。
答案:1。
解析:12007的个位为7;22007的个位为9,;32007的个位为3;42007的个位为1;52007的个位为7……注意到n 2007的个位四个数为周期。
而2008÷4=502…0,那么20082007的个位数字为1。
答案:301151。
解析:213015.150301151,212035.10120310121355.1735172195.4942175.373=====>,<,<,<,<。
故最大的一个为301151。
3.2×3的棋盘上有5个棋子及1个空格。
每步可将1个棋子移动到旁边的空格(横向或纵向)。
经过若干步移动后,由图1变到图2。
A =____,B =____。
答案:A=5,B=4。
解析:题中图1可按照如下方式变为图a 。
注意到图a 中A 与B 为4与5.这时1与2的位置正好与题中图2的1与2的位置相反。
故图2中A 应为5,B 应为4。
4.如图3所示,梯形ABCD 中,AE 与DC 平行,ABE S ∆=15,BCF S ∆=____。
中最大的一个是,,,分数____301151203101351794,73.2EFCDFE S S =答案:15。
解析:连DE ,有ABE S ∆=DBE S ∆→DFE ABF BEF DBE BEF ABE S S S S S S ∆∆∆∆∆∆=-=-即。
又由AE ∥CD 得 。
所以从而15==+=+==∆∆∆∆∆∆∆∆ABE ABF BFE FEC BFE BFC FEC ABF S S S S S S S S 5.1000千克葡萄含水率为96.5%。
第十一届走美杯试题

一个)
A.217017 B.207217 C.207216 D.217016
2. 假设地球是个均匀的球体(半径 6378 千米),围绕地球赤道正上方上有一圈铁丝,铁 丝的周长比地球赤道长 1 米,在赤道和铁丝之间会有一个缝隙,下列动物中,有 5 种可 以安全通过铁丝。 ①蚂蚁;②蜜蜂;③青蛙;④老鼠;⑤猫;⑥成年奶牛;⑦大象
D
总人数限额又 5 人得了 5 分,其余人都得 2 分。已知得 2 分的人数
和得 5 分的人数一样多,则有 人得了 4 分。
5. 在一个长 20 米、宽 8 米、深 1.6 米的长方体游泳池的四壁及地面贴磁砖,磁砖是边长
为 0.2 米的正方形,共需磁砖
块。
二、 填空题 II(每题 10 分,共 50 分) 6. 如右图所示,正方形的边长是 20 厘米,阴影部分面积为
米。(π 取 3.14)
平方厘
7. 两个相同的玻璃被,都装满了糖水,糖与水的质量比分别是 1:7 和 1:9, 现将这两杯糖水混合,混合后糖水的含糖率是 %。
8. 一个游戏需要 8 人参加,分成红、黄两队,每队各 4 人,一对兄弟来参加这个游戏,他
们俩很想被分在同一队,但是谁被编入哪个队是完全随机的,那么这对兄弟被分进同一
第十一届“走进美妙的数学花园”青少年展示交流活动 趣味数学解题技能展示
注意事项: 1、 考生要按要求在密封线内填好考生的相关信息。 2、 不允许使用计算器
小学六年级试卷(B 卷)
一、 填空题 I(每题 8 分,共 40 分) 1. 183×279×361-182×278×360 的计算结果是
(填写 A、B、C、D 四个字母中的
元钱 3
-1-
PS:双击获取文档,ctrl+A,ctrl+C,然后粘贴到word即可。 未能直接提供word版本,抱歉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“走美杯”小学数学竞赛试卷(六年级初赛B卷)一、填空题I(每题8分,共40分)1.(8分)183×279×361﹣182×278×360的计算结果是()A.217017B.207217C.207216D.2170162.(8分)假设地球是个均匀的球体(半径6378千米),围绕地球赤道正上方上有一圈铁丝,铁丝的周长比地球赤道长1米,在赤道和铁丝之间会有一个缝隙,下列动物中,有种可以安全通过铁丝.①蚂蚁;②蜜蜂;③青蛙;④老鼠;⑤猫;⑥成年奶牛;⑦大象.3.(8分)将0﹣5这六个数字中的4个数字填入图的圆圈中,没条线段两端的数字作差(大或小),可以得到5个差,这5个查恰好为1﹣5.在所有满足条件的填法中,四位数ABCD (首位不能为0)的最小值是.4.(8分)一次考试中,总人数的又3人得了3分,总人数的又4人得了4分,总人数的又5得了5分,其余人都得2分.已知得2分的人数和得5分的人数一样多,则有人得了4分.5.(8分)在一个长20米、宽8米、深1.6米的长方体游泳池的四壁及地面贴磁砖,磁砖是边长为0.2米的正方形,共需磁砖块.二、填空题II(每题10分,共50分)6.(10分)如图,正方形的边长是20厘米,阴影部分面积为平方厘米.(π取3.14)7.(10分)两个相同的玻璃杯,都装满了糖水,糖与水的质量比分别是1:7和1:9,现将这两杯糖水混合,混合后糖水的含糖率是%.8.(10分)一个游戏需要8人参加,分成红、黄两队,每队各4人,一对兄弟来参加这个游戏,他们俩很想被分在同一队,但是谁被编入哪个队是完全随机的,那么这对兄弟被分进同一队的可能性是.9.(10分)将数字1~9填入如图竖式的9个方格中,每个数字只能用一次,那么和的最大值为.10.(10分)军区食堂晚饭需用1000斤大米和200斤小米,军需员到米店后发现米店正在促销,“大米1元1斤,每购10斤送1斤小米(不足10斤部分不送);小米2元一斤,每购5斤送2斤大米(不足5斤部分不送).”军需员至少要付元钱才能买够晚饭需用的米.三、填空题III(每题12分,共60分)11.(12分)定义a□b=(a+2)(b+2)﹣2:算式1×3×5×7×9×11×13﹣(1□3□5□7□9□11)的计算结果是.12.(12分)如图中共能数出个三角形.13.(12分)甲乙两船从一条和的A、B两个码头同时出发,相向而行,甲船的静水速度比乙船的静水速度快20%,水速为乙船静水速度的10%,两船在距离中点10千米处相遇.A、B两个码头间的距离为千米.14.(12分)一个四位数,他最小的8个约数的和是43,那么这个四位回文数是.(回文数例如:1111、4334、3210123)15.(12分)小俊掷骰子游戏,刚开始他站在起点格(如表),如果他掷出1至5点,掷出几点就前进几格,如果他掷出6点或某次前进后超出终点格,则立即返回起点格;若小俊掷了四次恰好到达终点格,掷骰子的顺序有种可能.起123456789终2013年第11届“走美杯”小学数学竞赛试卷(六年级初赛B卷)参考答案与试题解析一、填空题I(每题8分,共40分)1.(8分)183×279×361﹣182×278×360的计算结果是()A.217017B.207217C.207216D.217016【分析】把361看作360+1,原式变为=(182+1)×(278+1)×(360+1)﹣182×278×360,然后把括号展开,通过相互抵消,把剩下的部分作进一步计算,得出结果.【解答】解:183×279×361﹣182×278×360=(182+1)×(278+1)×(360+1)﹣182×278×360=182×(278+1)×(360+1)﹣182×278×360+279×361=(182×278+182)×(360+1)﹣182×278×360+279×361=182×278×360+182×278+182×360+182﹣182×278×360+279×361=182×278+182×360+182+279×361=182×(278+360+1)+279×361=182×278+182×361+279×361=50596+(182+279)×361=50596+461×361=50596+166421=217017.故选:A【点评】通过数字拆分,运用运算技巧或运算定律,进行简算.2.(8分)假设地球是个均匀的球体(半径6378千米),围绕地球赤道正上方上有一圈铁丝,铁丝的周长比地球赤道长1米,在赤道和铁丝之间会有一个缝隙,下列动物中,有5种可以安全通过铁丝.①蚂蚁;②蜜蜂;③青蛙;④老鼠;⑤猫;⑥成年奶牛;⑦大象.【分析】根据题意,因为铁丝的周长大于地球赤道的周长,所以可把铁丝的周长和地球赤道的周长看作一个圆环理解,即外圆周长比内圆周长多1米,所以可用多出的周长长度除以2π即可得到圆环的宽度,然后再根据选项进行分析选择即可.【解答】解:铁丝与赤道的缝隙宽度为:1÷2÷3.14≈0.16(米)=16(厘米),所以宽度为16厘米的缝隙,可以通过的动物有:蚂蚁、蜜蜂、青蛙、老鼠、猫,而成年奶牛和大象则不能通过.故答案为:5.【点评】解答此题的关键是把铁丝和赤道围成的图形想象成圆环的问题进行解答即可.3.(8分)将0﹣5这六个数字中的4个数字填入图的圆圈中,没条线段两端的数字作差(大或小),可以得到5个差,这5个查恰好为1﹣5.在所有满足条件的填法中,四位数ABCD (首位不能为0)的最小值是1052.【分析】要使四位数最小,那么A为1,B为0,又因为必须有一个差为5,故C、D中有一个为5,若C为5,那么D只能为2或3;若D为5,那么C无解,因此,最小值为1052.【解答】解:因为四位数ABCD最小,因此A为1,B为0;又因为必须有一个差为5,故CD中有一个为5,若C为5,那么D只能为2或3;若D为5,那么C无解;因此,最小值为1052.故答案为:1052.【点评】此题解答的关键在于抓住“四位数ABCD的值最小”以及隐含条件“有一个差为5”,进行推理,解决问题.4.(8分)一次考试中,总人数的又3人得了3分,总人数的又4人得了4分,总人数的又5得了5分,其余人都得2分.已知得2分的人数和得5分的人数一样多,则有259人得了4分.【分析】设总人数为60份,那么3分的是20份+3人,4分的是15份加4人,5分的是12份加5人,剩下2分的是13份﹣12人,5分和2分的一样多,即:13份﹣12人=12份+5人,即1份=17人,由此即可求出得4分的人数.【解答】解:设总人数为60份,那么3分的是20份+3人,4分的是15份加4人,5分的是12份加5人,剩下2分的是13份﹣12人,5分和2分的一样多,即:13份﹣12人=12份+5人即1份=17人所以4分:15×17+4=255+4=259(人);答:则有259人得了4分.故答案为:259.【点评】此题较难,可以运用假设法,设出总人数为60份,分别用份数表示出3分、4分、5分、2分的人数,进而根据得2分的人数和得5分的人数一样多,列出等式,求出1份的人数,是解答此题的关键.5.(8分)在一个长20米、宽8米、深1.6米的长方体游泳池的四壁及地面贴磁砖,磁砖是边长为0.2米的正方形,共需磁砖6240块.【分析】由题意可知:需要贴瓷砖的面积就是水池的4个侧面的面积加上底面积,游泳池的长、宽、高已知,代入数据即可求出需要贴瓷砖的面积,再除以每块瓷砖的面积,就是所需要的瓷砖的块数.【解答】解:(20×8+20×1.6×2+8×1.6×2)÷(0.2×0.2)=(160+64+25.6)÷0.04=249.6÷0.04=6240(块);答:共需磁砖6240块.故答案为:6240.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.二、填空题II(每题10分,共50分)6.(10分)如图,正方形的边长是20厘米,阴影部分面积为400平方厘米.(π取3.14)【分析】阴影部分的面积=以20厘米为直径两个圆的面积﹣(一个圆的面积﹣正方形的面积).【解答】解:3.14×(20÷2)2×2﹣(3.14×202×2÷4﹣20×20)=628﹣(628﹣400)=628﹣228=400(平方厘米)故答案为:400.【点评】考查了组合图形的面积,本题解答关键是得到圆的面积.7.(10分)两个相同的玻璃杯,都装满了糖水,糖与水的质量比分别是1:7和1:9,现将这两杯糖水混合,混合后糖水的含糖率是11.25%.【分析】把每瓶糖水的重量看作单位“1”,则2瓶中的糖的重量分别为+,混合后的总重量为2,然后根据×100%=含糖率,解答即可.【解答】解:(+)÷2×100%=××100%=11.25%答:混合后糖水的含糖率是11.25%;故答案为:11.25.【点评】解答此题的关键是把每瓶糖水的重量看作单位“1”,然后根据含糖率公式进行解答即可.8.(10分)一个游戏需要8人参加,分成红、黄两队,每队各4人,一对兄弟来参加这个游戏,他们俩很想被分在同一队,但是谁被编入哪个队是完全随机的,那么这对兄弟被分进同一队的可能性是.【分析】根据题意,可知参加游戏的人共分成红、黄两队,所以这对兄弟参加这个游戏时,分法如下:哥哥分到红队、弟弟分到黄队,哥哥分到黄队、弟弟分到红队,哥哥和弟弟都分到黄队,哥哥和弟弟都分到红队,共有4种可能,其中他们俩被分在同一队有2种可能,进而求出被分进同一队的可能性是多少.【解答】解:兄弟二人分法如下:哥哥分到红队、弟弟分到黄队,哥哥分到黄队、弟弟分到红队,哥哥和弟弟都分到黄队,哥哥和弟弟都分到红队,共有4种可能;其中他们俩被分在同一队有:哥哥和弟弟都分到黄队,哥哥和弟弟都分到红队,共2种可能,所以2=;故答案为:.【点评】本题考查了简单事件发生的可能性的求解,即用“可能性=所求情况数÷总情况数”去解答.9.(10分)将数字1~9填入如图竖式的9个方格中,每个数字只能用一次,那么和的最大值为3972.【分析】要使和最大,则百位数字是9,那么上面第三个加数的最高位是3,第二个加数的最高位是8或7,若是8,则十位上相加的和不进位,则和的十位上数字最大,是7,那么还剩下1、2、4、5、6,经过计算可得:其中2+4+6=12,向前一位进1,则1+5=6,计算进位的1,是7,则上面十位上的两个方格中的数字分别是1和5,个位上的两个方格中数字分别是4和6,据此即可解答问题.【解答】解:根据题干分析可得:答:和的最大值是3972.故答案为:3972.【点评】解答此题的关键是先明确要使和最大,则百位上数字为9,由此确定千位和百位上的数字分别是3和8,那么十位上数字最大就是7,据此再根据剩下的数字特点进行分配即可解答问题.10.(10分)军区食堂晚饭需用1000斤大米和200斤小米,军需员到米店后发现米店正在促销,“大米1元1斤,每购10斤送1斤小米(不足10斤部分不送);小米2元一斤,每购5斤送2斤大米(不足5斤部分不送).”军需员至少要付1168元钱才能买够晚饭需用的米.【分析】仔细观察两种米的促销方法,会发现其折扣本质是相同的(如果把“10斤大米”和“5斤小米”看做一份促销品的话,那么10元钱能买到的折扣都是份促销品),故不存在多买大米好还是多买小米好的问题,只需凑足所需重量,就一定是最省的方法;设买大米x斤,小米y斤,列方程组:来估算大米与小米应买多少斤,得到大致重量:大米买950斤,小米买105斤,此时花了1160元,已有992斤大米和200斤小米,再用8元买8斤大米即可,最少用1168元.【解答】解:设买大米x斤,小米y斤,列方程组:,得到大致重量:大米买950斤,小米买105斤,此时花了1160元,已有992斤大米和200斤小米,再用8元买8斤大米即可,最少用1168元;答:军需员至少要付1168元钱才能买够晚饭需用的米.故答案为:1168.【点评】通过分析得出把“10斤大米”和“5斤小米”看做一份促销品的话,那么10元钱能买到的折扣都是份促销品,是解答此题的关键.三、填空题III(每题12分,共60分)11.(12分)定义a□b=(a+2)(b+2)﹣2:算式1×3×5×7×9×11×13﹣(1□3□5□7□9□11)的计算结果是2.【分析】根据题意得出a□b等于a与2的和乘b与2的和,再减去2,由此用此方法计算1□3□5□7□9□11的值即可.【解答】解:1□3□5□7□9□=[(1+2)×(3+2)﹣2]□5□7□9=13□5□7□□911=[(13+2)(5+2)﹣2]□7□9□11=103□7□9□11=[(103+2)(7+2)﹣2]□9□11=943□9□11=[(943+2)(9+2)﹣2]□11=10393□11=(10393+2)(11+2)﹣2=135135﹣2=135133;1×3×5×7×9×11×13﹣(1□3□5□7□9□11)=135135﹣135133=2;故答案为:2.【点评】关键是根据给出的式子,找出新的运算方法,再利用新的运算方法解决问题.12.(12分)如图中共能数出72个三角形.【分析】首先由图形可知一个小三角形组成的三角形有24个;再由两个三角形组成的有22个;由三个三角形组成的有12个;由4个三角形组成的有10个,由中间的多边形和3个三角形组成的有2个;由中间的多边形和多个三角形组成的有2个;相加即可得出答案.【解答】解:24+22+12+10+2+2=72(个)故答案为:72.【点评】考查了组合图形中三角形的计数,解答本题的关键是掌握计数原理和不在同一直线上的三点可以构成一个三角形.13.(12分)甲乙两船从一条和的A、B两个码头同时出发,相向而行,甲船的静水速度比乙船的静水速度快20%,水速为乙船静水速度的10%,两船在距离中点10千米处相遇.A、B两个码头间的距离为110千米.【分析】设水速为“1”,则乙船静水速度为10,甲船静水速度为12,若乙顺水、甲逆水,则两船在中点相遇,不符合要求.因此甲船顺水,甲的速度是13,乙的速度是9,若全程为22份,相遇时甲走了13份.因为两船在距离中点10千米处相遇,因此,2份为10千米,进而求出全程.【解答】解:水速为“1”,则乙船静水速度为10,甲船静水速度为12,若乙顺水、甲逆水,则两船在中点相遇,不符合要求.因此甲船顺水,甲的速度是13,乙的速度是9,若全程为22份,相遇时甲走了13份,因此,2份为10千米,全程为:10÷2×22=5×22=110(千米)答:A、B两个码头间的距离为110千米.故答案为:110.【点评】此题属于较难的题目,应认真分析,采用了设数法,结合推理进行解答.14.(12分)一个四位数,他最小的8个约数的和是43,那么这个四位回文数是2772.(回文数例如:1111、4334、3210123)【分析】最小的八个约数的和为43,约数首先为自然数,首先该有1和2(如果没2的话,就不会有偶约数,最小的8个奇数的和大于43),不该有5(有5的话首末位都为0)和10,而1+2+3+4+6+7+8+9=40不够43,而回文数必然是11的倍数,所以11也是这8个约数之一,把11考虑进去,就只有下面一种情形了:1+2+3+4+6+7+9+11=43,然后求出这8个数的最小公倍数即可;由此解答.【解答】解:由分析可知:约数首先为自然数,首先该有1和2,不该有5和10,而1+2+3+4+6+7+8+9=40不够43,而回文数必然是11的倍数,所以11也是这8个约数之一,把11考虑进去,则有:1+2+3+4+6+7+9+11=43,以上数的最小公倍数为:4×7×9×11=2772,正好满足要求;答:这个四位回文数是2772;故答案为:2772.【点评】明确回文数的含义:从左往右读,还是从右往左读,都是同一个数,称这样的数为“回文数”;然后根据题意,进行推导,求出这8个约数,是解答此题的关键.15.(12分)小俊掷骰子游戏,刚开始他站在起点格(如表),如果他掷出1至5点,掷出几点就前进几格,如果他掷出6点或某次前进后超出终点格,则立即返回起点格;若小俊掷了四次恰好到达终点格,掷骰子的顺序有92种可能.起123456789终【分析】从起点到终点是10号格,也就是只要掷出的和是10即可;从起点到终点可以分成三种情况,一种是没有掷出6,那么只要1~5中选择4个数的和是10即可,掷出的顺序不同的算不相同;第二种是第一次就掷出了6,然后从1~5中选择4个数的和是10即可;第三种情况第二次掷出6,第三次和第四次都掷出5;由此找出各种情况的可能,然后相加.【解答】解:情况一,没有掷出6;①1+1+3+5=10,考虑加数的位置,有12种可能;②1+1+4+4=10,考虑加数的位置,有6种可能;③1+2+2+5=10,考虑加数的位置,有12种可能;④1+2+3+4=10,考虑加数的位置,有24种可能;⑤1+3+3+3=10,考虑加数的位置,有4种可能;⑥2+2+3+3=10,考虑加数的位置,有6种可能;⑦2+2+2+4=10,考虑加数的位置,有4种可能;一共有12+6+12+24+4+6+4=68种可能;情况二,第一次就掷出了6,剩下3个数的和是10;①1+5+4=10,考虑加数的位置,有6种可能;②2+5+3=10,考虑加数的位置,有6种可能;③2+4+4=10,考虑加数的位置,有3种可能;④3+4+3=10,考虑加数的位置,有3种可能;一共有6+6+3+3=18种可能;第三种情况第二次掷出6,第三次和第四次都掷出5;那么第一次可以是1~6,就有6种可能;68+18+6=92(种)答:掷骰子的顺序有92种可能.故答案为:92.【点评】本题较复杂,解决本题要细心,正确的分类,然后逐步根据排列的方法和加法原理进行求解.。