人教版小学数学六年级下册鸽巢问题教案

合集下载

人教版数学六年级下册鸽巢问题教案3篇2024

人教版数学六年级下册鸽巢问题教案3篇2024

人教版数学六年级下册鸽巢问题教案3篇2024〖人教版数学六年级下册鸽巢问题教案第【1】篇〗鸽巢问题教案教学目标:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义;经历“鸽巢原理”的学习过程,体验观察,猜测,实验,推理等活动的学习方法,渗透数形结合的思想;通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

重点:整合教材,由浅入深,逐层深入引导学生把具体问题转化成鸽巢问题,最终达到深入浅出解决问题。

难点:找出鸽巢问题解决的窍门进行反复推理。

并对一些简单的实际问题加以“模型化”。

教学准备:课件、扑克牌。

学生准备:小棒、杯子。

教学过程:一、情境导入:由游戏“抢凳子”引入课题并板书课题“鸽巢问题”二、探究新知1.动手操作,动画演示(1)(摆一摆)4只鸽子飞进3个鸽巢,会怎么飞呢?请同学们用小棒当鸽子,杯子做鸽巢,试试看!并把各种结果用你喜欢的方法记录下来。

(2)(议一议)教师引导学生分析各种情况,得出结论,不管怎么飞,总有一个鸽巢里至少飞进了2只鸽子。

(3)(飞一飞):4只鸽子飞进3个鸽巢,要使每个鸽巢里鸽子最少,该怎么飞?你能发现什么?通过引导让学生说出平均分的'方法。

2.以此类推,发现规律(1)6只鸽子飞进了5个鸽巢,总有一个鸽巢里至少飞进了()只鸽子?你是怎么想的?(2)100只鸽子飞进了99个鸽巢,总有一个鸽巢至少飞进了()只鸽子?3.由浅入深,逐层深入(1)(飞一飞)5只鸽子飞进了3个鸽巢,总有一个鸽巢里至少飞进了()只鸽子?是怎么飞的?通过演示鸽子飞的过程,引导学生理解平均分后,剩下的鸽子数不能超过鸽巢数,把剩下的鸽子再平均分,才能保证总有一个鸽巢里至少有的鸽子数。

(2)(说一说)7本书放进3个抽屉,总有一个抽屉里至少放进了()本书?你是怎么想的?4.动画演示,掌握规律14只鸽子飞进了4个鸽巢,总有一个鸽巢至少飞进了4只鸽子。

为什么?5.学以致用,总结规律(1)10支铅笔放进3个笔筒中,总有一个笔筒里至少有4支铅笔,为什么?(2)28本书放进5个抽屉,总有一个抽屉里至少放进了几本书?为什么?(3)33只鸽子飞进了4个鸽巢,总有一个鸽巢至少飞进了9只鸽子?为什么?(4)思考:你能发现什么规律吗?引导学生总结出计算方法,列出算式,最终得出至少数=商+1。

人教版数学六年级下册鸽巢问题教案3篇

人教版数学六年级下册鸽巢问题教案3篇

人教版数学六年级下册鸽巢问题教案3篇〖人教版数学六年级下册鸽巢问题教案第【1】篇〗一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。

教学“鸽巢问题”,教材安排了两个例题。

这节课教学内容是例1。

例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。

初步接触“鸽巢问题”对于学生来说,有一定的难度。

教学时,应放手让学生自主探索。

教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。

二、教学内容教材第68页例1及“做一做”第1、2题。

三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。

2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。

3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。

四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。

教学难点:初步理解“鸽巢原理”,能口头表达推理过程。

五、教学准备一副扑克牌、课件等。

六、教学过程(一)引入新知1.抢凳子游戏。

2.抽扑克牌游戏。

教师:这类问题在数学上称为鸽巢问题(板书)。

因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。

【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)探究新知1.教学例1。

(1)把3枝铅笔放进2个笔筒中。

想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。

5.1鸽巢问题(教案)人教版六年级下册数学

5.1鸽巢问题(教案)人教版六年级下册数学

5.1 鸽巢问题(教案)人教版六年级下册数学我的教案:5.1 鸽巢问题一、教学内容今天我们要学习的章节是人教版六年级下册数学的第五章第一节——鸽巢问题。

这部分内容主要介绍了鸽巢问题的基本概念、原理和解决方法。

通过本节课的学习,学生将能够理解鸽巢问题的实质,掌握解决鸽巢问题的基本方法,并能应用于实际问题中。

二、教学目标1. 理解鸽巢问题的定义和原理;2. 掌握解决鸽巢问题的方法;3. 能够将鸽巢问题应用于实际问题中,提高解决问题的能力。

三、教学难点与重点1. 鸽巢问题的理解;2. 解决鸽巢问题的方法。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备;2. 学具:笔记本、文具。

五、教学过程1. 实践情景引入:讲述一个关于鸽巢问题的实际例子,引发学生对鸽巢问题的兴趣。

2. 理论知识讲解:通过PPT展示,讲解鸽巢问题的定义、原理和解决方法。

3. 例题讲解:给出一个典型的鸽巢问题,引导学生思考并解决问题。

4. 随堂练习:让学生独立解决一些鸽巢问题,巩固所学知识。

5. 板书设计:将鸽巢问题的解决方法进行板书,方便学生理解和记忆。

6. 作业设计:布置一些有关鸽巢问题的练习题,让学生课后巩固。

六、板书设计鸽巢问题解决方法:1. 确定鸽巢数量和鸽子数量;2. 利用排除法或枚举法,找到符合条件的解答。

七、作业设计1. 题目:小明有5个鸽巢,已知每个鸽巢至少要放一只鸽子,现有6只鸽子,请问如何放置这些鸽子?答案:可以将6只鸽子分别放入5个鸽巢中,保证每个鸽巢至少有一只鸽子。

2. 题目:有一个长10cm,宽8cm的长方形盒子,每只鸽子占一个格子,请问最多能放多少只鸽子?答案:长方形盒子可以分成108=80个格子,每只鸽子占一个格子,所以最多能放80只鸽子。

八、课后反思及拓展延伸通过本节课的学习,学生对鸽巢问题有了基本的认识和解决方法。

在课后,学生可以通过查阅资料,了解更多的鸽巢问题及其解决方法,提高自己的解决问题的能力。

2023年人教版数学六年级下册鸽巢问题教案(精选3篇)

2023年人教版数学六年级下册鸽巢问题教案(精选3篇)

人教版数学六年级下册鸽巢问题教案(精选3篇)〖人教版数学六年级下册鸽巢问题教案第【1】篇〗教学内容教科书P70例3,完成教科书P71“练习十三”中第4、5题。

教学目标1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思考,掌握“抽屉原理”的反向求法。

2.经历运用“抽屉原理”解决问题的过程,体验观察猜想、实践操作的学习方法。

3.培养学生自己动手操作、动脑思考的习惯,体会数学与日常生活的联系,了解数学的价值。

教学重点引导学生把具体问题转化为“抽屉原理”,找出“抽屉”有几个,再利用“抽屉原理”进行逆向推理。

教学难点理解“抽屉问题”中的一些基本原理,正确辨析“鸽巢问题”中被分的物品。

教学准备课件。

教学过程一、创设生活情境,导入新课课件出示有趣的生活情境。

【学情预设】学生有的猜2只,有的猜3只、5只、7只……师:同学们通过思考,都有了自己比较满意的答案,但正确的答案只有一个,只要认真学习今天的知识,相信你一定能找到正确的答案。

下面就让我们一起来继续研究“鸽巢问题”吧![板书课题:鸽巢问题(3)]【设计意图】有趣的教学情境不仅能营造愉悦的教学氛围,及时集中学生的注意力,而且在数学与生活实际之间架起了桥梁,使学生对新知的学习充满了期待。

二、合作探究,学习新知1.呈现问题,引出探究。

课件出示教科书P70例3。

师:大家来猜测一下答案是什么?【学情预设】学生可能猜测出的答案有2个、3个、5个。

师:同学们对答案进行了猜测,你们有什么方法能验证自己的猜测是否正确?想一想,可以在小组内合作研究。

学生汇报交流,验证答案,课件配合出示。

【学情预设】预设1:至少摸2个球就能保证是同色的。

验证:球的颜色共有2种,如果只摸出2个球,会出现以上三种情况,如果摸出的2个球正好是一红一蓝时就不满足条件。

预设2:摸出5个球,肯定有2个是同色的。

验证:把红、蓝两种颜色看成2个“抽屉”,因为5÷2=2……1,所以摸出5个球时,至少有3个球是同色的,摸出5个球不是最少的。

六年级数学下册教案-5.鸽巢问题-人教版

六年级数学下册教案-5.鸽巢问题-人教版

六年级数学下册教案:鸽巢问题(人教版)一、教学目标1. 知识与技能:让学生掌握鸽巢原理,理解其在实际生活中的应用。

2. 过程与方法:通过实际操作,培养学生运用鸽巢原理解决问题的能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养其逻辑思维能力。

二、教学内容1. 鸽巢原理的定义:如果每个鸽巢里最多只能放一只鸽子,那么如果有更多的鸽子,就必然有至少一只鸽子没有自己的鸽巢。

2. 鸽巢原理的应用:如何将物体分配到不同的组中,确保每组至少有一个物体。

三、教学过程1. 导入通过一个实际例子引入鸽巢原理:如果一家公司有10个部门,但是有11个新员工需要分配,那么至少有一个部门会有两个新员工。

2. 探索让学生分组,每组有10个鸽巢和11个鸽子,让学生尝试将鸽子放入鸽巢,观察结果。

3. 讲解讲解鸽巢原理的定义,并通过学生的实际操作,让学生理解鸽巢原理。

4. 应用给出几个实际问题,让学生运用鸽巢原理解决。

四、教学评价通过学生在课堂上的参与度,以及他们在解决问题时的表现,来评价他们对鸽巢原理的理解和应用。

五、教学反思教师应反思自己在教学过程中的教学方法,以及如何更好地激发学生的学习兴趣,提高他们的逻辑思维能力。

六、课后作业1. 完成《数学》课本第32页的练习题1、2、3。

2. 思考:在生活中,还有哪些问题可以用鸽巢原理解决?七、教学资源1. 《数学》课本。

2. 鸽巢和鸽子的教具。

八、教学建议1. 教师应注重培养学生的实际操作能力,让学生在实践中理解鸽巢原理。

2. 教师应鼓励学生提出问题,培养他们的批判性思维。

在以上的教案中,需要重点关注的是“教学过程”部分,特别是“探索”环节。

这个环节是学生通过实际操作来理解鸽巢原理的关键步骤,对于学生能否真正掌握和应用鸽巢原理至关重要。

三、教学过程(详细补充)2. 探索在探索环节,教师应设计一系列的实践活动,让学生在动手操作中直观地感受鸽巢原理。

以下是具体的活动步骤和教师指导要点:步骤一:准备材料- 教师为每个小组准备一套包含10个鸽巢和11个鸽子的教具。

六年级数学鸽巢问题教案

六年级数学鸽巢问题教案

六年级数学鸽巢问题教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告总结、合同协议、申报材料、规章制度、计划方案、条据书信、应急预案、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as report summaries, contract agreements, application materials, rules and regulations, planning schemes, doctrine letters, emergency plans, experiences, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!六年级数学鸽巢问题教案六年级数学鸽巢问题教案(通用10篇)作为一无名无私奉献的教育工作者,通常会被要求编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。

2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。

3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。

4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。

二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

三、教学准备纸杯、吸管、多媒体课件。

四、教学过程(一)创设情境揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。

(二)探索新知(1)初步感知。

把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有”“至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。

教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有”“至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。

通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。

(2)逐步深入初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。

(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。

六年级下册数学教案-5.1 数学广角——鸽巢问题|人教版 (14)

六年级下册数学教案-5.1 数学广角——鸽巢问题|人教版  (14)

六年级下册数学教案-5.1 数学广角——鸽巢问题|人教版一、教学目标1. 让学生理解鸽巢原理,并能运用鸽巢原理解决实际问题。

2. 培养学生的逻辑思维能力和推理能力。

3. 培养学生运用数学语言进行表达和交流的能力。

二、教学内容本节课主要学习鸽巢原理,即如果有n个鸽巢和n 1只鸽子,那么至少有一个鸽巢里有两只或两只以上的鸽子。

通过生活中的实例,让学生感受鸽巢原理的应用。

三、教学重点与难点1. 教学重点:理解鸽巢原理,并能运用鸽巢原理解决实际问题。

2. 教学难点:如何引导学生从实际问题中发现鸽巢原理,并运用鸽巢原理解决实际问题。

四、教学过程1. 导入新课通过一个生活中的实例,引导学生思考:如果有10个鸽巢和11只鸽子,会发生什么现象?2. 探究新知(1)让学生观察、思考,尝试找出其中的规律。

(2)引导学生总结出鸽巢原理。

(3)让学生用自己的语言表述鸽巢原理。

3. 实践应用(1)让学生运用鸽巢原理解决实际问题。

(2)组织学生进行小组讨论,分享解题思路和答案。

4. 总结与拓展(1)引导学生回顾本节课所学内容,总结鸽巢原理。

(2)提出具有挑战性的问题,激发学生继续探索的兴趣。

五、作业布置1. 完成课后练习题。

2. 收集生活中的鸽巢问题实例,与同学分享。

六、板书设计1. 板书鸽巢原理的定义。

2. 示例题目及解答过程。

七、课后反思本节课通过生活中的实例,让学生感受鸽巢原理的应用,培养学生的逻辑思维能力和推理能力。

在教学过程中,要注意引导学生从实际问题中发现鸽巢原理,并运用鸽巢原理解决实际问题。

同时,要关注学生的课堂参与度,鼓励学生积极发言,培养学生的数学表达能力。

八、教学评价1. 课后练习题的正确率。

2. 学生在课堂上的发言情况。

3. 学生对鸽巢原理的理解程度。

在以上提供的教案中,有一个细节需要重点关注,那就是“实践应用”环节。

这个环节是学生将理论知识转化为实际解决问题能力的关键步骤,也是检验学生是否真正理解和掌握鸽巢原理的重要时刻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版小学数学六年级下册《鸽巢问题》教学设计
【教学内容】人教版六年级下册第68--69页《数学广角---鸽巢问题》例1、例2。

【教学目标】
1.经历鸽巢原理的探究过程,初步理解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。

2.通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。

3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

4.使学生经历将具体问题“数学化”的过程,培养学生的“建模”思想。

【教学重点】经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。

【教学难点】理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

【教学过程】
一、创设情境引入课题
1.“魔术”表演:
规则:一副牌,取出大小王,还剩52张,你们5人每人随意抽一张。

抽到牌后藏好,等老师来猜。

大家猜猜看至少有几个同学的扑克牌花色是相同的?
猜谜:老师肯定的说:“这5张牌中,至少有2张牌是同花色的。

老师猜的对不对?”
请5个同学举起手中的牌让同学们见证奇迹。

大家表现这么好,我们再来玩游戏。

2.玩游戏
游戏要求:老师喊“一、二、三开始”以后,请你们5个都坐在椅子上,每个人必须都坐下。

3. 导入课题:刚才的“魔术”表演和抢椅子游戏,这里面蕴藏着一个非常有趣的数学问题,这节课我们就一起来研究这类问题,下面我们先从简单的情况入手。

“鸽巢问题”。

(板书课题)
二、合作探究发现规律
(一)教学例1(由枚举法引出假设法,初步“建模”——平均分。

)出示例1把4支笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支笔。

1. 理解“总有”和“至少”的意思。

2.运用“枚举法”初步探究。

(1)把4支笔放进3个笔筒里,有几种不同的放法?自己动手在小组内摆一摆,画一画,说一说,把出现几种情况都记录下来。

(2)汇报展示不同的方法。

(4)讲解:像这样一一列举出来的方法,在数学上叫枚举法。

(板书:枚举法)
3.通过比较,引导“假设法”。

启发:能不能找到一种更为直接的方法,只摆一种情况也能得到这个结论?
4. 初步“建模”---- 平均分。

引导:运用“假设法”先在每个笔筒里分1支,这种均等的分法,又叫什么分?用什么方法计算?你能列式表示吗?
板书: 4÷3=1……1 1+1=2
5. 概括“鸽巢原理”的一般规律。

追问:如果增加笔和笔筒的数量,又会怎样呢?
出示(1)把5支笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少放进几支笔?
(2)把6支笔放进5个笔筒里,不管怎么放,总有一个笔筒里至少放进几支笔?
(3)把100支笔放进99个笔筒里,不管怎么放,总有一个笔筒里至少放进几支笔?
启发:“照样子,你能说一句这样的话吗?”
提问:发现了什么规律?
概括:只要笔的数量比笔筒数量多1,总有一个笔筒里至少放进2支笔。

提问:难道这个规律只有在这种情况下才存在吗?如果余数不是1,这个规律还存在吗?
出示:5只鸽子飞进了3个鸽笼,那么至少又会有几只鸽子飞进同一个鸽笼呢?
反馈质疑:运用“假设法”,每个鸽笼里先平均飞进1只,余下的两只
会怎样飞呢?
追问:哪种情况更符合“至少”这个结论呢?
优化答案:5÷3=1……2 1+1=2
7. 对比择优,体会“假设法”的优越。

对比:刚才用枚举和假设两种方法进行思考,你认为哪一种方法更好呢?为什么?
发现:枚举法是一一列举来验证,在数字比较大的时候有局限性,而假设法先用平均分的方法在数据大的时候也同样适用。

(二)了解小资料——“鸽巢原理”。

(三)教学例2(具体问题“数学化”,深入“建模”——至少数=商+1)1.狄里克雷发现了这个规律后,并没有停止对现象的研究,又发现了问题。

如果鸽子数量更多一些呢?
2.出示例2 把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书?为什么?
3.组内同学交流汇报。

4.出示:如果有8本书会怎样呢?10本书呢?
5.总结规律。

师:如果继续增加书本的数量,你还能回答刚才的问题吗?
看来你们又发现规律了,是吗?说一说。

总结概括:书本放进抽屉,如果平均分后有剩余,那么总有一个抽屉里放进“商+1”本书。

6、你理解上课前表演的扑克牌魔术的道理了吗?
三、联系生活学以致用
1. 基础园----我会填空
(1)三个小朋友做游戏,至少有()个小朋友性别相同。

(2)5名同学一起练投篮,共投进41个球,那么必定有1人至少投进()个球。

(3)随意找13位老师,他们中至少有()人属相相同。

(4)给一个正方体的6个面分别涂上蓝、黄两种颜色。

不论怎么涂至少有()个面涂的颜色相同。

2. 拓展练习。

下关九小全校有842人,至少有()人的生日是在同一季度;至少有()人的生日是在同一个月;至少有()人的生日是在同一天。

四、课堂总结反思提升
师:通过这节课的学习,说说自己的收获或感受吧!
1.学生反思总结数学思想方法,归纳所学知识。

2.师:最后,老师送同学们一句话,在学习中“只要留心观察加上细心思考,总有新的发现!”。

相关文档
最新文档