黑龙江省哈尔滨市光华中学2019-2020学年度第一学期九年级数学期中测试(无答案)

合集下载

哈尔滨市20192020学年九年级上期中考试数学试题及

哈尔滨市20192020学年九年级上期中考试数学试题及

哈尔滨市2019-2020 学年九年级上期中考试数学试题及答案一、选择题(每题 3 分,共 30 分)1.-2 的绝对值是 ()A.1B .2C .2D .1 222.以下运算正确的选项是()A. x2x6x8B. x4x x4C.x2 x4x8D.( x2 )3x63.在以下绿色食品、回收、节能、节水四个标记中, 是轴对称图形的是()A. B. C. D.4.以下图是由 6 个相同的小立方块搭成的几何体,则这个几何体的俯视图是(.)5. 把抛物线y x2向左平移 1 个单位,而后向上平移 3 个单位,则平移后抛物线的表达式为()A.C.y(x 1)23B. y( x 1)23 y( x 1)23D. y( x 1)236 .对于反比例函数y = 2 图象的性质,下列结论不正确的是()xA.经过点( 1,2)B.y 随 x 的增大而减小C.在一、三象限内D.若 x> 1,则 y<27.如图,在△ABC中,点D、 E 分别在AB、 AC边上, DE∥ BC,若 AD∶ AB=3∶ 4, AE=6,则AC等于 ( )A. 3B. 4C. 6D. 88.如图, CD为⊙ O的直径,且 CD⊥弦 AB,∠ AOC=50°,则∠ B 大小为 ( )A.25 °°°°AD EB C7题图8题图9题图10题图9.在自习课上,小芳同学将一张长方形纸片ABCD按如下图的方式折叠起来,她发现D、 B 两点均落在了对角线AC的中点 O处,且四边形AECF是菱形 . 若 AB= 3cm,则暗影部分的面积为()A. 1cm2B. 2cm2C. 2 cm2 D . 3 cm210.为鼓舞市民节俭用水,我市自来水企业按分段收费标准收费,右图反应的是每个月收取水费 y(元)与用水量 x( 吨 ) 之间的函数关系.以下结论中:①小聪家五月份用水7 吨,应交水费15.4 元;② 10 吨以上每吨花费比10 吨以下每吨花费多;③ 10 吨以上对应的函数分析式为y=3.5x-13 ;④小聪家三、四月份分别交水费29 元和19.8 元,则四月份比三月份节俭用水 3 吨,此中正确的有()个A . 1B. 2C.3D. 4二、填空题 ( 每题 3 分.合计30 分 )11.南海是的固有领海,面积约 3600000km2,将 3600000 用科学记数法可表示为.12.计算 2712 的结果是.13.分解因式:3a26ab 3b2=.14.袋中有相同大小的 5 个球,此中 3 个红球, 2 个白球,从袋中随意地摸出一个球,这个球是红色的概率是.15.如图,路灯距离地面8 米,身高米的小明站在距离灯的底部(点O) 20 米的 A 处,则小明的影子AM长为米.15题图16题图16.如图,⊙ O的半径为 4cm,正六边形 ABCDEF内接于⊙ O,则图中暗影部分面积为2cm .(结果保存π)17.一套夏装的进价为200 元,若按标价的八折销售,可赢利72 元,则标价为每套__________元 .18.△ ABC中, DF 是 AB 的垂直均分线,交BC 于 D, EG是 AC的垂直均分线,交BC于 E,若∠ DAE=20°,则∠ BAC等于°19.等腰△ ABC中, AB=AC,点 O 为高线 AD上一点,⊙ O与 AB、 AC相切于点 E、 F,交 BC于点 G、 H,连结 EG,若 BG=EG=7, AE: BE=2:5,则 GH的长为.S△DEC1, BC=______ 20. △ ABC中, AB=AC, AD⊥ BC,∠ BAC=∠ACG=4∠ EDC, CG=AD=4,S△ACG4三、解答题 ( 此中 21~ 22题各 7 分, 23~24 题各 8 分, 25~ 27 题各 10 分,合计60 分 )21. 先化简,再求值13x21的值,此中 x 4 sin 45 2cos60 .x 2x222.在正方形网格图①、图②、图③中各画一个等腰三角形.要求:每个等腰三角形的一个极点为格点 A,其他极点从格点 B. C. D.E. F. G. H 中选用,而且所画的三角形均不全等.图①图②图③23.为了响应国家提出的“每日锻炼1 小时”的呼吁,某校踊跃展开了形式多样的“阳光体育”运动,小明对该班同学参加锻炼的状况进行了统计,(每人只好选此中一项)并绘制了下边的图 1 和图 2,请依据图中供给的信息解答以下问题:⑴小明此次一共检查了多少名学生?⑵经过计算补全条形统计图 .⑶若该校有 2000 名学生,请预计该校喜爱足球的学生约有多少人?24. 在△ ABC和△ EDC中, AC=CE=CB=CD,∠ ACB=∠ ECD=90°, AB与 CE交于 F, ED与 AB、 BC 分别交于 M,H(1)求证: CF=CH(2)如图( 2)△ ABC不动,将△ EDC绕点 C 旋转到∠ BCE=45°时,试判断四边形ACDM的形状并证明 .25.某玩具厂接到 600 件玩具的订单后,决定由甲、乙两车间共同达成生产任务,已知甲车间工作效率是乙车间的 1.5 倍,乙车间独自达成此项生产任务比甲车间独自达成多用 5 天 .(1)求甲、乙两车间均匀每日各能制作多少件玩具?(2)两车间同时动工 2 天后,暂时又增添了100 件的玩具生产任务,为了不超出7 天达成任务,两车间从第 3 天起各自调整工作效率,提升工作效率后甲车间的工作效率是乙车间工作效率的 2 倍少 2 件,求乙车间调整工作效率后每日起码生产多少件玩具.26. 如图,△ ABC 中, AC=AB ,以 AB 为直径的⊙ O 分别交直线 AC 、 BC 于 D 、 E 两点 .( 1)如图 1,若∠ C=60°,求证: AD=BE ;( 2)如图 2,过点 A 作 AF 平行 BC ,交⊙ O 于点 F ,点 G 为 AF 上一点,连结 OG 、 OF ,若∠ GOF=90°3∠ ABC ,求证 AC=2AG ;2(3)在( 2)的条件下 , 在 AB 的延伸线上取点 M,连结 GM ,使∠ M=2∠ GOF,若 AD : CD=1:3,BC=2 6 , 求 BM 的长 .27. 已知:抛物线yx 2 bx c 与 x 轴交点 A(-1 , 0) 和点 B(3 , 0) ,与 y 轴交于点 C .( 1)求抛物线的分析式;( 2) P 为直线 BC 上方抛物线上一点,过点 P 作 PH ⊥x 轴于点 H ,交 BC 于点 D ,连结 PC 、PB ,设△ PBC 的面积长为 S ,点 P 的横坐标为 t ,求 S 与 t 的函数关系式,并直接写出自变量 t 的取值范围;(3)如图在( 2)的条件下,在线段OC上取点 M,使 CM=2DH,在第一象限的抛物线上取点N,连结 DM、 DN ,过点 M作 MG⊥ DN交直线 PD于点 G,连结 NG,∠ MDC=∠NDG,∠CMG=∠ NGM,求线段 NG的长 .参照答案11.3.6 × 20612. 3 13.3(a-b)214. 315.5 16.° 19.106521. 原式 = 1, x=2 2 -1, 将 x=2 2 -1 代入得:2 .22.1 x423. 解:( 1) 20÷ 40%=50(人),因此,此次一共检查了 50 名学生;( 2) 50-20-10-15=5 (人),补全统计图如图; (3)10× 100%=20%, 2000× 20%=400(人),答:预计该校喜爱足球的学生约有 400 人.5024.1 ,∵ AC=CE=CB=CD 且∠ ACB=∠ ECD=90°∴∠ A=∠ D=45° ∠ACB-∠ ECB=∠ ECD-∠ ECB 即∠ 1=∠ 2 又∵ AC=CD ∴△ ACF ≌△ DCH ∴ FC=HC 2,假定四边形 ACDM 是平行四边形 ∵四边形 ACDM 是平行四边形∴∠ A=∠D ,∠ AMD=∠ ACD ∵∠ AMD=∠E+∠ B+∠ECB ∠ACD=∠ 1+∠ 2+∠ ECB ∴∠ E+∠ B=∠ 1+∠ 2 又∵∠ E=∠B=45°,∠ 1=∠ 2 ∴∠ 1=∠ 2=45° 则当△ EDC 旋转 45°时四边形 ACDM 是平行四边形 . 25. ( 1)设乙工效为 x 件 / 天,则甲工效为 件 / 天 . 600 600 件 / 天;乙工效为 40 件 / 天 .5,解之得: x=40. 因此甲工效为 60x( 2)设乙调整后工效为 a 件/ 天,则甲工效为 (2a-2) 件 / 天;(40+60) × 2+5(2a-2)+5a ≥ 600+100, 解之得: a ≥34. 因此乙车间每日起码生产 34 件玩具 .26. ( 1)证明:由于 AC=AB,∠C=60°,因此△ ABD 为等边三角形因此∠ A=∠B, 因此弧 AE=弧 BD.由于弧 AE=弧 AD+弧 DE ,弧 BD=弧 BE+弧 DE.因此弧 AD=弧 BE. 因此 AD=BE.( 2)证明:设∠ ABC=ɑ,由于 AC=AB,因此∠ B=∠ C,由于 AF//BC, 因此∠ OAF=∠ B,由于 OA=OF,因此∠ A=∠ B=ɑ, 因此∠ AOF=180° -2 ɑ,由于∠ FOG=90° - 3,因此∠ AOG=∠2 AOF-∠ FOG=90° - 1.2由于∠ AGO=∠ F+∠ FOG=90° - 1, 因此∠ AOG=∠ AGO ,因此 OA=AG,因此 AB=2AG.因此2AC=2AG.27.(2)作 PH⊥x 轴于 H,交 BC于点 F,P(m, -t 2+2t+3) , F(t,-t+3)PF=-t 2+3t ,S△PBC=S△PCF+S△PBFS=1(t 2t t1(t 2t t)1 t23 t(0<t<3)2 3 )2 3 ) (322。

2019-2020年第一学期九年级期中数学考试试卷含答案

2019-2020年第一学期九年级期中数学考试试卷含答案

2019-2020年第一学期九年级期中数学考试试卷一、精心选一选(本大题有10小题,每小题4分,共40分) 1. 已知⊙O 的半径为4cm ,点P 在⊙O 上,则OP 的长为( )A .1cmB .2cmC .4cmD .8cm2.若37a b =,则b aa -等于( ) A .43 B.34 C. 37 D. 733.抛物线y =x 2-2x +3的对称轴为( )A .直线x =1B .直线x =-1C .直线x =2D .直线x =-24. 如图,在⊙O 中,点M 是︵AB 的中点,连结MO 并延长,交⊙O 于点N ,连结BN .若∠AOB =140°,则∠N 的度数为( )A .70°B .40°C .35°D .20°第4题 第6题 第8题5.在一个不透明的口袋里装有2个白球、3个黑球和3个红球,它们除了颜色外其余都相同.现随机从袋里摸出1个球,则摸出白球的概率是( ) A .12B .38C .13D .146. 如图,由六段相等的圆弧组成的三叶花,每段圆弧都是四分之一圆周,OA =OB =OC =2,则这朵三叶花的面积为( ) A .33-πB .63-πC .36-πD .66-π7. 已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( ) A .AB 2=AC•BCB .BC 2=AC•BC C .AC=BC D .BC=AC8. 如图,AB 是半圆的直径,点C 是弧AB 的中点,点E 是弧AC 的中点,连结EB 、CA 交于点F ,则BF EF的值为( ) A.41 B.422- C.221- D.212- O N MBA9. 如图,抛物线y =x 2+b x +c 与直线y=x 交于(1,1)和(3,3)两点,以下结论:①b 2﹣4c >0;②3b+c+6=0;③当x 2+b x +c >时,x >2;④当1<x <3时,x 2+(b ﹣1)x +c <0,其中正确的序号是( ) A .①②④B .②③④C .②④D .③④10. 若平面直角坐标系内的点 M 满足横、纵坐标都为整数,则把点 M 叫做“整点”.例如:P (1,0)、Q (2,-2)都是“整点”.抛物线 y =mx 2-2mx +m -1(m >0)与 x 轴交于 A 、 B 两点,若该抛物线在 A 、B 之间的部分与线段 A B 所围成的区域(包括边界)恰有 6 个整点,则 m 的取值范围是( ) A .18≤ m ≤ 14 B .19< m ≤ 14 C .19 ≤ m < 12 D .19 < m < 14二、细心填一填(本大题有6小题,每小题5分,共30分)11.已知线段c 是线段a 、b 的比例中项,且a =4,b =9,则线段c 的长度为 . 12.小颖在二次函数y=2x 2+4x+5的图象上找到三点(-1,y 1),(21,y 2),(-321,y 3),则你认为y 1,y 2,y 3的大小关系应为___________.(用 < 号连接)13. 如图水库堤坝的横断面是梯形,BC 长为30m ,CD 长为20m ,斜坡AB 的坡比为1:3,斜坡CD 的坡比为1:2,则坝底的宽AD 为 m 。

哈尔滨市2020版九年级上学期数学期中考试试卷A卷

哈尔滨市2020版九年级上学期数学期中考试试卷A卷

哈尔滨市2020版九年级上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017八上·确山期中) 下列“表情”中属于轴对称图形的是()A .B .C .D .2. (2分)下列关于的方程中,一定是一元二次方程的为()A .B .C .D .3. (2分)将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A . y=(x-1)2+2B . y=(x+1)2+2C . y=(x-1)2-2D . y=(x+1)2-24. (2分)(2019·大连模拟) 如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE 的长为()A . 4B . 2.4C . 4.8D . 55. (2分)下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A . x2+4=0B . x2-4x+6=0C . x2+x+3=0D . x2+2x-1=06. (2分)(2016·深圳模拟) 如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A . 40°B . 45°C . 50°D . 55°7. (2分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2 .若设道路的宽为xm,则下面所列方程正确的是()A . (32-x)(20-x)=32×20-570B . 32x+2×20x=32×20-570C . 32x+2×20x-2x2=570D . (32-2x)(20-x)= 5708. (2分) (2018九上·天台月考) 在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A . (3,﹣5)B . (﹣3,5)C . (3,5)D . (﹣3,﹣5)9. (2分) (2016九上·仙游期末) 若直线y=3x+m经过第一、三、四象限,则抛物线y=(x-m) +1的顶点在第象限()A . 一B . 二C . 三D . 四10. (2分) (2018九下·广东模拟) 如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧 AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为点D,E;在点C的运动过程中,下列说法正确的是()A . 扇形AOB的面积为B . 弧BC的长为C . ∠DOE=45°D . 线段DE的长是11. (2分) (2018·徐汇模拟) 对于抛物线y=﹣(x+2)2+3,下列结论中正确结论的个数为()①抛物线的开口向下;②对称轴是直线x=﹣2;③图象不经过第一象限;④当x>2时,y随x的增大而减小.A . 4B . 3C . 2D . 112. (2分) (2018九上·西安期中) 如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH┴AF 与点H,那么CH的长是()A .B .C .D .二、填空题 (共10题;共24分)13. (1分)关于x的一元二次方程x2+bx+c=0的两根为x1=﹣1,x2=2,则x2+bx+c可分解为________.14. (1分)若点A(﹣3,y1)、B(0,y2)是二次函数y=﹣2(x﹣1)2+3图象上的两点,那么y1与y2的大小关系是________ (填y1>y2、y1=y2或y1<y2).15. (1分)(2020·濉溪模拟) 如图,是的直径,弦连接并延长交于点连接交于点若则的度数是________.16. (1分) (2018九上·汉阳期中) 如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为________.17. (2分)(2020·吉林模拟) 如图,将△ 绕点逆时针旋转得到△ ,其中点与点时对应点,与点是对应点,点落在边上,连结,若∠ =45°,=6,=4,则=________.18. (1分)(2020·南通) 若x1 , x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于________.19. (1分) (2019九上·崇明期末) 已知抛物线,那么这条抛物线的顶点坐标为________.20. (1分)某大型超市连锁集团元月份销售额为300万元,三月份达到了720万元,若二、三月份两个月平均每月增长率为x,则根据题意列出方程是________.21. (5分)用适当的方法解下列方程(1)(3x-1)2=(x+1)2(2)x2-2x-3=0(3)x2+6x=1(4)用配方法解方程:x2-4x+1=022. (10分)(2018·南岗模拟) 如图,在方格纸中,每一个小正方形的边长为1,△ABC的三个顶点都在小方格的顶点上,按要求画一个三角形.(1)将△ABC先向右平移4个单位,再向上平移1个单位,在图1中画出示意图;(2)以点C为旋转中心,将△ABC顺时针旋转90°,在图2中画出示意图.三、解答题 (共4题;共45分)23. (5分)某市全力改善民生,推动民生状况持续改善,2016年改造“暖房子”约255万平方米,预计到2018年底,该市改造“暖房子”将达到约367.2万平方米,求2016年底至2018年底该市改造“暖房子”平方米数的年平均增长率.24. (15分) (2019九上·温岭月考) 如图,二次函数y2=ax2+bx+3的图象与x轴相交于点A(−3,0)、B(1,0),交y轴于点C,C、D是二次函数图象上的一对对称点,一次函数y1=mx+n的图象经过B.D两点.(1)求a、b的值及点D的坐标;(2)根据图象写出y2>y1时,x的取值范围.25. (10分)(2020·静安模拟) 在Rt△ABC中,∠ACB=90°,AC=15,sin∠BAC=.点D在边AB上(不与点A、B重合),以AD为半径的⊙A与射线AC相交于点E,射线DE与射线BC相交于点F,射线AF与⊙A交于点G.(1)如图,设AD=x,用x的代数式表示DE的长;(2)如果点E是的中点,求∠DFA的余切值;(3)如果△AFD为直角三角形,求DE的长.26. (15分) (2019·保定模拟) 已知点P(2,-3)在抛物线L:y=ax2-2ax+a+k(a,k均为常数且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴;(2)当L经过点(4,-7)时,求此时L的表达式及其顶点坐标;(3)横,纵坐标都是整数的点叫做整点.如图14,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有5个整点,求a的取值范围;(4)点M(x1 , y1),N(x2 , y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2 ,直接写出t的取值范围.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共10题;共24分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、22-2、三、解答题 (共4题;共45分)23-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、26-4、。

黑龙江省哈尔滨市道里区光华中学2019-2020学年度上学期九年级9月阶段测试数学(五四制)学科试卷

黑龙江省哈尔滨市道里区光华中学2019-2020学年度上学期九年级9月阶段测试数学(五四制)学科试卷

哈尔滨市光华中学阶段测试九年级数学试卷2019-10-12一、选择题(每小题3分,共计30分)1.某地某日的最高气温为3℃,最低气温为-9℃,则这一天的最高气温比最低气温高( ). A.-12℃ B .-6℃ C .6℃ D .12℃2. 下列校徽图案中,是轴对称图形的是( ).A B C D3.抛物线的顶点坐标是( ).A (-2,3)B (2,3)C (-2,-3)D (2,-3) 4.Rt△ABC 中,∠C=90°,sinB=,则tanA 的值为( ). A . B .C .D .5. 点(﹣1,4)在反比例函数y =的图象上,则下列各点在此函数图象上的是( ). A.(4,﹣1)B.(﹣,1)C.(﹣4,﹣1)D.(,2)6.如图,边长为1的正方形ABCD 绕点A 逆时针旋转30°得到 正方形AB C D ''',图中阴影部分的面积为( ).A.12B.33C.313-D.314-7. 反比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ).A.2B.-2C.4D. -4第7题图8.如图,在综合实践活动中,小明在学校门口的点C 处测得树的顶端A 仰角为37°,同时测得BC=20米,则树的高AB(单位:米)为( ). A.020sin 37B.20tan 37°C.020tan 37 D.20sin 37°第8题图9.某农场2016年蔬菜产量为50吨,2018年蔬菜产量为60.5吨,该农场蔬菜产量的年平均增长率相同.设该农场蔬菜产量的年平均增长率为x,则根据题意可列方程为( ). A .50)1(5.602=-x B .5.60)1(502=-x C .5.60)1(502=+x D .50)1(5.602=+x10.已知二次函数的图象如图所示,给出以下结论:① ;② ;③;④.其中所有正确结论的序号是( ).A. ③④B. ②③C. ①④D. ①②二、填空题(每小题3分,共计30分) 11.哈西和谐大道跨线桥总投资250 000 000元,将250 000 000用科学记数法表示为 . 12.在函数y=2x-4x中,自变量x 的取值范围是 . 13.抛物线342+-=x x y 与x 轴于交于A 、B 两点,交y 轴于点C ,则△ABC 的面积是 .14. .若反比例函数2ky x-=的图象位于第二、四象限,则k 的取值范围是 . 15.已知函数y=3x 2-6x+k(k 为常数)的图象经过点A(0.85,y 1),B(1.1,y 2),C(,y 3), 请用“<”连接y 1 、y 2 、y 3 的结果为__________________________.16.图中是抛物线形拱桥,当拱顶离水面 2m 时,水面宽4 m . 水面下降1 m , 水面宽度增加 m.第16题图CDB '错错第6题图第10题图17.如图,在Rt △ABC 中,∠C=900,sinA=53,AB=10,D 是AC 的中点,则BD= . 18.如图,抛物线2(0)y ax bx c a =++≠的部分图象如图所示,则当0y >时,x 的取值范围是 .19.在菱形ABCD 中,∠ABC=60°,点E 在直线AD 上,AE=21AB ,连接BE ,则∠ABE 的正切值为 . 20.如图,四边形ABCD 中∠BCD=90°对角线BD 平分∠ABC ,过点A 作AE ⊥BC 于点E ,AE=BC ,若BE=5,CD=8,则AD= .第17题图 第18题图 第20题图三.解答题(其中21,22题各7分,23,24题各8分,25-27题各10分,共计60分) 21.(本题7分)先化简,再求代数式的值,其中x=4sin45°﹣2cos60°.22.(本题7分)如图,每个小正方形的边长都是1的方格纸中,有线段AB 和线段CD ,点A 、B 、C 、D 的端点都在小正方形的顶点上.(1)在方格纸中画出一个以线段AB 为一边的菱形ABEF ,所画的菱形的各顶点必须在小正方形的顶点上,并且其面积为20;(2)在方格纸中以CD 为底边画出等腰三角形CDK ,点K 在小正方形的顶点上,且△CDK 的面积为10;(3)在(1)、(2)的条件下,连接EK ,请直接写出线段EK 的长.23.(本题8分) 小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?24.(本题8分)在菱形ABCD 中,点O 是对角线的交点,E 点是边CD 的中点,点F 在BC 延长线上, 且CF=BC .(1)如图1,求证:四边形OCFE 是平行四边形;(2)如图2,连接DF ,如果DF ⊥CF ,请你写出图中所有的等边三角形.25.(本题10分) 某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,若设每件降价x 元(x 为整数)、每星期售出商品的利润为y 元. (1)请写出y 与x 的函数关系式;(2)当降价多少元时,每星期的利润最大?最大利润是多少?DC BA(第22题图)FOED B(第24题图2)OEDB(第24题图1)26(本题10分)已知:Rt△ABC,沿着斜边BC翻折得△BCD,延长AC至点E,AC=CE,连接DE (1)如图1,求证:DE//BC;(2)如图2,连接BE,作AF⊥BE于点F,连接DF,若DC⊥AE,求证:∠BDF=∠BED;(3)在(2)的条件下,连接CF,DF=4,求CF的长. 27.(本题10分)抛物线243y ax ax a=-+交x轴于点B、C两点,交y轴于点A,点D为抛物线的顶点,连接AB、AC,已知△ABC的面积为3.(1)求抛物线的解析式;(2)点P为抛物线对称轴右侧一点,点P的横坐标为m,过点P作PQ∥AC交y轴于点Q,AQ的长度为d ,求d与m的函数关系式;(3)在(2)的条件下,当d=4时,作DN⊥y轴于点N,点G为抛物线上一点,AG交线段PD于点M,连接MN,若△AMN是以MN为底的等腰三角形,求点G的坐标.yxACO BDyxACO BD26题图126题图226题图327题图127题图2。

黑龙江省哈尔滨市2020届九年级上期中考试数学试卷含答案(全套样卷)

黑龙江省哈尔滨市2020届九年级上期中考试数学试卷含答案(全套样卷)

哈尔滨市2020届九年级上学期期中考试数学试卷一、选择题(每小题3分,共计30分)1.-6的绝对值是( )A .6B 61C .-6D .- 612.下列商标中是中心对称图形的是()3.二次函数y=(x -l)2+2的顶点坐标为( )A .(1,2)B .(0,1)C .(0,2)D .(0,3)4.0.36用科学记数法可表示为( ).A .3.6×10-2B 0.36×10-2C . 3.6×10-1D .36×10-45.如图所示的立体图形是由8个棱长为1的小立方体组成的,其俯视图是()6.如图,Rt △ACB 中,∠C =90°,AB =5,BC=4,则cos ∠A= ( )A. 54B. 53C. 34D. 437.如图,△ABC 中,∠ABC=30°,∠ACB=50°,折叠△ACB 使点C与AB 边上的点D 重合,折痕为AE ,连DE ,则∠AED 为( )A .70°B .75°C .80°D .85°8.如图,△ABC 内接于半径为2的⊙O 中,若∠BAC=60°,则BC 的长度为( )A .2B .23C .3D .229. 六张纸牌上分别写着A 、a 、B 、b 、C 、c ,闭眼摸出两张,正好是同一个字母的大写与小写形式的的概率是( )A. 31B. 61C. 91D. 51 10.已知A 、B 两地相距4km ,上午8∶00时,亮亮从A 地步行到B 地,8∶2020芳从B 地出发骑自行车到A 地,亮亮和芳芳两人离A 地的距离S(km)与亮亮所用时间t(min)之间的函数关系如图所示,芳芳到达A 地时间为( )4O 2A .8∶30B .8∶35C .8∶40D .8∶45二、填空题(每小题3分,共计30分)11. (a -2) 312.函数的取值范围是 13.分解因式:-5a 4b+5b=14.分式方程11x 21x 2x 2=-+++的解为 15.二次函数y=x 2+mx+n 与x 轴交点中有一个是(2,0)点,则4m 2+4mn+n 2的值为16.如图,⊙O 的内接正六边形ABCDEF 周长为6,则这个正六边形的面积为B E17.二次函数y=x 2-2x -3与x 轴交点交于A 、B 两点,交 y 轴于点C ,则△OAC 的面积为18.如图,⊙O 中,BC 为直径,AB 切⊙O 于B 点,连AC 交⊙O 于D ,若CD =2,AB=3,则BC=19.如图,⊙O 中,弦AB=3,半径BO=3,C 是AB 上一点且AC=1,点P 是⊙O 上一动点,连PC ,则PC 长的最小值是2020图,AC 与AB 切⊙O 于C 、B 两点,过BC 弧上一点D 作⊙O 切线交AC 于E ,交AB 于F ,若EF ⊥AB ,AE=5,EF=4,则AO =三、解答题(共计60分)21. (本题6分)先化简,再求值22b ab 2a b b a 1b a 1++÷⎪⎭⎫ ⎝⎛+--,其中a=1+2cos45°;b=1-2sin45°22.(本题6分)如图,将边长为2cm的正方形首先剪成两个全等的矩形.再将其中的一个矩形剪成两个全等的直角三角形,请用这三个图形按下列要求拼成一个符合相应条件的图形(全部用上,互不重叠且不留空隙),并把你的拼法按实际大小画在下面方格纸内(6cm×4cm).23.(本题8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树形图法(或列表法)列出两次摸球出现的所有可能结果;(2)求摸出的两个球号码之和等于5的概率.24.(本题8分)已知,如图,Rt△ABC中,∠C=90°,AC=4,BC=2,,点D从A出发沿AC向C点以每秒2个单位速度运动,到C点停止,E点从C点出发沿CB以每秒1个单位的速度运动,到B点停止,两点同时出发,设运动时间为t(秒),△CDE面积为y,(1) 求出y与t的函数关系式并写出自变量t的取值范围;(2) 求当t为何值时,y最大,并求出最大值;A(3) M是AB中点,当DE⊥MC时,求△DEM的面积。

黑龙江省2019-2020学年九年级上学期数学期中考试试卷B卷

黑龙江省2019-2020学年九年级上学期数学期中考试试卷B卷

黑龙江省2019-2020学年九年级上学期数学期中考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九上·宁城期末) 在一个不透明的盒子里有形状、大小相同的黄球2个、红球3个,从盒子里任意摸出1个球,摸到红球的概率是()A .B .C .D .2. (2分) (2016九上·南浔期末) 已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A . 点P在⊙O内B . 点P在⊙O上C . 点P在⊙O外D . 无法判断3. (2分)从﹣3,﹣1,0,2四个数中任选两个,则这两个数的乘积为负数的概率为()A .B .C .D .4. (2分) (2017九上·仲恺期中) 抛物线y=2(x﹣3)2可以看作是由抛物线y=2x2按下列何种变换得到的()A . 向左平移3个单位长度B . 向右平移3个单位长度C . 向上平移3个单位长度D . 向下平移3个单位长度5. (2分)已知二次函数y=ax2+bx+c的图象如图示,有下列结论:①a+b+c<0;②a-b+c>0;③abc>0;④b=2a;⑤b2-4ac>0.其中正确的结论有()A . 4个B . 3个C . 2个D . 1个6. (2分)如图,已知⊙O是△ABC的外接圆,AB=AC,D是直线BC上一点,直线AD交⊙O于点E,AE=9,DE=3,则AB的长等于()A . 7B .C .D .7. (2分)圆心角为120°,弧长为12π的扇形半径为()A . 6B . 9C . 18D . 368. (2分) (2017九下·萧山开学考) 下列语句中,正确的是()①三个点确定一个圆;②同弧或等弧所对的圆周角相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接平行四边形一定是矩形.A . ①②B . ②③C . ②④D . ④9. (2分) (2017九上·萧山月考) 二次函数y=ax2+bx+3(a≠0),当x=1和x=2016时函数的值相等,则当x=2017时,函数的值等于()A .B . 3C .D . -310. (2分)如图,自行车的链条每节长为2.5cm,每两节链条相连接部分重叠的圆的直径为0.8cm,如果某种型号的自行车链条共有60节,则这根链条没有安装时的总长度为()A . 150cmB . 104.5cmC . 102.8cmD . 102cm二、填空题 (共6题;共6分)11. (1分)(2018·哈尔滨) 一枚质地均匀的正方体骰子,骰子的六个面上分別刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是________.12. (1分)(2016·丹阳模拟) 二次函数y=x2+6x+5图象的顶点坐标为________.13. (1分) (2018九下·滨海开学考) 如图,△ABC的3个顶点都在⊙O上,直径AD=2,∠ABC=30°,则AC 的长度是________.14. (1分)如图,在▱ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于点F,则CF=________.15. (1分)如图,M,N是正方形ABCD的边CD上的两个动点,满足AM=BN,连结AC交BN于点E,连结DE 交AM于点F,连结CF,若正方形的边长为6,则线段CF的最小值是________.16. (1分)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B的左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“关联”抛物线,直线AC′为抛物线p的“关联”直线.若一条抛物线的“关联”抛物线和“关联”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为________.三、解答题 (共8题;共80分)17. (10分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB.(2)连接OE,交CD于点F,OE⊥CD.求证:△ABE是等边三角形.18. (10分)(2018·遵义模拟) 有5张形状、大小和质地都相同的卡片,正面分别写有字母:A,B,C,D,E和一个等式,背面完全一致.现将5张卡片分成两堆,第一堆:A,B,C;第二堆:D,E,并从第一堆中抽出第一张卡片,再从第二堆中抽出第二张卡片,背面向上洗匀.(1)请用画树形图或列表法表示出所有可能结果;(卡片可用A,B,C,D,E表示)(2)将“第一张卡片上x的值是第二张卡片中方程的解”记作事件M,求事件M的概率.19. (10分) (2018八上·大石桥期末) 在等边△ABC中,AO是高,D为AO上一点,以CD为一边,在CD下方作等边△CDE,连接BE.(1)求证:AD=BE;(2)过点C作CH⊥BE,交BE的延长线于H,若BC=8,求CH的长.20. (10分) (2018九上·湖州期中) 已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D (如图所示).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长21. (10分) (2019九下·十堰月考) 市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时, y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?22. (10分) (2017九上·上蔡期末) 已知二次函数 .(1)求函数图象的顶点坐标及对称轴;(2)求函数图象与x轴的交点坐标.23. (10分)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB= DH,∠OHD=80°,求∠BDE的大小.24. (10分) (2017九上·江门月考) 已知抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0);求:(1)求抛物线的解析式;(2)求抛物线的顶点坐标.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共80分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、24-1、24-2、。

哈尔滨市2020届九年级上学期数学期中考试试卷(I)卷

哈尔滨市2020届九年级上学期数学期中考试试卷(I)卷

哈尔滨市2020届九年级上学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分) (2015八下·绍兴期中) 用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是()A . (x﹣1)2=2B . (x﹣1)2=4C . (x﹣1)2=1D . (x﹣1)2=72. (2分) (2019九上·中山期末) 下列是电视台的台标,属于中心对称图形的是()A .B .C .D .3. (2分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A . y=﹣5(x+1)2﹣1B . y=﹣5(x﹣1)2﹣1C . y=﹣5(x+1)2+3D . y=﹣5(x﹣1)2+34. (2分) (2018九上·灌阳期中) 若关于的一元二次方程(≠0)的解是 = 1,则 + 的值是()A . 5B . -5C . 6D . -65. (2分) (2019九上·盐城月考) 某市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从10万元增加到70万元.设这两年的销售额的年平均增长率为,根据题意可列方程为()A .B .C .D .6. (2分) (2019九上·克东期末) 若关于的一元二次方程有一个根为,则的值是()A .B .C .D .7. (2分)如图:在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A . 矩形B . 菱形C . 正方形D . 任意四边形8. (2分) (2017九下·张掖期中) 二次函数y=ax2+bx+c的部分图象如图所示,则下列正确的说法有()①点P(ac,b)在第二象限;②x>1时y随x的增大而增大;③b2﹣4ac>0;④关于x的一元二次方程ax2+bx+c=0解为x1=﹣1,x2=3;⑤关于x的不等式ax2+bx+c>0 的解集为0<x<3.A . 2个B . 3个C . 4个D . 5个9. (2分)如图,直线l1∥l2 ,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67º,则∠1=()A . 23ºB . 46ºC . 67ºD . 78º二、填空题 (共6题;共6分)10. (1分) (2019九上·洛阳期中) 在平面直角坐标系中,点(3,4)关于原点对称的点的坐标是________.11. (1分) (2018九上·深圳期中) 关于x的方程2x2+kx−4=10的一个根是-2,则方程的另一根是________;k=________12. (1分)已知二次函数中,函数y与自变量x的部分对应值如下表:x…-2-1012…y…-3-4-305…则此二次函数的对称轴为________13. (1分) (2019九上·大丰月考) 如图,四边形内接于圆,若,则________.14. (1分)(2017·埇桥模拟) 把抛物线y=﹣2x2+4x﹣5向左平移3个单位后,它与y轴的交点是________.15. (1分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),按这样的运动规律,经过第2017次运动后,动点P 的坐标是________,经过第2018次运动后,动点P的坐标是________.三、解答题 (共8题;共87分)16. (10分) (2018九上·潮南期末) 用公式法解方程:x2﹣x﹣2=0.17. (15分)如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.18. (5分) (2019九上·海淀期中) 悬索桥,又名吊桥,指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁. 其缆索几何形状一般近似于抛物线.从缆索垂下许多吊杆(吊杆垂直于桥面),把桥面吊住.某悬索桥(如图1),是连接两个地区的重要通道. 图2是该悬索桥的示意图.小明在游览该大桥时,被这座雄伟壮观的大桥所吸引. 他通过查找资料了解到此桥的相关信息:这座桥的缆索(即图2中桥上方的曲线)的形状近似于抛物线,两端的索塔在桥面以上部分高度相同,即AB=CD,两个索塔均与桥面垂直. 主桥AC的长为600 m,引桥CE的长为124 m.缆索最低处的吊杆MN长为3 m,桥面上与点M相距100 m处的吊杆PQ 长为13 m.若将缆索的形状视为抛物线,请你根据小明获得的信息,建立适当的平面直角坐标系,求出索塔顶端D 与锚点E的距离.图219. (10分)(2017·黄冈模拟) 已知方程x2+2kx+k2﹣2k+1=0有两个实数根x1 , x2 .(1)求实数k的取值范围;(2)若x12+x22=4,求k的值.20. (10分)(2017·个旧模拟) 如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA 延长线上一点,若∠CDB=∠BFD.(1)求证:FD是⊙O的一条切线;(2)若AB=10,AC=8,求DF的长.21. (15分) (2017九上·潮阳月考) 在2010年上海世博会期间,某超市在销售中发现:吉祥物“海宝”平均每天可售出20套,每套盈利40元.国庆长假商场决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套. 设每件商品的售价下降元(为正整数),每天的销售利润为元.(1)求与的函数关系式;(2)要想平均每天在销售吉祥物上盈利1200元,并尽快减少库存,那么每套应降价多少元?22. (7分)(2019·信阳模拟) 如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值。

黑龙江省哈尔滨市2020年九年级上学期数学期中考试试卷A卷

黑龙江省哈尔滨市2020年九年级上学期数学期中考试试卷A卷

黑龙江省哈尔滨市2020年九年级上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·奉贤模拟) 在△ABC中,点D,E分别在AB,AC上,如果AD:BD=1:3,那么下列条件中能够判断DE∥BC的是()A .B .C .D .2. (2分)掷一枚质地均匀的硬币100次,下列说法正确的是()A . 可能50次正面朝上B . 掷2次必有1次正面朝上C . 必有50次正面朝上D . 不可能100次正面朝上3. (2分)将二次函数y=2x2﹣4x﹣1的图象向右平移3个单位,则平移后的二次函数的顶点是()A . (﹣2,﹣3)B . (4,3)C . (4,﹣3)D . (1,0)4. (2分)如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是()A . 75°B . 95°C . 105°D . 115°5. (2分) (2016九上·昌江期中) 如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A . 0个B . 1个C . 2个D . 3个6. (2分)有一多边形草坪,在市政建设设计图纸上的面积为300cm2 ,其中一条边的长度为5cm.经测量,这条边的实际长度为15m,则这块草坪的实际面积是()A . 100m2B . 270m2C . 2700m2D . 90000m27. (2分) (2016九上·滨海期中) 如图,△ABC内接于圆O,AD是圆O的直径,∠ABC=30°,则∠CAD的度数等于()A . 45°B . 50°C . 55°D . 60°8. (2分) (2017八下·南京期中) 如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A . 3B . 4C . 6D . 89. (2分)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A . 95°B . 90°C . 85°D . 75°10. (2分) (2018九上·吴兴期末) 若△ABC的每条边长增加各自的10%得到△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A . 增加了10%B . 减少了10%C . 增加了(1+10%)D . 没有改变二、填空题 (共6题;共15分)11. (1分)(2018·贺州) 从﹣1、0、、π、5.1、7这6个数中随机抽取一个数,抽到无理数的概率是________ .12. (1分) (2017九上·萧山月考) 已知线段AB=1cm,点C是线段AB的黄金分割点(AC<BC),则AC的长为________cm.13. (1分) (2018九上·浙江月考) 如图,在平面直角坐标系中,抛物线y= 与直线交于A、B,直线AB交于y轴于点C,点P为线段OB上一个动点(不与点O、B重合),当△OPC为等腰三角形时,点P的坐标:________.14. (1分)如图,点A、B、C在半径为9的⊙O上,弧AB的长为2π ,则∠ACB的大小是________.15. (1分)(2019·苍南模拟) 自行车车轮的辐条编制方式是多种多样的,同样大小的车轮,辐条编法不同,辐条的长度是不一样的,图2和图3是某种“24吋(指轮圈直径)”车轮一侧的辐条编法示意图,两个同心圆分别代表轮圈和花鼓,连接两圆的线段代表辐条,轮圈和花鼓上的穿辐条的孔都等分圆周,图2是直拉式编法,每根辐条的延长线都过圆心,优点是编法简单,缺点是轮强度较低,且力传递的效果较差,所以一般都采用如图3(两图中孔的位置一样)这样的错位式编法,若弧DC的长度和弧AB相等,则BE的长度为________吋.16. (10分)(2017·埇桥模拟) 对称轴为直线x=﹣1的抛物线y=x2+bx+c,与x轴相交于A,B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)点C是抛物线与y轴的交点,点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.三、解答题 (共7题;共81分)17. (10分) (2020九上·长兴期末) 在一个不透明的盒子中装有5张卡片,5张卡片的正面分别标有数字1,2,3,4,5,这些卡片除数字外,其余都相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈尔滨市光华中学九学年期中测试数学试卷
2019-11-15 一、选择题(每小题3分,共计30分)
1.下列函数中,是反比例函数的是( ).
(A )y=x+3 (B ) (C )y=-2x (D ) 2.下列图形中,是轴对称但不是中心对称图形的是( ).
(A ) (B ) (C ) (D )
3.抛物线y=-3(x -1)2+5的顶点坐标是( ).
(A )(1,5) (B )( -1,5) (C )(1,-5) (D )( -1,-5)
4. 如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( ).
(A )4 (B )6 (C )8 (D )7
5.已知反比例函数y=
x
k 13+的图象的两支分别在第二、四象限内,那么k 的取值范围是( ). (A ) k >-31 (B )k >31 (C )k<-31 (D )k<31 6.如图,一把梯子靠在垂直水平地面的墙上,梯子AB 的长是3米。

若梯子与地面的夹角为α,则梯子顶端到地面的距离BC 为( ).
(A ) 3αsin 米 (B ) 3αcos 米 (C ) αsin 3米 (D ) α
cos 3米 7.如图,将△ABC 绕点A 按逆时针旋转50°后,得到△ADE ,则∠ABD 的度数是( ).
(A )30° (B )45° (C )65°
(D )75° 8.将二次函数y=2x 2的图象向右平移1个单位,再向下平移2个单位后,所得抛物线为( ).
(A )y=2(x+1)2+2 (B ) y=2(x-1)2+2 (C ) y=2(x-1)2-2 (D ) y=2(x+1)2
-2
9.如图,四边形ABCD 是⊙O 的内接四边形,若∠ADC=110°,则∠AOC 的度 数为( ).
(A )110° (B )120° (C ) 130° (D )140°
第4题图 第6题图 第7题图 第9题图
10.下列说法正确的有( ).
①平分弦的直径垂直于弦.②三角形的外心是三角形三边垂直平分线的交点.③一条弧所对的圆周角等于它所对的圆心角的一半.④在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等.
(A )1个 (B )2个 (C )3个 (D )4个
二、填空题(每小题3分,共计30分)
11.把6230 000这个数用科学记数法表示为 .
M O A
B 21
y x =34y x
=
12.函数2x y x =-中自变量x 的取值范围是 . 13.分解因式:a ax 42-= .
14.反比例函数x
k y 5+=
的图象过点(4,1),则k = . 15.如图,Rt △ABC 中,∠C=90°,tan ∠B=21,AB=10,则AC= . 16.扇形的半径为6cm ,面积为2π2cm ,则此扇形的圆心角为 .
17.二次函数c x x y +-=22
图象与x 轴交于点A (-2,0),则图象x 轴的另一个交点B 的坐标为 .
18.如图,在△ABC 中,AC=BC ,以AB 上一点O 为圆心,OA 为半径的圆与BC 相切于点C ,若BC=43,则⊙O 的半径
为 .
19. 已知:正方形ABCD 的边长为6,点P 是直线CD 上一点,若DP=2,则tan ∠BPC 的值是 .
20. 如图,在△ABC 中,AB=AC ,∠BAC=90°,点D 在图形的内部,∠CBD=∠ACD ,∠DAC-∠BCD=45°,若BD=2,则
AC 边的长为 .
第15题图 第18题图 第20题图
三、解答题(21、22题各7分,23、24题各8分,25、26、27题各10分)
21.(本题7分)先化简,再求代数式4
296)211(2-+-÷--a a a a 的值,其中a =4cos30º+3tan45º.
22.(本题7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两
个端点均在小正方形的顶点上.
(1)如图1,点P 在小正方形的顶点上,在图1中作 出点P 关于直线AC 的对称点Q ,连接AQ 、QC 、CP 、PA ,并直接
写出四边形AQCP 的周长;
(2)在图2中画出一个以线段AC 为对角线、面积为6的矩形ABCD ,且点B 和点D 均在小正方形
的顶点上.
23.(本题8分)张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.
(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围);
(2)当x 为何值时,S 有最大值?并求出最大值.
24.(本题8分)如图, 四边形ABCE 中,AB=AC,点D 、点O 别是BC 、AC 的中点 ,AE ∥BC.
(1)求证: 四边形ADCE 是矩形;
(2)若F 是CE 上一动点,直接写出与四边形ABDF 面积相等的三角形和四边形.
25.(本题10分)哈市某专卖店销售某品牌服装,该服装进价为80元.当每件服装售价为240元时,月销售量为200件.该专卖店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每件价格每下降1元时,月销售量就会增加2件.设每件服装售价为x (元),该专卖店的月利润为y (元).
(1)求出y 与x 的函数关系式(不要求写出x 的取值范围);
(2)该专卖店要获得最大月利润,售价应定为每件多少元?最大利润是多少? 图1 O E D A B C O D A 图2
26.(本题10分)已知,在△PAB中,PA=PB,经过A、B作⊙O.
(1) 如图1,连接PO,求证:PO
平分∠APB ;
(2) 如图2,点P在⊙O上,PA:AB=10:2,E是⊙O上一点,连接AE、BE.求tan∠AEB的值;
(3) 如图3,在(2)的条件下,AE经过圆心O,AE交PB于点F,过F作FG⊥BE于点G,EF+BG=14,
求线段OF的长度.
第26题图1 第26题图2 第26题图3
27.(本题10分)
已知:如图,在平面直角坐标系中,直线k kx y 8-=交x 轴于点B ,交y 轴于点C ,经过B ,C 两点的抛物线42
++=bx ax y 交x 轴负半轴于点A ,AB=10.
(1)求抛物线的解析式;
(2)点P 为第一象限内抛物线上一点,作PH ⊥BC 于点H ,设PH 的长为d ,点P 的横坐标为t ,
求d 与t 的函数关系式;
(3)在(2)的条件下,点P 关于直线BC 的对称点为M ,连接OM ,若OM//BC ,作PD ⊥x 轴于点D ,连接CD ,F 在
线段BC 上(对称轴右侧),连接PF ,∠CDP=∠CBD+∠FPD ,求点F 的坐标.
第27题图1 第27题图2 第27题备用图。

相关文档
最新文档